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We Hear Your PACE: Passive Acoustic Localization of Multiple
Walking Persons

CHAO CAI, Nanyang Technological University, Singapore
HENGLIN PU, University of Michigan, United States
PENG WANG, Huazhong University of Science and Technology, China
ZHE CHEN, Nanyang Technological University, Singapore
JUN LUO, Nanyang Technological University, Singapore

Indoor localization is crucial to enable context-aware applications, but existing solutions mostly require a user to carry a
device, so as to actively sense location-discriminating signals. However, many applications do not prefer user involvement
due to, e.g., the cumbersome of carrying a device. Therefore, solutions that track user locations passively can be desirable,
yet lack of active user involvement has made passive indoor localization very challenging even for a single person. To this end,
we propose Passive Acoustic loCalization of multiple walking pErsons (PACE) as a solution for small-scale indoor scenarios: it
passively locates users by pinpointing the positions of their footsteps. In particular, PACE leverages both structure-borne and
air-borne footstep impact sounds (FIS); it uses structure-borne FIS for range estimations exploiting their acoustic dispersion
nature, and it employs air-borne FIS for Angle-of-Arrival (AoA) estimations and person identifications. To combat the low-SNR
nature of FIS, PACE innovatively employs domain adversarial adaptation and spectral weighting to ranging/identification and
AoA estimations, respectively. We implement a PACE prototype and extensively evaluate its performance in representative
environments. The results demonstrate a promising sub-meter localization accuracy with a median error of 30cm.
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1 INTRODUCTION
As a key enabling technology for context-aware applications, the market size of indoor localization is predicted to
reach 17billion by 2025 [31]. This promising future has motivated many indoor localization developments in the
last three decades, if we label the starting point by seminal proposals such as Active Badge [54] and RADAR [4].
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Single Mic Array
Air-borne Sound

Fig. 1. Using a single microphone array, PACE leverages both structure-borne and air-borne sounds produced by footstep
impacts to passively locate and identify multiple walking persons. Essentially, it utilizes the structure-borne and air-borne
sounds to estimate range and angle-of-arrival, respectively, and it also exploits the rich features in the air-borne sounds to
identify persons. As a passive solution, PACE is cost-effective and readily deployable.

With all these efforts, existing indoor localization solutions have converged into two categories, namely device-
based (or active) and device-free (or passive). Active localization often relies on a device (e.g., smartphone) held by a
target user. Using this device to actively sense ambient signals (either artificial or natural), this approach exploits
the critical spatial information embedded in these signals to infer the user’s location. Such location-discriminating
signals may include, among others, light [57, 62], sound [25, 28, 29], magnetism [46, 61], and radio [51, 58, 60].
Recently appeared passive localization lifts the “burden” off users by passively tracking disturbances caused by
user presence or motion. Such disturbances can be sensed by monitoring Wi-Fi communications [1, 19, 20, 39] or
ambient fields/signals [17, 34, 45].
However, there are small-scale indoor applications that existing solutions fail to handle; we illustrate such

applications by two scenarios. In one (elderly and child care) case, Alice leaves her old father Bob and young
child Charlie temporarily at home, but she would like to get warned if at least one of them tend to move out of
their “safe zones” (e.g., both of them to a slippery floor area or Charlie to a desk corner). In another (workspace
management) case, Dave, as the leader of a sensitive project, wishes to keep track of the locations of his team
members, so as to maintain a safe distance under the COVID-19 like circumstances and also to avoid “intruders”
from interfering the project. The active localization approach (e.g., [4, 23, 25, 54, 62]) is largely infeasible for both
cases, as the users may feel cumbersome to carry a device or be unwilling to get tracked, so a passive approach is
apparently preferred. Unfortunately, passive localization systems based onWi-Fi and PIR [19, 20, 34, 39] may suffer
severe co-channel interference (especially the communication function of Wi-Fi devices), while Platypus [17] and
VoLoc/Symphony [45, 53] require either a heavy sensing infrastructure or user voice to perform localization.
Therefore, the open question is: for small-scale indoor scenarios under a short coverage radius, can we passively
track multiple users without heavy infrastructural support and user involvement?

In order to answer the above question, we propose PACE (Passive Acoustic loCaliza-tion of multiple walking
pErsons), a novel concept of tracking users’ footsteps for the purpose of passive multi-user localization. PACE
adopts a compact microphone array [41] to monitor the footstep impact sounds (FIS) produced by user walking,
as shown in Fig. 1; it relies on the FIS to locate and identify multiple users simultaneously. Such a light-weight
system incurs minimal infrastructure requirements and deployment costs, especially suitable for indoor spaces
such as home, office, museum, and library. However, implementing PACE faces two practical challenges. On
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one hand, indoor environments normally incur a heavy multi-path effect and also have a strong acoustic noise
background; these have made pure angle of arrival (AoA) enabled solutions (e.g., [45]) insufficient to locate
footsteps. On the other hand, while it is intuitive that human hearing can clearly identify acquainted footsteps,
this identification is not readily achievable via acoustic sensing.

In designing PACE, we leverage the existence of two propagation components of FIS (i.e., structure-borne and
air-borne) and their complementarity to tackle the above challenges. First of all, we use the sharp difference in
propagation speeds to differentiate the two components. Secondly, we employ structure-borne FIS for range
estimation exploiting their acoustic dispersion nature, but we rely on air-borne FIS for AoA estimation and
user identification leveraging their rich features. Thirdly, we apply domain adversarial adaptation [14] for both
ranging and user identification, aiming to extract domain independent features and thus enable generalizable
functionalities, so as to handle unseen users and environments without relying on extensive training samples.
Finally, though adopting a model-based approach for AoA estimation, we introduce a novel spectral weighting
technique to sharpen peaks in a correlation spectrum and hence to achieve a finer resolution. To summarize, our
paper makes the following major contributions:

• We propose PACE as the first acoustic localization system for passively tracking user footsteps.
• We study the complementarity of structure-borne and air-borne FIS, providing foundations for PACE
design.

• We propose a novel spectral weighting technique to combat the low-SNR nature of air-borne FIS, thus
improving the AoA estimation accuracy.

• We design a deep neural network with domain adversarial adaptation; it performs ranging and user
identification without relying on extensive training samples.

• We implement a PACE prototype and extensively evaluate its performance in realistic settings. The results
demonstrate a median localization error of only 30cm. we will open our source codes after paper acceptance.

In the following, we first provide motivations in Section 2, then present technical details of PACE design in
Sections 3 and 4. We report our extensive evaluations in Section 5, discuss literature and limitations in Sections 6,
and finally conclude our paper in Section 7.

2 BACKGROUND AND MOTIVATION
In this section, we explain the background of impact sounds, and motivate the PACE design via brief measurement
studies with a 6-mic array [41] put on the floor.

2.1 Basics of Impact Sound
When an object impacts a surface, it causes vibrations at the impact point and thus radiates energy via both
air and the solid medium behind the surface in acoustic waveforms. These acoustic waveforms (impact sounds,
or IS) contain two major components. The air-borne IS has a constant speed 𝑐𝑎 and is non-dispersive, so these
waveforms retain their shape regardless of how long they propagate. The structure-borne IS traversing in solid
media exhibits acoustic dispersion; in other words, high frequency components travel faster than low frequency
ones. The certain speed 𝑐 𝑓 of a specific frequency component 𝑓 could be defined as [42]:

𝑐 𝑓 = 4

√√√
𝐸ℎ𝑓 2

12𝜌
(
1 − 𝑣2𝑝

) , (1)

where 𝑣𝑝 is the phase velocity, and 𝐸, 𝜌, ℎ are constants that characterize a medium: 𝐸 quantifies elasticity, 𝜌
characterizes stiffness, and ℎ represents thickness. Therefore, when observing the structure-borne IS at different
distances from the impact point, the resulting waveforms exhibit distinctive features, which can be leveraged to
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(a) Air-borne FIS wave. (b) Structure-borne FIS wave.
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(c) Air-borne spectrogram.
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(d) Structure-bornespectrogram.

Fig. 2. Air-borne and structure-borne FIS incurred by a footstep impact: time-domain waveforms (a) and (b), time-frequency
representations (c) and (d).

conduct accurate ranging. With a sampling rate of 192kHz to preserve waveform details, we give two typical
segments of both FIS components in Fig. 2. The very different time and frequency features of these two components
are clearly visible, which motivates us to make the best use of them respectively.

2.2 Complementarity of Air-borne and Structure-borne FIS
As locating and identifying multiple walking persons can be a very challenging task, conventional acoustic
localization schemes (e.g., relying only on AoA estimations) certainly do not work. Fortunately, the measurement
study we present in this section explain that there exists a complementarity between air-borne and structure-borne
FIS, which can be exploited to complete this task.
In the first measurement, we show that using structure-borne FIS can achieve a more accurate ranging

than using air-borne FIS. With air-borne FIS, we get no choice but to use a path loss based model [10], as the
signal strength appears to be the only available feature. To achieve a robust performance under temporal signal
fluctuations, we use the mean signal energy within a sliding window to derive the signal strength of the path loss
model. For structure-borne FIS, ranging requires a novel mechanism to leverage the acoustic dispersion (detailed
proposal will be presented in Section 4.1). The results shown in Fig. 3 (a) clearly demonstrate that ranging based
on structure-borne FIS is noticeably more accurate than that with air-borne FIS.
In our second measurement, we compare the performance of AoA estimation using these two signals. We

run a delay-and-sum beamforming algorithm (details presented in Section 3.3) with a compact 6-mic array [41]
to estimate AoA. Fig. 3(b) depicts the corresponding AoA spectra for respective signals. It is observable that
with air-borne FIS, the beam pattern is much sharper and hence more robust to background interference. The
reason for the inferior AoA estimation performance of structure-borne FIS is twofold: i) the signal is transient (see
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(a) Ranging performance. (b) AoA estimation performance.
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(c) User identification accuracy.

Fig. 3. Performance comparisons between structure-borne and air-borne FIS produced by footstep impact events, in terms of
(a) ranging, (b) AoA estimation, and (c) user identification.

Section 2.3 for details), and ii) the acoustic dispersion may cause waveform distortions at different microphones
in the array. This second reason renders correlation-based AoA estimation virtually invalid.
In our third measurement, we record the FIS of multiple users walking. The results shown in Fig. 4 present

Mel-Frequency Cepstra (MFC) [32] of FIS by three users walking simultaneously on two different floors; which
clearly demonstrates that FIS profiles produced by different users are separable in time, as far as they do not have
synchronized paces: two steps are separated by at least 0.1s. We also collect a set of FIS samples and use these
samples to train a Gausian mixture model (GMM) [37], so as to identify other FIS samples whose mutual distances
range from 0.025m to 3.6m. According to Fig. 3(c), the superiority of air-borne FIS is apparent: it requires less than
50dB to achieve a 80% recognition accuracy, which can never be achieved by structure-borne FIS. Nonetheless,
these results also show that GMM is incapable of performing user identification in reality, as 50dB SNR is rarely
attainable in practice; similar situations apply to other conventional processing methods summarized in [11].
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Time
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y

(a) MFC for three users walking on a wood floor.
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(b) MFC for three users walking on a concrete floor.

Fig. 4. MFCs under different scenarios, where FIS belonging to three users are partially labelled only for exemplary purposes.
They show that features produced by different users are separable in time domain.

2.3 Separating Air-borne FIS from Structure-borne FIS
In all aforementioned experiments, we implicitly assume that air-borne and structure-borne FIS are separable,
now we justify this assumption. It is known that structure-borne sound travels at a speed around 3000m/s
(depending on the specific medium) while air-borne sound travels at 340m/s (at a temperature of 15◦C) [7]. This
sharp propagation speed difference gives us a chance to separate these two types of FIS in time domain, given an
adequate sampling rate. For instance, assume that the impact happens at 1m distance from a microphone receiver
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Structure-borne signal Air-borne signal

Fig. 5. Structure-borne and air-borne FIS appear in order, due to their distinctive propagation speeds.

whose sampling rate is 𝑓𝑠 = 192kHz, and the structure-borne and air-borne propagation speeds are 𝑐𝑠 = 3000m/s
and 𝑐𝑎 = 340m/s, respectively, then a clean set of unpolluted structure-borne FIS should last for 𝑓𝑠

(
1
𝑐𝑎

− 1
𝑐𝑠

)
≈ 500

samples, or a equivalent of 2.6ms. Therefore, the structure-borne component can be obtained by extracting
samples within 2.6ms at the beginning of individual FIS, and the remaining samples can be categorized into the
air-borne component. Fig. 5 depicts the full-length waveform produced by a footstep impact event (FIE), clearly
demonstrating the separable nature of the two components due to their propagation speed difference.

3 MODEL-BASED SIGNAL PROCESSING FOR PACE
As shown in Fig. 6, PACEmainly consists of fourmodules: signal detection, beamformer, ranging, and identification.
The signal detection module extracts legitimate FIS for further processing. After splitting FIS into structure-borne
and air-borne signals, the beamformer and identification modules utilize air-borne signals for AoA estimation
and user identification, respectively. And the structure-borne signals are exploited for ranging. Integrating AoAs
and ranges allows PACE to acquire accurate user locations, while user identification enables PACE to differentiate
them. In the following, we focus only on the model-based signal processing modules, but leaving the model-free
modules to be discussed in Section 4.

Signal detection Beamformer

Multi-channel 
audio signals

Ranging

Location 
estimation

Signal detection

Multi-channel
audio signals

Pre-processing Localization and identification

Energy detection

GMM

Identification

Fig. 6. PACE system architecture.

3.1 Signal Detection
As individual FIS have very short time duration (less than 0.1s), a remote microphone always detects a sequence
of abrupt energy changes. In PACE, we quantify this energy using Root Mean Square (RMS). Taking x =

{𝑥1, 𝑥2, · · · , 𝑥𝐿} as a received acoustic frame within a certain time window, then its energy is defined as 𝐸RMS (x) =∑𝐿
𝑖=1

√
𝑥2
1+𝑥2

2+...+𝑥2
𝐿

𝐿
. One could signal the detection of an impact event if 𝐸RMS goes above a certain threshold.
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(a) Accuracy vs SNR. (b) Visualization

Fig. 7. FIS detection performance.

However, many background noises such as people speaking or cutlery collisions can also exhibit high 𝐸RMS that
even go beyond that of FIS. Therefore, FIS detection purely relying on signal energy is not robust due to its high
false detection rate.

To address the above problem, we utilize GMM [37] to further identify whether a detected sound indicates an
FIE. The GMM module makes the energy-based detection strategy less sensitive to the threshold, resulting in
a performance more robust to low SNR. We train our GMM model against common background noise, which
leads to an almost perfect performance as shown in Fig 7. These results are obtained with as few as 30 training
samples collected at 3 different locations. More detailed configurations for this GMM model can be found in
Section 5.1. Unfortunately, directly applying GMM for user identification is not feasible for the required high
SNR, as discussed in Section 2.2. Since GMM cannot fully characterize temporal-spectral dynamic patterns for
non-speech signals, we resort to a deep learning approach that will be elaborated in Section 4.2.

3.2 Ranging Is Challenging
As explained in Section 2.1, the acoustic dispersion of the structure-borne FIS may be exploited to estimate the
distance from an FIE to a microphone. This potential is also confirmed by Fig. 8, which shows a clear trend of
signal variation in distance. In order to leverage the divergence of the propagation speeds of different frequency
components for ranging, we first simplify Eqn. (1) to 𝑐 = 𝑘 𝑓

1
2 , where 𝑘 is a constant. An intuitive solution is

to transmit several modulated signals at certain known distance to calibrate the constant 𝑘 [21]. Consequently,
when an FIE happens, we just need to separate 𝑁 different frequency components from structure-borne FIS, say
using Wiener-Ville Distribution to profile their relative arrival time 𝑡𝑖 , 𝑖 ∈ [1, 𝑁 ]. Then, for a certain distance 𝑑 ,
we have 𝑑

𝑐 𝑓1
− 𝑑

𝑐 𝑓2
= 𝑡1 − 𝑡2, where 𝑐 𝑓1 and 𝑐 𝑓2 are the propagation speeds for frequencies 𝑓1 and 𝑓2, respectively.

Therefore, 𝑑 =
𝑡1−𝑡2
1

𝑐𝑓 1
− 1

𝑐𝑓 2
and we can involve more frequency components to improve the estimation accuracy.

However, the aforementioned ideal model faces two major issues. On one hand, our measurements reveal
that different frequency components of structure-borne FIS are overlapped in a relatively short duration (mostly
less than 5ms). As it is already difficult to obtain an accurate frequency spectrum with very limited samples,
separating mixed frequency components could be more challenging. This challenge could cause inaccuracy in
estimating both frequency components and arrival times, thereby significantly affect the ranging performance.
On the other hand, solid media often cause non-quantifiable attenuation that drastically increases in frequency,
so FIS received at a further distance tend to lose their high frequency components, as shown in Fig. 8. These two
problems indicate that a model-based approach is highly unlikely to handle this ranging problem well, so we
instead adopt a deep learning based approach in Section 4.1.
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(a) Time-domain waveforms.
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(b) Spectrogram at 𝑑 = 10cm.
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(c) Spectrogram at 𝑑 = 30cm.
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(d) Spectrogram at 𝑑 = 50cm.

Fig. 8. Structure-borne FIS captured at different distances: time-domain waveforms at three distances (a), and the respective
frequency representations (b)–(d).

3.3 AoA Estimation with Spectral Weighting
Unlike ranging, AoA estimation can be tackled by a model-based approach thanks to the diversity offered by
the microphone array. In the following, we first introduce the basics and weakness of beamforming for AoA
estimation. Then we present our spectral weighting method to combat the weakness, and we also explore the
elevation dimension to handle multi-path interference.

Basics and Weakness of Beamforming. The widely used delay-and-sum beamforming estimates an AoA by
searching the maximum energy formed by multiple microphones over a spherical grid [2, 40]. Essentially,
beamforming for an AoA 𝜙 can be formulated as a maximum likelihood estimation:

𝜙 = argmax
\

e (𝝉 |\ ) , (2)

where e denotes the output energy, and 𝝉 , depending on a possible incident angle \ , represents the delays
among multiple microphones. When \ = 𝜙 , the signals received by multiple microphones are made in-phase via
cross-correlation, thereby maximizing the output energy. However, this algorithm is vulnerable to interference
and often has low resolution when using unmodulated signals due to the fact that their cross-correlation peaks
are not sharp enough [9, 40]. To achieve a better performance, it requires the input signals to have good pulse
compression properties [26], which, unfortunately, do not hold for FIS. Consequently, the obtained beam pattern
has very low resolution, and is hence susceptible to background interference.
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To better illustrate the issue, we conduct measurements using a circular array [41] sampling at 192kHz. As
the array has a diameter of 9cm, the maximum delay is 2.6 × 10−4 s, equivalent to 50 samples. This implies that,
in order to get better results, the correlation peak should have a steep gradient with a maximum of 50 samples
in both negative and positive time delays. However, this could hardly be achievable by the basic beamforming
method if taking FIS as input signals. As shown in Fig. 9(a), the gradient around the maximum peak is quite flat,
leading to a rather wide beam pattern shown in Fig. 9(b) though the AoA is correct.

Spectral Weighting. To tackle the above issue, we design a new spectral weighting function: a multiplier
applied to the frequency domain because FFT is used to speed up the correlation computations. Common spectral
weighting techniques (e.g., GCC-PHAT [22]) yield sharp correlation peaks for both signals and noises, possibly
leading to wrong AoA estimations shown in Fig. 9(b). To prioritize the contribution of each frequency component
𝑋 (𝑓 ), we introduce a new weighting function adapting to SNR as a multiplier for 𝑋 (𝑓 ):

𝑊 (𝑓 ) = 𝐺 (𝑓 ) |𝑋 (𝑓 ) |−𝜌 , (3)

where 𝜌 = max
{
𝛽,

𝑋 (𝑓 )−𝛼𝑋𝜎 (𝑓 )
𝑋 (𝑓 )

}
, 𝑋𝜎 (𝑓 ) is the mean spectral power of noise (estimated in the absence of source

signals), 𝛼 ≤ 1 is a coefficient quantifying how conservative the estimated noise power is (default value 0.9), and 𝛽
is a threshold normally set to 0.4. The term 𝑋 (𝑓 )−𝛼𝑋𝜎 (𝑓 )

𝑋 (𝑓 ) (hence 𝜌) approaches 1 when SNR is high, in which case
|𝑋 (𝑓 ) |𝜌 becomes the spectral magnitude. Otherwise, 𝜌 is reduced to increase𝑊 (𝑓 ) and in turn to compensate
𝑋 (𝑓 ), but noises (whose SNR below 𝛽) is not further compensated. In other words, unlike GCC-PHAT that
blindly equalizes every frequency component, we prioritize the contributions of these components based on their
respectively SNR. In particular,𝐺 (𝑓 ) is the Wiener function of a priori SNR b , utilized to preserve performance at
low SNR and is estimated for the current 𝑛-th frame by 𝐺𝑛 (𝑓 ) = b𝑛 (b𝑛 + 1)−1, where b𝑛 is an estimate of the a
priori SNR and could be estimated using decision-directed approach [12]:

b𝑛 =
𝛾 [𝐺𝑛−1 (𝑓 )]2 |𝑋𝑛−1 (𝑓 ) |2 + (1 − 𝛾) [𝑋𝑛 (𝑓 )]2

E
{[
𝑋𝜎,𝑛 (𝑓 )

]2} ,

(a) Correlation spectra between two arbitrary
microphones, w/ and w/o spectral weighting.

(b) Beam patterns with all 6 microphones, w/,
w/o spectral weighting, and GCC-PHAT.

Fig. 9. Performance comparisons: with spectral weighting, peaks become significantly sharper than those without, in both
(a) correlation spectra and (b) radical beam patterns, showcasing the effectiveness of our proposed weighting function.
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where 𝛾 is a constant normally set to 0.9, and E
{[
𝑋𝜎,𝑛 (𝑓 )

]2} is updated for every new frame. The final weighting
adaptation to SNR𝑊 (𝑓 )𝑋 (𝑓 ) is translated back (via IFFT) to the correlation spectra shown in Fig. 9: because
SNR is higher along the signal arrival direction (i.e., AoA) than other directions, the superiority of our proposed
spectral weighting technique in distinguishing the correct peaks is evident.

Dealing with Multi-path Effects. To make the AoA estimation robust to multi-path interference, we perform 3D
beamforming and utilize the elevation angles to filter out AoAs produced by multi-path effect. Essentially, we
extend our objective function to 3D as:

𝜙𝑎 = argmax
\𝑎

e (𝝉 |\𝑎, \𝑒 ) , (4)

where \𝑎 and \𝑒 are the azimuth and elevation angles, respectively, 𝜙𝑎 is the optimal solution to the maximum
likelihood estimation. The previous 2D-beamforming can be regarded as a special case where \𝑒 = 0.

Given air-borne FIS radiating hemispherically from its source on a floor, reflected signals project more energy
onto the elevation whose azimuth angle coincides with that of the direct signal, as signals incident from other
azimuth angles are more severely diffused. Therefore, if our 2D-beamforming obtains more than one 𝜙𝑎 , we shall
search over the corresponding elevation angles \𝑒 in the 3D beamforming results. We remove any 𝜙𝑎 whose e
sharply decreases in \𝑒 , as it is the AoA of some reflected signals. This effect, illustrated in Fig. 10, helps us to
handle the multi-path interference.

(a) Direct signal. (b) Multi-path signal.

Fig. 10. 3D heatmaps to illustrate multi-path handling. A direct-path AoA spectrum (a) differs significantly from a multi-path
AoA spectrum (b), in terms of projected energy along the elevation dimension.

4 ASSEMBLING ‘PACE’ TOGETHER
In this section, we focus on model-free approaches to ranging and identification, so as to compensate what cannot
be solely achieved by model-based techniques and thus to complete PACE.

4.1 Ranging Reloaded
According to Section 3.2, the function relation between FIS (structure-borne) and distance is too complicated
to be explicitly evaluated. Consequently, we formulate the ranging problem as a regression: given a specific FIS
waveform x, x ∈ 𝑋 , we aim to learn a functionG : 𝑋 → 𝐷 , where 𝑋 and 𝐷 denotes input (FIS waveform) and
distance spaces, respectively. In reality, an input FIS waveform x is sampled from a joint distribution 𝑃 (x, 𝑑, 𝑠),
where 𝑑 ∈ 𝐷 and 𝑠 ∈ 𝑆 , and 𝑆 contains domain specific properties incurred by scene settings such as user diversity
and environment dynamics. Apparently, only features characterizing the joint distribution 𝑃 (x, 𝑑) are expected
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Fig. 11. Network architecture of R-Net.

for our ranging purpose but features induced by 𝑠 should be eliminated. To this end, we use a deep neural network
(DNN) to approximateG(x) and adopt a domain adversarial adaptation [14, 36] to exclude the impact from 𝑠 .

Our R-Net, a DNN shown in Fig. 11, consists of three parts, namely feature extractor, range estimator, and
domain discriminator. The feature extractor transforms an input FIS waveform x into f ∈ R𝑄 , a lower-dimensional
feature vector. Using f , the range estimator aims to infer an accurate distance, while the domain discriminator
tries to identify different domains. The input to the domain discriminator is a weighted f whose weights are
extracted from the range estimator. The ultimate goal of this network is to obtain a domain independent vector f
so as to i) achieve an accuracy range estimation and ii) cheat the domain discriminator to fail its task. It is this
domain independent f (with only range-specific features) that enables a cross-domain generalization of R-Net.
Most DNNs tackle acoustic signals in the format of spectrogram or transformed features such as MFCC or

GFCC [8]. However, our R-Net takes the raw time-domain structure-born FIS as inputs, because spectrogram
or MFCC reveals only magnitude information and thus loses phase information that is critical for ranging.
As demonstrated in [48, 52, 59], phase contains finer-grained temporal information than any other features.
The rationale is that phase preserves time associated metrics in a continuous form while other features often
sample these metrics in a discrete manner. In training R-Net, we provide three sets of training data: i) the raw
structure-borne FIS set 𝑋 , ii) its corresponding ground truth range set 𝐷 , and iii) the domain labels set Δ. The
feature extractor𝐺 𝑓 has one convolution layer followed by a pooling layer, a dropout layer, and a fully connected
(FC) layer. It maps the input x to a lower-dimensional feature vector f :

f = 𝐺 𝑓 (x;𝜽 𝑓 ),
where 𝐺 𝑓 is parameterized by weight vector 𝜽 𝑓 . The range estimator 𝐺𝑟 consists of one FC layer parameterized
by 𝜽 𝑟 ; it infers range by 𝑑 = 𝐺𝑟 (f ;𝜽 𝑟 ) with the feature vector f . Given the range training set 𝐷 , we use mean
square error as the loss function to learn the parameters 𝜽 𝑟 :

L𝑟 =
1
|𝐷 |

|𝐷 |∑
𝑖=1

���𝑑𝑖 − 𝑑𝑖

���2 . (5)

The domain discriminator utilizes a weighted feature vector as its input. This is due to the fact that waveforms
of structure-borne FIS generated at different ranges exhibit distinctive features; if we do not account for this
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range information, the domain discriminator may treat range as a special domain, which is contradictory to our
ultimate goal of identifying only scene settings. To exclude range information for classifier, R-Net lets the domain
discriminator take a weighted feature vector as its input: k =

∑𝑄

𝑖=1𝑤\𝑟 ,𝑖 𝑓𝑖 , where w\𝑟 represents weight vector
from the hidden layer of the range estimator 𝐺𝑟 .
The domain discriminator 𝐺𝛿 also consists of an FC layer but with a softmax activation function, projecting

input k into a predicted probability 𝛿 :

𝛿 = 𝐺𝛿 (k;𝜽𝛿 ), (6)

where 𝜽𝛿 is the network parameter for 𝐺𝛿 . Here we make use of categorical cross-entropy as the loss function:

L𝛿 = − 1
|𝑋 |

∑ |𝑋 |
𝑖=1

∑ |Δ |
𝑗=1 log(𝛿𝑖, 𝑗 ), (7)

where 𝛿𝑖, 𝑗 is the predicted probability indicating the relation between the 𝑖-th FIS sample and the 𝑗-th domain.
Based on the aforementioned design and analysis, our final loss function is formulated as:

L = L𝑟 − 𝛼L𝛿 . (8)

When training, 𝜽 𝑟 and 𝜽𝛿 aim to minimize their respective loss functions L𝑟 and L𝛿 , so their objectives are
“adversarial” to each other due to the minus sign in Eqn. (8). While 𝜽 𝑓 also aims to minimizeL𝑟 , the gradient
reversal layer (active only during backpropagation) enables 𝜽 𝑓 to cheat𝐺𝛿 by maximizingL𝛿 and thus minimize
L. The outcome of this adversarial adaptation ensures that the feature extractor learns to extract only range-
specific features and to neglect those induced by scene settings. Consequently, R-Net can readily handle FIS
samples taken from unseen domains.

4.2 User Identification
As explained in Section 2.2, PACE exploits feature-rich air-borne FIS for user identification. Note that this function
is only meant to differentiate users for the sake of multi-user localization, we shall extend it for user authentication
purpose in an ongoing work [6]. In order to “filter out” the interference from scene settings, our identification
network I-Net has a similar architecture to R-Net (so shared symbols and concepts shall be reused later), but I-Net
differs from R-Net in three aspects: i) range estimator is replaced by a categorical classifier for identifying users,
ii) range information, together with environment dynamics, become domain specific properties; they should be
eliminated via the same adversarial adaptation procedure as for R-Net, iii) most importantly, as it is impractical to
pre-collect air-borne FIS from all users, we require I-Net’s feature extractor to learn features that are sufficiently
discriminative and generalizable for identifying unseen users. To achieve this last objective, we introduce a center
loss [56] in training the classifier:

L𝐶 =
1
2
∑ |𝑋 |

𝑖=1
f𝑖 − c𝑦𝑖

2
2 , (9)

where c𝑦𝑖 ∈ R𝑄 is the center for the 𝑦𝑖 -th class deep features, f𝑖 ∈ R𝑄 is the 𝑖-th deep feature, and the summation
is performed over the input set |𝑋 |. We update c𝑦𝑖 in a mini-batch (with size𝑚) manner where the gradient of
L𝐶 with respect to f𝑖 and the update to c𝑗 are calculated as:

𝜕L𝐶

𝜕f𝑖
= f𝑖 − c𝑦𝑖 ,

c𝑗 = c𝑗 +
∑|𝑋 |

𝑖=1 I (𝑦𝑖=𝑗) (c𝑗−f𝑖 )
1+∑|𝑋 |

𝑖=1 I (𝑦𝑖=𝑗)
, ∀𝑗, (10)
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where I(𝑦𝑖 = 𝑗) is an indicator function whose value is 1 if 𝑦𝑖 = 𝑗 ; otherwise 0. We combine the center loss L𝑐

with a categorical cross-entropy lossL𝑠 to train the user classifier:

L = L𝑠 + 𝛽L𝑐

= −∑ |𝑋 |
𝑖=1 log

𝑒
w𝑇𝑦𝑖 f𝑖+b𝑦𝑖∑
𝑒
w𝑇
𝑗
f𝑖+𝑏𝑗

+ 𝛽

2
∑ |𝑋 |

𝑖=1
f𝑖 − c𝑦𝑖

2
2 ,

(11)

where w and b are the FC parameters, 𝛽 is a scalar that balances the two losses. This loss function enables I-Net
to maximize inter-class margins and minimize intra-class distances, thereby improving its generalizability.

5 SYSTEM EVALUATION
In this section, we present extensive evaluation studies on our PACE prototype. We refrain from system-level
comparisons with other up-to-date passive indoor localization proposals (e.g., [38, 45]), because their application
scenarios are very different as explained in Section 1.

5.1 Prototype and Experiment Settings
We implement our PACE prototype using a circular array with six microphones [41] running on a Raspberry
Pi 4, as depicted in Fig. 12(a). We configure the sampling rate as 192kHz with a 32-bit resolution, the highest
achievable configurations on this hardware platform. The model-based approaches in PACE, i.e., signal detection
and beamformer, are implemented in C. The model-free methods, i.e., ranging and identification, are implemented
using Tensorflow [49]. Our localization experiments involve 3 indoor spaces with different floor materials
(concrete, engineered wood, and solid wood) and 5 users (3 men and 2 women) each having three different choices
on footwear (slippers, sneakers, and dress shoes), but the later user identification experiments in Sec. 5.2.3 further
involve 3 extra users (1 men and 2 women) with other conditions remaining the same. The dimensions of the 3
spaces are 3.6 × 8m2, 4 × 5m2, and 3 × 4m2.

(a) Hardware platform. (b) Experiment setting.

Fig. 12. Implementing PACE with a microphone array (a) and corresponding experiment setting for evaluation (b).

In the signal detection module, the window length for the energy detection is set to 1ms and the threshold for
the detector is 0.1. For the GMM-based filter, we decimate audio samples with a factor of 12 to recognize FIS
against various background noises and to achieve computational efficiency as well. Our GMM filter leverages
MFC coefficients for recognition and has the following empirically set parameters: 16 mixture components, 20ms
duration for a phoneme, as well as 20 filters and MFC coefficients. We use one of the indoor spaces to train our
GMM modules under 5 common background noises (bird sounds, human voice, phone ringings, musics, and
printer noises); the remaining two indoor spaces are then used for testing. We also make sure that the samples
concerning each noise type collected in one indoor room have a quantity of at least 30. Details of the model-free
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modules (including DNNs and their respective training datasets) are published on GitHub and will be made
open-source after paper acceptance.

To collect data for training neural networks and evaluations, we conduct measurements under various indoor
settings; one of them is shown in Fig. 12(b). To minimize the impact of the noises on training, we adopt a spectral
subtraction technique [5] to remove them. To gather location ground truth along with FIS data collection, we
randomly distribute 10 piezoelectric sensors stuck on the floor and pre-measure their ground truth locations.
These piezoelectric sensors are connected via an ESP32 [13] wireless transmitter that is synchronized with PACE
through a local WLAN. The sensitivity of these piezoelectric sensors are carefully tuned so that, only when a
foot steps on it, the sensor output may saturate and signal PACE to mark this FIS profile as having a ground truth
location. We let the 5 users randomly walk in each indoor setting, until we obtain at least 60 FIS samples for
each user at every ground truth location. We re-deploy the sensors and repeat the above data collection process
10 times. In order to perform domain adversarial adaptation, we need two choices for each of the three factors
defining an experiment setting (i.e., floor material, user, and footwear), so we use 8 settings for training. For each
chosen setting, we further split the collected samples into training and testing ones with a ratio of 3:1. The labels
for the training and testing samples are made different, in order to fairly evaluate the prediction performance.
Later experiment statistics are all obtained by repeating each testing case with at least 1,000 testing samples.

5.2 Microbechmarks
We first evaluate the performance of individual components in PACE.

5.2.1 Ranging. To start with, we first confirm that structure-borne FIS indeed carry distance information. In other
words, we verify if structure-borne FIS at different locations exhibit distinctive features, and if signal features
generated at the same location are consistent. In this measurement, we collect FIS at six different locations with
10 cm interval. At each location, we collect over 60 FIS samples. We then use t-SNE [50] to reduce the data
dimension to 2D and visualize the results in Fig. 13(a). The figure clearly shows that structure-borne FIS generated
at different locations exhibit distinctive features, while they share similar features at the same location. This
observation confirms the feasibility of utilizing structure-borne FIS for ranging. We also conduct measurements
to check if structure-borne FIS have directional radiation patterns, as otherwise ranging can be interfered by
arrival directions. To our relief, the results shown in Fig. 13(b) reveal that signal properties from different angles
share similar features, hence arrival directions cause no interference.

(a) Impact of range. (b) Impact of angle.

Fig. 13. Structure-borne FIS offer discriminative features for ranging (a), which are not interfered by arrival directions (b).
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(a) FIS waveforms under three different cases. (b) 2D embeddings of FIS under different
scene settings.

Fig. 14. Structure-borne FIS are barely altered by in-path blockage and reflections (a), but those from different scene settings
exhibit distinctive features (b).

We also explore whether in-path blockages can incur scattering or absorbing effects and thus distort the
identifiable signal properties. In this experiment, we first record an FIS clip 3m away from an FIE where the
line-of-sight path is not blocked. For comparison, we let another user standing in the middle, and record another
FIS clip, and we also record an FIS clip when the microphone is placed close to a wall. Fig. 14(a) depicts these
time-domain waveforms: in-path blockage introduces no noticeable impacts on FIS waveforms as the red and
green curves shown in Fig. 14(a) are almost identical. This observation implies that it is feasible to have multiple
users and furniture in a room even if some of them are blocked by others from time to time. Although the
waveforms may slightly change when placing the microphone close to walls, this impact of reflection can be
readily handled by the adversarial learning strategy adopted to train the R-Net. We finally collected FIS from
different scene settings, namely different users or environments, at the same distance and visualize their low-
dimensional embeddings in Fig. 14(b). The results confirm that FIS exhibit distinctive features incurred by different
scene settings, strongly indicating the need for the domain adaptation.

After the aforementioned studies, we now present the overall ranging performance. We firstly demonstrate that
R-Net is capable of extracting domain-independent features for ranging and thus can work across heterogeneous
scene settings. To this end, we evaluate R-Net under three configurations. First, we involve data from all scene
settings for training and testing, which we refer to as Test with Domain Adaptation (or Test w/ DA). Second, we
randomly select data from one scene setting for testing, but excluding them from training, which case is denoted
by Test new samples with Domain Adaptation (or Test new samples w/ DA). Third, we randomly use the data
from one scene setting to train a new network that has the same architecture as R-Net having only the range
estimator. We then test this trained network on data from another scene setting; the results are referred to as Test
new samples without Domain Adaptation (or Test new samples w/o DA). The corresponding results are shown in
Fig. 15(a). It can be observed that, with domain adaptation, a median ranging error of only around 25cm can be
achieved even with data from other scene settings that have never participated in the training process. Without
domain adaptation, the median error reaches up to 1m, potentially leading to an even larger localization error.
These results strongly confirm that R-Net offers a robust cross-domain ranging performance.

We next study the ranging performance under different parameter settings. We first inspect the impact of
FIS sampling interval (i.e., the closest distance among labels of individual FIS in the training data) and the
results are shown in Fig. 15(b). Clearly, the ranging performance gains a noticeable improvement if the sampling
interval reaches down to 5cm. We further use Fig. 15(c) to show that the ranging performance can be improved
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(a) CDF of ranging performance under differ-
ent settings.

(b) Impact of sampling interval on ranging
performance.

(c) Impact of sample length. (d) Impact of starting point.

Fig. 15. Ranging performance with R-Net.
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(a) Ranging performance for different
footwear on engineered wood floor.
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(b) Ranging performance on different floor
materials with dress shoes.

Fig. 16. Footwear (a) and floor material (b) cause virtually unnoticeable impacts on the ranging performance.

when the number of samples 𝐿 increases. However, this improvement becomes marginal when 𝐿 gets over 500.
Consequently, PACE utilizes only 500 samples for ranging. We then verify the impacts of detected starting point
of FIS (in terms of the number of shifted samples against what is indicated by our detection strategy) on the
ranging performance. As shown in Fig. 15(d), shifting away from our detected starting point can only deteriorate
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the ranging performance, firmly proving the correctness of our detection strategy. We finally explore the impact
of footwear and floor materials on the ranging performance. Here we differentiate the results of Fig. 15(a) (the
red curve) according to the 3 footwear and floor materials explained in Section 5.1. As revealed by the respective
performances shown in Fig. 16, footwear and floor materials virtually introduce no impact on ranging. 1

5.2.2 AoA Estimation. Recall that we adopt air-borned FIS for AoA estimations via beamforming, but we propose
a special spectral weighting function to sharpen the correlation peaks. To demonstrate the improved performance
of AoA estimation with our spectral weighting function, we conduct an experiment under a rather challenging
case where five users walk around the microphone array. Fig. 17(a) depicts a snapshot of the AoA spectrum under
different methods: the spectrum with spectral weighting clearly shows five sharp peaks correctly indicating the
ground truth AoAs, whereas that without spectral weighting fails to perform correct estimations (e.g., almost no
peaks at 0◦ and 180◦).

(a) AoA spectrum. (b) CDF of estimation errors.

Fig. 17. AoA estimation performance: (a) AoA spectrum with our proposed weighting function yields much sharper peaks, (b)
AoA estimation errors under different number of FIS sources and other solutions.

To further verify its performance, we conduct extensive AoA measurements under different number of FIS
sources; the CDF of the measurement errors are shown in Fig. 17(b). It can be observed that the number of sound
sources imposes negligible impacts on the performance: the algorithm can still achieve an 80-percentile error of
less than 4◦ in AoA estimation with 5 users, which is 16× improvement over that without spectral weighting (BF)
and 7.25× over GCC-PHAT. In comparison, passive RF approach [38] only achieves 80% error of 18◦ and acoustic
solution [45] yields a median error of around 10◦. The better performance of PACE can be partially explained by
the good correlation property of FIS.

5.2.3 User Identification. As mentioned in Section 4.2, to improve the I-Net’s generalization ability so as to
discriminate unseen users, we add a center loss to the commonly used cross-entropy loss. The effectiveness of
this additional loss term is demonstrated in Fig. 18: by minimizing the intra-class distances while separating
the inter-class boundaries, the center loss has greatly enhanced the network’s discrimination ability for the 8
involved users. We further present the identification performance with and without center loss under different
sampling rates; the results are summarized in Table 1. These results strongly demonstrate that center loss can
1We admit that certain extremely cases (e.g., soft carpets that result in very low-strength FIS) may cause troubles to PACE, in which case
other non-acoustic methods have to be used as a complement.
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(a) Output without center loss. (b) Output with center loss.

Fig. 18. Activation output of the last hidden layer (b) with and (a) without center loss.

substantially improve the user identification performance by up to 10% on both testing and unseen data. In
addition, raising the sampling rate can improve the identification performance for the network trained without
center loss, but it appears to have much less impact on that trained with center loss. Note that the identification
accuracy of I-Net is achieved using only one step, but Footprintid [35] requires up to 10 steps for identification.
Consequently, I-Net significantly reduces the identification latency. Meanwhile, as it is rather unlikely that two
users share similar physical conditions and an individual has a very unique foot motion style, footsteps generated
by different users always carry distinctive features, rendering I-Net feasible in practice.

Table 1. Identification accuracy at different sampling rates: the center loss significantly enhances the performance for both
observed and unseen users.

Accuracy 48kHz 96kHz 192kHz
Test accuracy w C 92.19% 91.9% 96.02%
Test accuracy w/o C 82.92% 86.01% 88.28%
Unseen data w C 90.7%4 92.11% 91.56%
Unseen data w/o C 78.54% 83.44% 87.93%

We finally compare the identification performance between I-Net and GMM under different SNRs. In order
to emulated different SNRs, we superimpose additive white Gaussian noise above FIS captured under realistic
settings. The results shown in Fig. 19(a) clearly demonstrate that I-Net achieves significantly better performance
than GMM. Since the FIS are captured under common background noise, the overall SNRs of these artificial signals
should be worse than what are indicated by the 𝑥-axis labels, possibly causing the non-monotonic identification
accuracy.

5.3 Localization
After evaluating individual components, we now report the overall localization performance under 5 walking users.
We first summarize the localization performance (in terms of error CDF) in Fig. 19(b). The results demonstrate a
median error of around 30cm under a single user, which is comparable to (or even better than) the state-of-the-art
passive acoustic and RF solutions (e.g., [45] at 50cm and [39] at 75cm). When the number of users increases,
potential “collisions” among FIS from different users may lead to worse performance, but the 80-percentile error
is still less than 1m even with 5 users. We then present the tracking performance by showing the traces of two
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(a) Identification performance under different
SNR.

(b) Localization performance under different
number of users.

Fig. 19. User identification (a) and multi-user localization (b) performance.

simultaneous walking users under two cases (simple and complex) in Fig. 20. In both simple and complex cases,
the estimated traces and ground truth ones are highly consistent. Besides excellent localization performance, the
results also show PACE can correctly recognize the user behind each trace: traces do not get messed up even
after intersections.

We also study the time complexity of different modules of PACE in Table 2. The results reveal that it costs less
than 30ms to simultaneously locate and identify one user, and this cost is strictly proportional to the number of
users. This salient run-time performance is achieved via attentive code optimization. Specifically, we optimize
the code for model-based modules using ARM Neon technology [3], a SIMD (single instruction, multiple data)
architecture to accelerate hardware run-time performance. This optimization has brought us more than 10×
improvements. The sampling rate can affect the overall time cost but the impacts are marginal. When the sampling
rate increases, only the time cost of the signal detection module grows, whose upper limit is around 6ms. The
beamformer is sampling rate agnostic as its input has a fixed size. The inputs of R-Net are already obtained with
the highest sampling rate 192kHz. The inputs for I-Net are the STFT of air-borne FIS and have two dimensions,
namely time and frequency. Suppose the sampling rate is doubled, the time dimension is also doubled as more

(a) Tracking performance for simple traces. (b) Tracking performance for complex traces.

Fig. 20. Tracking under multiple users.
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Table 2. Computational time cost for each module.

Module Signal
detection

Beam-
former R-Net I-Net

Time cost (ms) 0.16 18.17 5.29 3.25

samples are involved, but the frequency dimension is halved as we fix the STFT length to 128 points and only
take the frequency component below 24kHz. As a result, the input size remains almost unchanged, making the
inference time for I-Net also sampling rate agnostic. To conclude, PACE is certainly feasible to conduct real-time
localization for multiple users.

6 RELATED WORK AND DISCUSSION
In this section, we briefly survey the closely related literature, so as to strengthen our novel contributions. We
also discuss certain limitations upon which PACE may consider to improve in a future work.

6.1 Related Work.
Recent years have witnessed a plethora of indoor localization solutions; they all exploit various signals that carry
spatial information to enable localization [1, 15, 17, 23, 25, 29, 38, 39, 51, 57, 60, 62]. Most of these proposals are
active (i.e., requiring users to carry a device for sending or receiving some form of signals) [23, 24, 29, 47, 51, 57, 60],
but they might not be suitable for certain practical applications (e.g., elderly care or security monitoring) that
require passive localization to avoid involving users. Passive RF solutions locate a user via its location-dependent
backscattered signals [1, 19, 20, 27, 38, 39], yet they can barely discriminate users. Platypus [17] utilizes human body
induced electric potential for passive localization and identification, but it involves a rather heavy infrastructure
to cover the concerned area. In the following, we focus on discussing acoustic solutions that have potential to
enable passive localization that simultaneously tracks and identifies multiple users.
Although earlier acoustic solutions involve an infrastructure for sending acoustic beacons (i.e., modulated

acoustic waveforms) in a synchronized manner and user-held devices to process these beacons [25, 26, 29],
recent proposals have advanced in locating users without actively involving them. For instance. CovertBand [33]
transmits beacons from an amplified speaker driven by a smartphone, and locates multiple users (even their
actions) by analyzing the acoustic reflections received by the phone. Mao et al. [30] adopt a similar approach
to CovertBand but use a different modulation technique and a microphone array as the receiver. It utilizes
2D-MUSIC [55] and RNN [16] to track multiple users and to identify their gestures in a room scale. However, by
mimicking the function of an active sonar (i.e., transmitting some form of sounds to probe the users), both [33]
and [30] are not passive localization solutions, hence not applicable to the indoor scenarios we have in mind.
The most recent proposals VoLoc [45] and Symphony [53] both aim to locate human voice so as to execute

location-dependent voice control. They exploit both the direct-path AoA and those of reflect paths to locate a
user (voice). While VoLoc targets sequentially identifying these paths by an iterative identification-cancellation
procedure to gradually “peel off” all paths, Symphony innovates in leveraging the reflection path to create a
virtual microphone array and hence locates multiple users via reverse ray-tracing. While VoLoc and Symphony
may well support location-dependent voice control, they are still not purely passive as they require user voice. In
comparison, our PACE is among the first passive acoustic solution that can simultaneously locate and identify
multiple users. PACE is totally passive as it neither involves users (certainly without user-held devices) nor
actively transmits signals to probe. To the best of our knowledge, this joint localization and identification in
multi-user scenarios have never been achieved by existing passive localization solutions.
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6.2 Discussions.
PACE exploits both model-based and model-free approaches for the localization purpose. One would argue that
why not adopt the model-free (i.e., deep neural network) approach to tackle all the problems. The underlying
reason is that deep neural network, albeit more powerful, often needs a heavy training process that entails
substantial efforts in collecting and labeling data. On the contrary, when a mathematical model is clearly behind
a physical phenomenon (e.g., AoA estimation), model-based approaches can be more effective and also easy
to implement. As a result, PACE fuses these two methods to strike a balance between model derivation and
parameter calibration. Nonetheless, we are actively considering a unified data processing framework for improve
the overall efficiency of PACE.
PACE adopts a microphone array, so it has a potential to tackle the situation where an FIE collision (i.e.,

totally synchronized pace) happens, as many signal processing algorithms (e.g., FastICA [18] or NMF [43]) can
decompose mixed sources. However, these algorithms assume that the spectral energies of mixed sources are
sparse and not entirely overlapped. Also, each source should have distinct statistical properties over its time
duration. Such requirements make these algorithms infeasible to disentangle totally overlapped FIS caused by FIE
collision, because FIS have concentrated energy in a rather short duration. Fortunately, this short duration also
makes FIE collision less likely to occur; PACE can separate two steps as far as they are 0.1s apart. Since we believe
that employing deep learning techniques may better handle this collision, we have planned it as a future study.
PACE is supposed to work in small-scale indoor environments, as explained in Section 1. Its coverage, based

on our experience from experiments, can be up to 8 × 8m2 when the array sits in a corner. Under such an
application scenario, user are few (around 5) and they walk independently; these are essential to guarantee the
0.1s separation. In other words, PACE is not applicable to places such as shopping malls or airports, where people
may move in groups [44] and hence having synchronized paces. For small spaces larger than the 8 × 8m2 or
having non-rectangular shapes, one can partition them into subareas with each covered by one PACE array.

One rational behind PACE using both air-borne and structure-borne FISs is that these two signal components
almost always appear together since their existences are dictated by physical laws. Under extreme case where
one of them is missing (due to, for instance, temporary shadowing), we can use adjacent values (precedent and
subsequent values) to interpolate missing data. Because i) PACE is meant to locate mobile users who can produce
FISs, ii) no object is allowed to cover the PACE array (e.g., a carpet), and iii) a single PACE array does to cover
more than one wall-separated area, constant shadowing are rather unlikely to take place. For static users, PACE
has to resort to their latest generated FISs for localization.

The whole PACE prototype (including the Raspberry Pi and microphone array) costs less than 120USD. It can
be made even cheaper if integrated into, say, Amazon Echo. In our prototype, the array involves 6 microphones,
and we use them all for AoA estimations. However, we suspect a 2-microphone array (e.g., Google Home) should
also work at a cost of a higher error. With this prototype and considering the average human foot length of 20 to
30cm, the median error of 30cm achieved by PACE is sufficiently accurate for practice use.

7 CONCLUSION
In this paper, we present PACE, the first pure passive acoustic localization system for small-scale indoor scenarios.
PACE leverages footstep impact sounds (FIS) to simultaneously locate and identify multiple users without their
active involvement. Specifically, PACE builds adversarially adapted deep neural networks to exploit structure-
borne FIS for range estimation and air-borne FIS for user identification. Moreover, PACE utilizes feature-rich
air-borne FIS for AoA estimation, and it fuses all these information to achieve localization and identification
simultaneously. PACE requires no sophisticated hardware design but only a commodity microphone array. It
entails a lightweight deployment and achieves a sub-meter level localization accuracy. Therefore, we deem PACE
as an effective and efficient solution for our envisioned small-scale indoor applications.
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