

A six-gene phylogenetic overview of *Basidiomycota* and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective

Rui-Lin Zhao^{1,2} · Guo-Jie Li¹ · Santiago Sánchez-Ramírez^{3,4} · Matt Stata^{3,4} · Zhu-Liang Yang⁵ · Gang Wu⁵ · Yu-Cheng Dai⁶ · Shuang-Hui He⁶ · Bao-Kai Cui⁶ · Jun-Liang Zhou⁶ · Fang Wu⁶ · Mao-Qiang He¹ · Jean-Marc Moncalvo^{3,4} · Kevin D. Hyde^{7,8}

Received: 25 October 2016/Accepted: 3 May 2017/Published online: 2 June 2017 © School of Science 2017

Abstract In this paper, we provide a phylogenetic overview of *Basidiomycota* and related phyla in relation to ten years of DNA based phylogenetic studies since the AFTOL publications in 2007. We selected 529 species to address phylogenetic relationships of higher-level taxa using a maximumlikelihood framework and sequence data from six genes traditionally used in fungal molecular systematics (nrLSU, nrSSU, 5.8S, tef1- α , rpb1 and rpb2). These species represent 18 classes, 62 orders, 183 families, and 392 genera from the

Electronic supplementary material The online version of this article (doi:10.1007/s13225-017-0381-5) contains supplementary material, which is available to authorized users.

Rui-Lin Zhao zhaorl@im.ac.cn

- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- ² College of Life Sciences, University of Chinese Academy of Sciences, Huairou District, Beijing 100408, China
- ³ Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- ⁴ Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
- ⁵ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- ⁶ Institute of Microbiology and Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- ⁷ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- ⁸ Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China

phyla Basidiomycota (including the newly recognized subphylum Wallemiomycotina) and Entorrhizomycota, and 13 species representing 13 classes of Ascomycota as outgroup taxa. We also conducted a molecular dating analysis based on these six genes for 116 species representing 17 classes and 54 orders of Basidiomycota and Entorrhizomycota. Finally we performed a phyloproteomics analysis from 109 Basidiomycota species and 6 outgroup taxa using amino-acid sequences retrieved from 396 orthologous genes. Recognition of higher taxa follows the criteria in Zhao et al (Fungal Divers 78:239–292, 2016): (i) taxa must be monophyletic and statistically well-supported in molecular dating analyses, (ii) their respective stem ages should be roughly equivalent, and (iii) stem ages of higher taxa must be older than those of lower level taxa. The time-tree indicates that the mean of stem ages of Basidiomycota and Entorrhizomycota ca. 530 Ma; subphyla of *Basidiomycota* are are 406-490 Ma; most classes are 358-393 Ma for those of Agaricomycotina and 245-356 Ma for those of Pucciniomycotina and Ustilaginomycotina; most orders of those subphyla split 120-290 Ma. Monophyly of most higherlevel taxa of Basidiomycota are generally supported, especially those taxa introduced in the recent ten years: phylum Entorrhizomycota, classes Malasseziomycetes, Moniliellomycetes, Spiculogloeomycetes, Tritirachiomycetes and orders Amylocorticiales, Golubeviales, Holtermanniales, Jaapiales, Lepidostromatales, Robbauerales, Stereopsidales and Trichosporonales. However, the younger divergence times of Leucosporidiales (Microbotryomycetes) indicate that its order status is not supported, thus we propose combining it under Microbotryales. On the other hand, the families Buckleyzymaceae and Sakaguchiaceae (Cystobasidiomycetes) are raised to Buckleyzymales and Sakaguchiales due to their older divergence times. *Cystofilobasidiales* (*Tremellomycetes*) has an older divergence time and should be amended to a higher rank. We however, do not introduce it as new class here for Cystofilobasidiales, as DNA sequences from these taxa are not from their respective types and thus await further studies. Divergence times for Exobasidiomycetes, Cantharellales, Gomphales and Hysterangiales were obtained based on limited species sequences in molecular dating study. More comprehensive phylogenetic studies on those four taxa are needed in the future because our ML analysis based on wider sampling, shows they are not monophyletic groups. In general, the six-gene phylogenies are in agreement with the phyloproteomics tree except for the placements of Wallemiomycotina, orders Amylocorticiales, Auriculariales, Cantharellales, Geastrales, Sebacinales and Trechisporales from Agaricomycetes. These conflicting placements in the six-gene phylogeny vs the phyloproteomics tree are discussed. This leads to future perspectives for assessing gene orthology and problems in deciphering taxon ranks using divergence times.

Keywords Fungi · Systematics · Taxonomy · *Wallemiomycotina*

Introduction

The phylum Basidiomycota R.T. Moore (1980) contains 16 classes, 52 orders, 177 families, 1589 genera and more than 30,000 species (Kirk et al. 2008). It is estimated that approximately 32% of the described fungal taxa belong to this phylum (Dai et al. 2015). The Basidiomycota includes the well-known mushrooms, bracket fungi, puffballs, toadstools, but also some microfungi, such as rusts, smuts and yeasts. Although there is an extraordinary diversity within this group, molecular studies indicate there are numerous taxa yet to be described (e.g. Kemler et al. 2009; Wannathes et al. 2009; Zhao et al. 2011; Wu et al. 2014; Li et al. 2016; Hyde et al. 2016). Traditionally Basidiomycota are typically characterized by the presence of basidia and basidiospores. Recent research shows that some variable morphological characters are an expression of a long evolutionary history within the different level taxa of Basidiomycota, such as diversity of cellular constructions in hyphal systems, meiosporangia, the basidiocarps, and ultrastructural characters such as septal pores (Garnica et al. 2007; Van Driel et al. 2009; Yang 2011; Oberwinkler 2012). This indicates that defining higher taxa (e.g. classes, orders) using unique or rather limited morphological characters is subjective.

Basidiomycota species are possibly the main contributors to wood and litter degradation, including degradation of the different components of wood, and they play a key process in carbon recycling (Peláez et al. 1995; Pointing 2001; Pointing et al. 2005; Oberwinkler 2012). *Basidiomycota* are also an important food source for both humans and animals (Zhang et al. 2015). Mushrooms have been a vital source of food for humans mainly because they are rich in carbohydrates (structural polysaccharides) and proteins, including essential amino acids necessary for humans and contain less fat (Zhang et al. 2015). Basidiomycota can produce a number of biochemical compounds that can be either beneficial or toxic to humans. Thus, they are used as traditional medicines to cure cancer, diabetes and other ailments (De Silva et al. 2012a, b, 2013), but are also the cause of serious food poisoning (Liu 2004; Dai et al. 2009; Chen et al. 2014). Basidiomycota also include plant pathogens, such as rusts and smuts (Sinclair et al. 1987; Wang and Zhuang 1998; Zhuang 2003, 2005, 2012; Dai et al. 2007; Hyde et al. 2014), and also form mutualistic associations with a variety of other organisms, such as ectomycorrhizas with plants (e.g. Bonfante and Genre 2008; Rinaldi et al. 2008), symbioses with liverworts (e.g. Kottke et al. 2003), lichen symbioses (e.g. Lawrey et al. 2007), and fungus-farming (fungiculture) by ants and termites (e.g. Chapela et al. 1994; Mueller et al. 2005).

The phylum Basidiomycota was shown to be a monophyletic group sister to Ascomycota (James et al. 2006; Hibbett et al. 2007). Currently, Basidiomycota includes three major clades—Agaricomycotina (mushrooms, jelly fungi, bracket fungi and others), Pucciniomycotina (rusts), and Ustilaginomycotina (smuts and others) (Hibbett et al. 2007)—as well as Wallemiomycetes (Matheny et al. 2007a; Padamsee et al. 2012). A higher-level classification of Basidiomycota was published around ten years ago, based mainly on a series phylogenetic studies, such as the Deep Hypha and AFTOL projects (Blackwell et al. 2006; James et al. 2006; Hibbett et al. 2007; Lutzoni et al. 2004). However, there has been considerable advances since this time and the classification needs updating. For example, the class Entorrhizomycetes has been split from Basidiomycota and raised to phylum Entorrhizomycota. New classes (Malasseziomycetes, Moniliellomycetes, Spiculogloeomycetes, Tritirachiomycetes), and new orders (Holtermanniales, Trichosporonales, Golubeviales, Robbauerales, Unilacrymales, Amylocorticiales, Jaapiales, Stereopsidales and Lepidostromatales) have been introduced (Binder et al. 2010; Boekhout et al. 2011; Schell et al. 2011; Wuczkowski et al. 2011; Shirouzu et al. 2013; Hodkinson et al. 2014; Sjökvist et al. 2014; Weiss et al. 2014; Wang et al. 2014, 2015c). All of the recently introduced higher-level taxa (hereon refers to orders and above) were studied alongside related taxa. No recent study has combined all high-ranked taxa in a single phylogeny to establish whether they are well-resolved. In this study, we selected 529 taxa across all higher ranks of Basidiomycota in standard phylogenetic and molecular dating analyses, as well as phylogenetic reconstruction with hundreds of proteins, to establish if they are well-supported.

Current systematic and taxonomic research generally focuses on organizing and classifying taxa using a combination of characters, including chemical, molecular, morphological, ecological, physiological and biogeographical data (e.g., Hyde et al. 2013; Kuhnert et al. 2015; Maharachchikumbura et al. 2015, 2016). Taxon distinction is based on the recognition of monophyly (e.g. Vilgalys et al. 1994; Taylor et al. 2000), however, the rank of any taxon at any level is subjective and lacks universal criteria (Avise and Johns 1999; Liu et al. 2016). This is apparent both within (e.g. Ascomycota and Basidiomycota) and outside of the Fungi (e.g. across animals, fungi and plants, Samarakoon et al. 2016). Researchers usually rank monophyletic lineages based on their distinct phylogenetic position, plus a combination of morphological and or other characters, and the level of ranking may thus follow that of their known sister clades.

Researchers have attempted to use other criteria in taxon ranking and a polyphasic approach is generally recommended. This is because the use of morphological, phenotypic or molecular characters may be misleading and differ from group to group. For example, Talavera et al. (2013) have designated an age interval of 4–5 Ma to define genera of blue butterflies using sequence data from nine genes. The arrangement of higher-level taxa has been subjective and has led to many hostile and futile arguments in the past (Liu et al. 2016). The concept of using divergence times as a universal criterion for taxa ranking was first proposed by Hennig (1966). He suggested that a taxonomic rank should reflect its geological age, and divergence time could be used as a universally standardized criterion in the systematics of all known organisms (Hennig 1966). In Hennigs' day this was not possible, but the estimation of organism divergence times has now become feasible, due to advances of molecular biology techniques and analytical methods. The latter can convert molecular change into evolutionary time (Robinson and Robinson 2001; Drummond et al. 2006, 2012). The first attempt that aimed at reconciling taxonomic ranks with divergence time estimates in fish, arthropods and fruit flies is that of Avise and Johns (1999). They found a notable disparity in the ages of lineages and their taxonomic rank. Since it was established, molecular clock analysis have largely been used in biogeographic and phylogeographic studies (Hickerson et al. 2010; Zhao et al. 2013; Stefani et al. 2014), but not in taxonomic ranking.

Several recent reports have established divergence times in the fungi. For example, *Basidiomycota* are estimated to have evolved during the Palaeozoic, around 500 million years ago (Ma), and is a sister group to *Ascomycota* being of similar age (Berbee and Taylor 2010; Oberwinkler 2012; Hibbett 2014). *Agaricomycetes* diverged ca. 290 Ma (Floudas et al. 2012). The ages of some groups within *Agaricomycetes*, such as *Boletales* (Skrede et al. 2011; Wilson et al. 2012), *Agaricales* (Matheny et al. 2009; Ryberg and Matheny 2012), and brown-rot lineages (Garcia-Sandoval et al. 2011) have been also estimated, as were fungal epiphytes (Hongsanan et al. 2016).

The first attempt at establishing a taxonomic system in the Fungi based on divergence time was a reconstruction of a taxonomic system for Agaricus (Zhao et al. 2016). These authors produced a multigene phylogeny based on combined ITS, nrLSU, tef1-a, and rpb2 sequence data. Divergence times within the multigene phylogeny were calculated and used to standardize the ranking of taxa into subgenera and sections. The following criteria were used to recognize taxa above species level: (i) they must be monophyletic and statistically well-supported in the molecular dating analyses; (ii) their respective stem ages should be roughly equivalent, and higher taxa stem ages must be older than lower level taxa stem ages; and (iii) they should be identifiable phenotypically, whenever possible. Based on those criteria some subgenera or sections were split or rejected, and new ones were discovered and named.

In the present study, we produce a phylogeny of representative species from almost all classes and orders of *Basidiomycota* and related phyla using six-gene data commonly used in fungal systematics. Divergence times are estimated, and used as a criterion for ranking of higherlevel taxa. We also compare this six-gene phylogeny with a tree produced from amino acid data extracted from published genomes (115 taxa and 396 proteins).

Materials and methods

Six-gene sampling

Our dataset comprises nrLSU, nrSSU, 5.8S, tef1- α , rpb1 and rpb2 sequence data from 529 specimens or cultures representing 18 classes, 62 orders, 183 families, 392 genera and 503 species of *Basidiomycota* and *Entorrhizomycota*. In addition, 13 species of *Ascomycota* belonging to 13 different classes, orders, families and genera were chosen as outgroup taxa (Beimforde et al. 2014). Multigene sequence data from 81 specimens are new taxonomic contributions from this study, all of which have been morphologically examined in detail following the methods of Largent (1986a, b). The other sequences were downloaded from GenBank, and their details are listed in Supplementary Table 1.

PCR amplification and sequencing

Genomic DNA was extracted from dried specimens using an E.Z.N.A. Forensic DNA Kit (OMEGA Bio-Tek, Norcross, GA, USA). We used primers ITS4 and ITS5 (White et al. 1990) for the ITS1-5.8S-ITS2 region (ITS) of the nuclear ribosomal DNA repeat, primers LROR and LR5 (Moncalvo et al. 2000) for the nuclear LSU-rDNA region, primers EF1-983F and EF1-1567R (Morehouse et al. 2003) for translation elongation factor alpha (tef1- α), and primers b6F and b7.1R for RNA polymerase II subunit II (rpb2) (Matheny et al. 2007b) and primers RPB1-Ac RPB1-Cr for rpb1 (Matheny et al. 2002). Genes were amplified by polymerase chain reaction (PCR) using the procedures mentioned in those studies (Moncalvo et al. 2000; Morehouse et al. 2003; Matheny et al. 2007b; Zhao et al. 2011). The PCR products were sent to a commercial biotech company (Baimaide Biotechnique Company, Beijing) for sequencing.

Phylogenetic analysis

The sequence data from each gene was aligned using Muscle 3.6 with default settings (Edgar 2004a, b), then manually adjusted in Mesquite 3.2 (Maddison and Maddison 2016). Regions with ambiguous alignment were excluded, then all sequence data from each gene were combined into a single, concatenated datamatrix. Single-gene phylogenies were constructed to detect possible significant conflicts among the single-gene trees. The final alignment has been submitted to TreeBase (submission No. 20837). Maximum-likelihood (ML) analyses were performed using RAxML v7 (Stamatakis 2006) using a GTR + G+I substitution model. To assess the statistical support of clades we ran 1000 fast-bootstrap (BS) replications under the GTR-CAT approximation.

Divergence-time analysis

We selected 116 taxa for dating analysis based on the phylogenetic results from the six-gene phylogeny and sequence data completeness. The selected taxa represent 17 classes and 54 orders of *Basidiomycota* and two species of *Entorrhizomycota* as outgroup taxa (Supplementary Table 1).

We used two fossils for calibration: *Archaeomarasmius leggetti* Hibbett et al., an agaricoid fruiting body preserved in 90 Ma Dominican amber (Hibbett et al. 1997) as representative of the minimum age of *Agaricales*; and *Quatsinoporites cranhamii* S.Y. Sm. et al., a poroid fruiting body from Apple Bay on Vancouver Island from 113 Ma (Smith et al. 2004) as representative of the minimum age of *Hymenochaetales*. In addition, we used a genomic study that concluded that Agaricomycetes are 290 Ma old (Floudas et al. 2012). Divergence times were estimated in BEAST v1.8.4 (Drummond et al. 2012). We first constructed an XML file with BEAUTI v1.8.4 with a combined six-gene alignment. As substitution models, we used the GTR + G as suggested by jModelTest v2 (Darriba et al. 2012). We used the uncorrelated lognormal relaxed clock model (Drummond et al. 2006: Lepage et al. 2007). specifying a gamma distribution prior (offset = 0, scale = 0.001, shape = 1) on the *ulcd.mean* parameter of each gene partition. For calibration, we specified a gamma distribution prior (scale = 20, shape = 1) on the Agari-(offset = 90 Ma), and Hymenochaetales (offcales set = 113 Ma) clades (Sánchez-Ramírez et al. 2015; Zhao et al. 2016). In addition, we constrained the Agaricomycetes to be 230 Ma (mean) by applying a normal distribution prior (SD = 1), based on Floudas et al. (2012). We ran two independent Monte Carlo Markov Chains of 100 million generations, logging states every 10,000 generations. Log files were checked for convergence and mixing in Tracer v1.6 (Rambaut et al. 2013; http://tree.bio. ed.ac.uk/software/tracer/). An ultrametric maximum-cladecredibility (MCC) tree was summarized using TreeAnnotator 1.8.4, discarding 10% of states as burn-in and annotating clades with > 0.8 posterior probability.

Phyloproteomics analysis

One-hundred and fifteen published Basidiomycota and outgroup proteomes were downloaded from JGI and Ensembl (Supplementary Table 2). All-vs-all comparisons were conducted using Diamond BLAST with maximum sensitivity (Buchfink et al. 2015). In-paralogs were identified using a Python script based on the assumption that these should be a better match to another than to any sequence from any other species, and all clusters of inparalogs were reduced to a single representative sequence. BLAST output was pruned to remove instances of in-paralogs and used for MCL-based identification of orthologs with an inflation parameter of 3.0 (van Dongen 2000). Single-copy orthologs were selected with a minimum taxa occupancy of 70, aligned using Muscle (Edgar 2004a, b), and trimmed using trimAl with the "strict" heuristic option (Capella-Gutiérrez et al. 2009). 396 alignments with trimmed lengths between 100 and 600 sites were selected and used to generate a partitioned super-matrix with 82,536 sites. Maximum likelihood phylogenetic analysis was conducted using ExaML (Kozlov et al. 2015) with 100 bootstraps, gamma rate distribution, and evolutionary models for all partitions determined by maximum likelihood during the analysis.

Results and discussion

Six-gene phylogeny and general dating analysis

The combined nrLSU, nrSSU, 5.8S, tef1- α , rpb1 and rpb2 dataset comprised 529 species with 3957 bps, after excluding the ambiguous regions. The best scoring RAxML trees with all species and BS support are shown in

Fig. 1. (Fig. 1a, b). Figure 1a is a concatenated tree from Fig. 1b and highlights the relationships among classes). The MCC tree is shown in Fig. 2, which is based on 116 taxa with 95% highest posterior density (HPD) of divergence time estimates and PP values at the nodes.

The phylum *Basidiomycota* is monophyletic with 1.0 PP support in the MCC tree (Fig. 2) and 75% BS support in the ML tree (Fig. 1). *Basidiomycota* have a stem age of 530 Ma. In this tree, *Basidiomycota* is composed of four main clades which correspond to *Agaricomycotina*, *Pucciniomycotina*, *Ustilaginomycotina* and *Wallemiomycotina* with the divergence time period of ca. 406–490 Ma. *Entorrhizomycota* is sister to *Basidiomycota* at the divergence time of 530 Ma.

The four subphyla of *Basidiomycota*, *Pucciniomycotina*, *Ustilaginomycotina* and *Wallemiomycotina* are well-supported in both trees, however, *Agaricomycotina* has 55% BS support in the ML tree (Fig. 1), but 1 PP support in the MCC tree (Fig. 2). *Agaricomycotina* comprises three classes: *Agaricomycetes*, *Dacrymycetes* and *Tremellomycetes*. These subphyla were estimated to have diverged 406 to 430 Ma ago. Most classes of *Basidiomycota* have 99% or 100% BS support, with the exceptions of *Agaricostilbomycetes* with 61% BS support, while *Exobasidiomycetes* is polyphyletic in the ML tree (Fig. 1).

Phyloproteomics analysis

Results of our phyloproteomics analysis are depicted in Fig. 3. Overall, there is a high level of congruence with the six-gene phylogeny (Figs. 1, 2). One striking exception, however, is the placement of *Wallemiomycotina* (represented by its holotype *Wallemia*), which is sister group to *Agaricomycotina* in the phyloproteomics tree (Fig. 3) whereas it is sister group to *Agaricomycotina* + *Ustilaginomycotina* + *Pucciniomycotina* in the six-gene phylogeny (Figs. 1, 2).

At the order level, this phyloproteomic analysis also reveals inconsistent phylogenetic positions from the sixgene phylogeny for orders *Amylocorticiales*, *Auriculariales*, *Cantharellales Geastrales*, *Sebacinales* and *Trechisporales* of *Agaricomycetes* (Figs. 1, 2, 3).

Taxonomy

From the results depicted in Figs. 1, 2, 3 and the divergence times of higher taxa summarized in Table 1 we propose to treat subphyla, classes and related orders as follows.

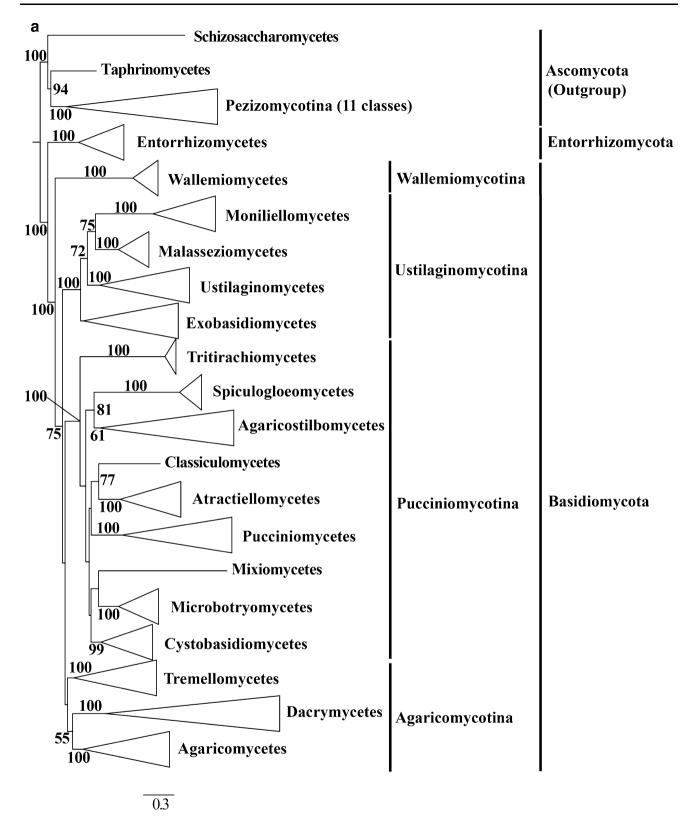
Phylum: *Basidiomycota* R.T. Moore, Bot. Mar. 23(6): 371 (1980)

Subphylum Agaricomycotina Doweld, Prosyllabus Tracheophytorum, Tentamen Systematis Plantarum Vascularium (Tracheophyta) (Moscow): LXXVIII (2001)

- Subphylum Pucciniomycotina R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 45 (2006)
- Subphylum Ustilaginomycotina Doweld, Prosyllabus Tracheophytorum, Tentamen Systematis Plantarum Vascularium (Tracheophyta) (Moscow): LXXVIII (2001)
- Subphylum Wallemiomycotina Doweld, Index Fungorum 73 (2014)

1. Subphylum Agaricomycotina

- Class Agaricomycetes Doweld, Prosyllabus Tracheophytorum, Tentamen Systematis Plantarum Vascularium (Tracheophyta) (Moscow): LXXVIII (2001)
- Class Dacrymycetes Doweld, Prosyllabus Tracheophytorum, Tentamen Systematis Plantarum Vascularium (Tracheophyta) (Moscow): LXXVIII (2001)
- Class Tremellomycetes Doweld, Prosyllabus Tracheophytorum, Tentamen Systematis Plantarum Vascularium (Tracheophyta) (Moscow): LXXVIII (2001)


Phylogenetic support

The subphylum *Agaricomycotina* comprises three lineages: *Dacrymycetes*, *Agaricomycetes* and *Tremellomycetes* (Figs. 1, 2). The classes *Agaricomycetes* and *Dacrymycetes* cluster together with 55% BS support, and are sister to *Tremellomycetes* with poor statistical support in the ML tree (Fig. 1). In the MCC tree (Fig. 2) and phyloproteomic tree (Fig. 3) there is the same topology within this subphylum, but *Agaricomycotina* has 1 PP/100% BS support (Fig. 2). The mean of stem age of *Agaricomycotina* is 406 Ma and the classes diverged from 358 Ma to 393 Ma (Table 1).

Discussion

The subphylum *Agaricomycotina* contains approximately 70% of the known basidiomycetes (Kirk et al. 2008), including mushrooms, shelf fungi, puffballs and others. Historically the subphylum has been named as "*Hymeno-mycetes*" using single gene sequences (Swann and Taylor 1993, 1995). This lineage has been well-accepted as a subphylum based on analysis of nrLSU and nrSSU sequence data, and the integrated analysis of ultrastructural features, such as form and behaviour of the spindle pole bodies and types of host–parasite interaction (Bauer et al. 2006).

A phylogenetic overview of *Agaricomycotina* has been published using sequence data from nuclear rRNA and protein coding genes. The subphylum contains three major clades (*Agaricomycetes*, *Dacrymycetes* and *Tremellomycetes*; Hibbett 2006). In Hibbett's study, *Agaricomycotina* is well-supported using combined nuclear rRNA and protein-coding-gene sequence data from 125 taxa when

Fig. 1 A concatenated tree showing the relationships among classes from the phylogenetic analysis of *Basidiomycota* and allied phyla generated from maximum likelihood analysis of nrLSU, nrSSU, 5.8S, tef1- α , rpb1 and rpb2 sequence data, rooted with 13 species from *Ascomycota*. Bootstrap support (BS) values >50% are given at the

internodes. The *thickened branch* indicates the order with a BS values >80% (**a** A concentred tree from the completely ML tree, in order to show the highlights of the relationships among classes; **b** The completely ML tree)

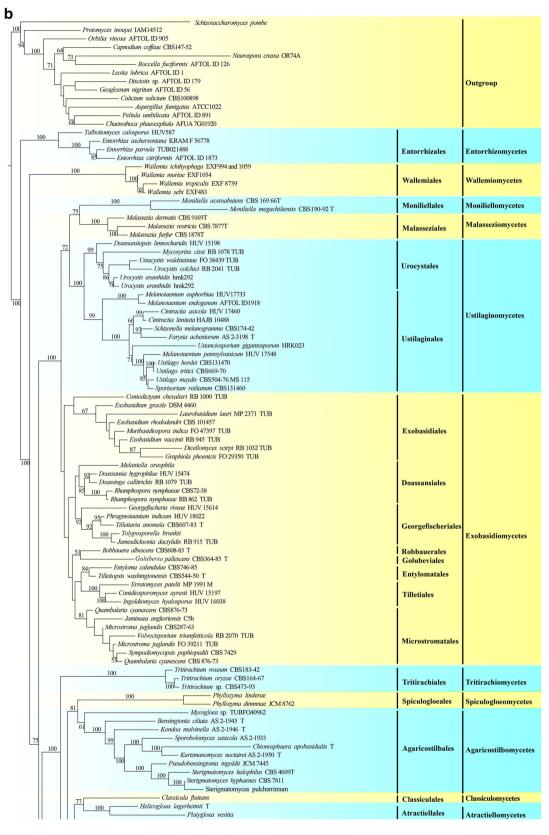
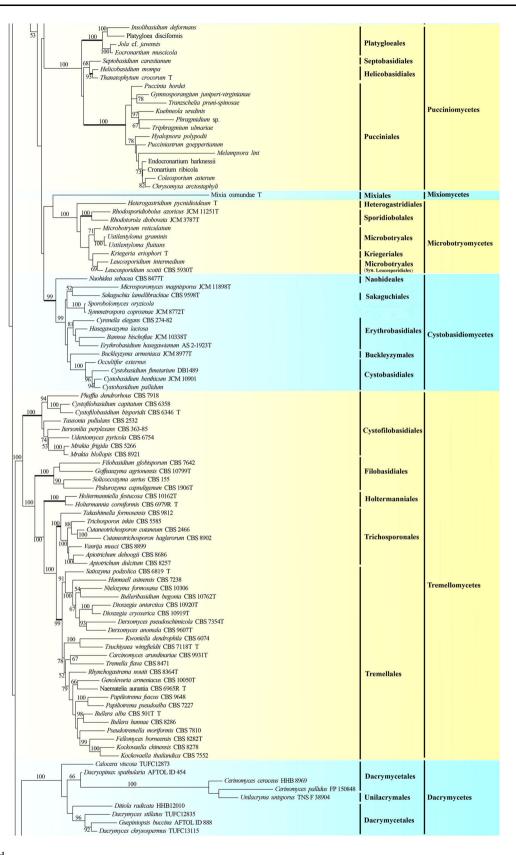



Fig. 1 continued

100 Augustability monopoint ATTOLE DB4 Cantharellates 100 Control (CB 10) Stobacianics 100 Control (CB 10) Stobacianics 100 Control (CB 10) Treebility oralis 100 Control (CB 10) Treebility oralis <td< th=""><th></th><th></th><th></th></td<>			
0	04		
Image: Conservation constraint TRIBDOM Sobacinales Image: Constraint constraint TRIBDOM Sobacinales Image: Constraint constraint TRIBDOM Treebisparales Image: Constraint constraint TRIBDOM Auriclantiales Image: Constraint Constraint Constraint Constraint Treebisparales Image: Constraint Constraint Constraint Constraints Image: Constraint Constraint Constraint Constraints Image: Constraint Constraint Constraint Constraints Image: Constraint Constraint Constraints Constraints Image: Constraints <		Cantharellales	
S Image: Section of the section of t	100 Craterocolla cerasi TUB020203		
10 <		Sebacinales	
Image: Second	Subalizartidam on VIII 10780		
Image: standard nature Nuclearized State St	Brevicellicium atlanticum KHL8571	Trechisporales	
Image: Solution of the soluti			
Image: set of the set	100 Auricularia heimuer Heishan	Auriculariales	
100 The second propried SPRB Constrained SPRB Constrained SPRB 100 Constrained SPRB Constrained SPRB Constrained SPRB 101 Constrained SPRB Constrained SPRB Parallales 101 Constrained SPRB Constrained SPRB Constrained SPRB 101 Constrained SPRB Constrained SPRB <t< td=""><td></td><td></td><td></td></t<>			
Image: The Control hyperbox 2008 Constructions and properties 2008 Image: Constructions and properties 2008 Complexites Image: Constructions and 2008 Phasines Image: Constructions and 2008 Phasines Image: Constructions and 2008 Phasines Image: Constructions and 2008 Complexites Image: Con	76 Pyrenogaster pityophilus 59743		
1 -5% -Relation relation 3700 Image: Construction and approximation of the construction an	76 Geastrum floriforme 29328	Geastrales	
Image: Construction of protocols of the COMB of Comparison of Compari			
10 Image: Control protocol MMP products 12733 Gomphales 10 Image: Control protocol MMP products 12733 Gomphales 10 Image: Control protocol MMP products 12733 Figure 2003 10 Image: Control protocol MMP products 12733 Figure 2003 10 Image: Control protocol MMP products 12733 Figure 2003 11 Image: Control protocol MMP products 12733 Figure 2003 11 Image: Control protocol MMP products 12733 Figure 2003 11 Image: Control protocol MMP products 12733 Figure 2003 11 Image: Control protocol MMP products 12833 Figure 2003 11 Image: Control protocol MMP products 12833 Figure 2003 11 Image: Control protocol MMP products 12834 Figure 2003 11 Image: Control protocol MMP products 12834 Figure 2003 11 Image: Control protocol MMP products 12834 Figure 2003 11 Image: Control protocol MMP product 12834 Figure 2003 11 Image: Control protocol MMP product 12834 Figure 2003 12 Image: Control protocol MMP product 12834 Figure 2003 13 Image: Control protocol MMP product 12834 Figure 2003 14 Image: Control protocol MMP protocol MMP product 12834 Figure 2003 15	97 — Clavariadelphus ligula 67068		
Image: Control of the second secon			
10 10 Final According from 2005 100 10 According and according to the second	Lentaria pinicola M89		
100 100 The canada management WT90 100		Gomphales	
Image: Display and the state of th			
10 3% - Turbehala fluccase 0107 101 Compta channes 018103-44 102 Compta channes 018103-44 103 Compta channes 018103-44 104 Compta channes 018103-44 105 Compta channes 018103-44 106 Compta channes 018103-44 107 Compta channes 018103-44 108 - Turbehala 01055 109 - Disprese modulan 1802-021 101 - Disprese modulan 1802-021 102 - Disprese modulan 1802-021 103 - Disprese modulan 1802-021 104	Gautieria pterosperma 69649		
Image: Computer Advances 000000000000000000000000000000000000			
Image: Construction of the product	65 Gomphus clavatus 97587		
9 Phalaes Agaricomycetes 9 Phalaes Agaricomycetes <td></td> <td></td> <td></td>			
Image: Constraint documents 2003 Phalles Provide and the advance of			
Maine dages: 10/67 Maine dages: 10/67 Image: problem induces and MBO 400 Problem induces and MBO 400 Image: problem induces and MBO 400 Problem induces and MBO 400 Image: problem induces and MBO 400 Problem induces and MBO 400 Image: problem induces and MBO 400 Problem induces and MBO 400 Image: problem induces and MBO 400 Problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and MBO 400 Image: problem induces and A00 Image: problem induces and MBO 400 Image: problem induces and 400	87 Lysurus borealis 39531		
Image: Problem circles: Problem circle: Problem circle: Problem circle: Problem circle: Problem circle: Problem circle: </td <td></td> <td></td> <td></td>			
Image: Display of the impact of the impac	95 Phallus costatus MB 02-040		
**. Lass paper makatan 3088 Phallales **. Lass paper makatan 3088 Gomphales **. Paper paper paper paper makatan 3088 Fast paper paper paper paper makatan 3088 **. Paper paper paper paper makatan 3088 Fast paper pap			
Image: Control products and provide status Image: Control provide status Agaricomycetes Image: Control provide status Comphales Agaricomycetes Image: Control provide status Comphales Steropside Image: Control provide status Steropside Steropside Image: Control provide status Control provide status Steropside Image: Control provide status Control provide status Steropside Image: Control provide status Control provide status Steropside status Image: Control provide status Control provide status Steropside status Image: Control provide status Control provide status Steropside status Image: Control provide status Control provide status Steropside status Image: Control provide status Control provide status Steropside status Image:		Phallales	
1 1 1000000000000000000000000000000000000			
1 1 <td>100- Ileodiction gracile 2024221</td> <td></td> <td></td>	100- Ileodiction gracile 2024221		
Agaricomycetes Agaricomycetes Agaricomycetes Agaricomycetes Agaricomycetes Agaricomycetes Agaricomycetes Stereopsidales No. Anthuna archen REB 2182 Gomphales No. Anthuna archen REB 2182 Stereopsidales Productavilue dynamics OSC 59613 Stereopsidales Productavilue dynamics OSC 59613 Hysterangiales Gallacas sciences Hysterangiales Hysterangiang status Stereopsidales Stereopsidales Hysterangiales Hysterangiales Hymenochaetales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales Hysterangiales <td>100^{72} Protubera canescens 2105035</td> <td></td> <td></td>	100^{72} Protubera canescens 2105035		
Image: Second	Clathrus chrysomycelinus 75096		
100 Anhana archer REB 2182 Gomphales Prinzecknika dykami SGC1 Gomphales Stereopsidales Stereopsidales Prinzecknika dykami SGC30673 Stereopsidales Prinzecknika dykami SGC30673 Stereopsidales Prinzecknika dykami SGC30673 Stereopsidales Prinzecknika dykami SGC30673 Stereopsidales Stereopsidales Stereopsidale	65 Aseroe rubra 122632		
Agricomy cetes Agricomy cetes 100 Surveys is 0. Sortul 1554. 100 Sortup stratement 052:5961 101 Automatic 052:5966 102 Automatic 052:5966 103 Automatic 052:5966 103 Automatic 052:5966 104 Automatic 052:5966 105 Automatic 052:5966 106 Automatic 052:5966 107 Automatic 052:5966 108 Automatic 052:5966 109 Automatic 052:597 109 Committee of the optimise of t			
Surgests in OKELLISS4 Distributions Product mutaness OSCIONATION Prophot mutaness OSCIONATIONATION Prophot mutaness OSCIONATIONATIONATIONATIONATIONATIONATIONAT			
Image: spinoness: OSFAHES30 Philogenesis executo OSC 5962 Image: spinoness: OSFAHES30 Callacca indicyce OSC 5966 Image: spinoness: OSC 50130 Callacca indicyce OSC 5966 Image: spinoness: OSC 50130 Philogenesis executo OSC 50130 Image: spinoness: OSC 50130 Philogenesis executo OSC 50130 Image: spinoness: OSC 50130 Philosengium schmokatum OSC 11545 Image: spinoness: OSC 50130 Philosengium schmokatum OSC 11545 Image: spinoness: OSC 5025 Philosengium schmokatum OSC 11545 Image: spinoness: Philosengium schmokatum OSC 11545 Philosengium schmokatum OSC 5025 Image: spinoness: Philosengium schmokatum OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: Packaturo OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: Packaturosens OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: Packaturosens OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: Packaturosens OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: Packaturosens OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: Packaturosens OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: Packaturosens OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: packaturosens OSC 50925 Philosengium schmokatum OSC 50925 Image: spinoness: packaturosens OSC 50925 <td>Phaeoclavulina africana 39621</td> <td></td> <td>Agaricomycetes</td>	Phaeoclavulina africana 39621		Agaricomycetes
Image: Secondarm OSC S1232 Graducau dingleyae OSC S9201 Graducau dingleyae OSC S9201 Jatoroganteria sp. 2 OSC 80140 Image: Secondarm OSC S12501 Hysterangtim sp. NMSS Miller10100 Hysterangtim sp. CSC Vetbeken90-062 More Advantages spatiation spece CSC Vetbeken90-062 More Advantages and SC CS Vetbeken90-062 More Advatamic SC CS Vetbeken90-062	Phaeoclavulina africana 39621 Stereopsis radicans OLR45395 Stereopsis sp. OKHL15544		Agaricomycetes
Image: Control of the second and t	Phaeoclavulina africana 39621 Stereopsis radicans OLR45395 Stereopsis sp. OKHLIS544 Protubera hautuensis OSC59673		Agaricomycetes
Image: space of the space o	Phaeoclavulina africana 39621 Stereopsis radicans OLR45395 Stereopsis sp. OKHL15544 Protubera hanunensis OSC54673 Trappea phytomensis OSFAHF530		Agaricomycetes
100 Austrogauiteria sp.1 OSC 80139 101 Hysterangium sp. NMSS Miller10100 102 Hysterangium neumicatum OSC T15545 113 Hysterangium submozcam K Beaton 33 114 Hysterangium submozcam K Beaton 33 115 Hysterangium submozcam K Beaton 33 116 Arrannyces sp.1 OSC 12590 116 Arrannyces gelatinsports H4010 110 Gammigloha jozego CSC 59485 110 Gammigloha jozego CSC 59485 110 Chondrogaster pachysporta OSC 42928 110 Chondrogaster angestaporta 110 Chondrogaster angestaporta OSC 42928 110	Phaeoclavulina africana 39621 Stereopsis radicans OLR45395 Sereopsis sp. OKHL15544 Protubera hautuensis OSC59673 Trappea phytometais OSC13202 Gallacea sclerovderma OSC 59621		Agaricomycetes
Image: state of the second state in the state of the second state of the se	Phaeoclavulina africana 39621 Stereopsis radicans OLR45395 Stereopsis sp. OKHL15544 Prohibera hautuensis OSC59673 Trappea pinyonensis OSC59673 "50" Philogester saccans OSCT13202 Gallacea sclerotema OSC 59621 Gallacea admeteratore OSC 59621 Gallacea admeteratore OSC 59606		Agaricomycetes
Periophorella praeternissa Hysterangiales Periophorella praeternissa Hymenochaetales Periophorella praeternissa Hymenochaetales Periophorella praeternissa Hymenochaetales Periophorella praeternissa Filosofico	Phaeoclavulina africana 39621 Stereopsis radicans OLR45395 Sereopsis sp. OKHLIS544 Protubera hautuensis OSC59673 Toppea physionesis OSC4HE530 Gellacea scleroderma OSC 59621 Gellacea dinglespe OSC 59601 To0 _ Austroganiteria sp.1 OSC 80140 100 Austroganiteria sp.1 OSC 80139		Agaricomycetes
3. In contracts matures 20 OSC 19930 9. Anoramyces sp.1 OSC 12590 9. Anoramyces sp.2 OSC 19930 9. M. Anoramyces sp.1 OSC 12590 9. M. Anoramyces sp.1 OSC 12590 9. M. Anoramyces sp.2 OSC 19930 100 Gammiglohus aggiutinosporus OSC 58784 Gammiglohus aggiutinosporus OSC 49258 9. M. Ondocaster and greetsporus OSC 62041 6. Nohocasteraum cretaceum OSC 79925 9. Malojacukia amicoaum OSC 59925 9. Malojacukia amicoaum OSC 79920 9. Malojacukia amicoaum DSC 7925 9. Malojacukia ami	Phaeoclavulina africana 39621 Sereopsis radicans OLR45395 Soft Phalogaster saccatus OSC59673 Gallacea scieroderna OSC 59621 Gallacea scieroderna OSC 59621 Gallacea dingleyae OSC 59606 Tool_Atstroganiteria sp.1 OSC 80140 Hysterangium sp. RMSS Miller10100		Agaricomycetes
Periophores tanka this MUCL47139 Periophoras control a PL20575 Phaerochaete chrysoportian PL5175 Phaerochaete chrysoportian PL5175 Phaerochaete chrysoportian PL5175 Prophoras angustive SUB20500 Prophora tanka this 12826 Prophora tanka this 12826 Prophora tanka this 12826 Polyporales	Phaeoclavalina africana 39621 Stereopsis radicans OLR45395 Stereopsis sp. OKHL15544 Protubert hantnesis OSCS9673 Trappea phynomesis OSFAHF530 See Protubert hantnesis OSC59673 Gallacea sclerocherma OSC 59621 Gallacea sclerocherma OSC 59621 Gallacea dingleyae OSC 59606 Tool Austroganiteria sp.1 OSC 80139 Hysterangtian sp. RMSS Miller10100 Hysterangtian sp. RMSS Miller10100 K-fysterangtian nochanicaam OSC T15545	Stereopsidales	Agaricomycetes
Pentophorella proteemissa GEL 2182 = Hypiokema proteomissam Allocimatella proteomissa GEL 2182 = Hypiokema proteomissam Pentophorella proteomissa GEL 2182 = Hypiokema proteomissam Allocimati pumpura ALTOLID 1736 Pentophorella proteomissa GEL 2182 = Hypiokema proteomissam Allocimati pumpura ALTOLID 1736 Pentophorella proteomissa GEL 2182 = Hypiokema proteomissam Allocimati pumpura ALTOLID 1736 Pentophorella proteomissa GEL 2182 = Hypiokema proteomissam Allocimati pumpura ALTOLID 1736 Pentophorella proteomissa GEL 2182 = Hypiokema proteomissam Allocimati pumpura ALTOLID 1736 Pentophorella proteomissa GEL 2182 = Hypiokema proteomissam Folicopiss lancellans CuiTC39 Pentophorella proteomissa GEL 2182 = Hypiokema proteomissam Folicopiss lancellans CuiTC39 Pentophorella proteomissa GEL 2182 = Hypiokema proteomissam Folicopiss lancellans CuiTC39 Folicopiss lance and PM2678 Folicopiss lancellans CuiTC39 Folicopiss Lencomical SIZ V Folicopiss Lencomical SIZ SIZ SIX V Folicopiss Lincopiss SIZ SIZ SIX V Folicopiss Lincopiss Lincopiss Lincopiss Lincopiss Lincopiss Lincopiss Lincopiss Lincopis Lincopiss Lincopiss Lincopiss Lincopis	Phaeoclavalina africana 39621 Stereopsis patients of CSS 9673 Stereopsis patients of CSS 9673 Trappea physoensis OSFAHF530 Fordbæra hautuensis OSCS 9673 Gallacea scleroderna OSC 59621 Gallacea scleroderna OSC 59621 Gallacea scleroderna OSC 59621 Gallacea scleroderna OSC 59606 Tool , Austrogautieria sp.1 OSC 80139 Fysterangium neotunicatum OSC 715545 Hysterangium neotunicatum OSC 715545 Hysterangium neotunicatum OSC 715545 Hysterangium neotunicatum OSC 715545 Hysterangium neotunicatum OSC 715545	Stereopsidales	Agaricomycetes
Image: Constraint of the second se	Phaeoclavalina africana 39621 Stereopsis patients of CSS 9673 Stereopsis patients Stereopsis Stereopsis patients Stereopsis patients Stereopsis	Stereopsidales	Agaricomycetes
7 Hysterangian oggregatum OSC H4262 9 100 Chonkrogester pachyspons OSC 49298 9 100 Chonkrogester angestispons OSC 49298 9 Malgicable SOS 62041 Nothocastoraum cretaceum OSC 79925 98 Malgicable and microsum OSC 59292 98 Malgicable and microsum OSC 59295 98 Malgicable and microsum OSC 59295 98 Hydnochaete asetosa Dill'56 100 Chonkrogester angestispons Hymenochaetales 98 Hydnochaete asetosa Dail/056 100 Thelephora ganbajin ZRL2015149 99 100 Thelephora ganbajin ZRL20151295 100 Thelephora ganbajin ZRL20151205 100 Thelephora ganbajin ZRL20151205 100 Thelephora ganbajin ZRL20151205 101 Tomenetila sp. AFTOL ID 1016 Fill 102 Types lacters Do 421/051208 Polyporales 103 Thelephora algost ZRL20151738 Polyporales 104 Ganoderma astraile ZRL2015100 Polyporales 105 Grifola frondosa DSH sn Fill 100 Ganoderma astraile ZRL20151000 101 Gan	Phaeoclavalina africana 39621 Stereopsis p. OKHL15544 Pronbært hautuensis OSCS9673 Trappea pinyonensis OSFAHF530 Fhallogaster saccans OSCT1302 Gallacea scleroderna OSC 59621 Gallacea dingleyee OSC 59606 Tool / Austrogautieria sp.1 OSC 80139 Hysterangtum neotunicatum OSC T15545 Hysterangtum neotunicatum OSC T15545 Hysterangtum neotunicatum OSC T15545 Hysterangtum neotunicatum OSC T15545 Hysterangtum schonacose K Beaton 33 Aroramyces sp.2 OSC 19930 Tool / Aroramyces sp.1 OSC 122590 Setting and the state of th	Stereopsidales	Agaricomycetes
Chondrogaster pachyspons OSC 49298 Chondrogaster angustispons OSC 50201 SM despitable celandi OSC 5922 SM despitable celandi OSC 5929 SM despitable celandi OSC 59295 Hydrochaete asstos Dail0756 Benitphorella proteermissa GEL 2182 Hyphoderma proteermissam Hydrochaete asstos Dail0756 Benitphorella proteermissa GEL 2182 Hyphoderma proteermissam M despitable celandi OSC 59295 SM despitable celandi OSC 59295 Hydrochaete asstos Dail0756 Benitphorella proteermissa GUI7629 SM Cyclonyces Iamellatus Cui7629 Tholeposis leacomleane PBM2678 Thelephora genotypin ZRL20151295 Thelephora genotypin ZRL20151295 Thelephoralela sp. AFTOL ID 1016 SM Cyclonyces Iamellatus Cui7629 Phomerochaete chrysoporium FPL5175 Lentims strigosus ZRL20151738 SM Cyclonyces Intella SP. AFTOL ID 1016 SM Cyclonyces Laborationed ZM Colling Cuirce Colling Cuirce Colling Cuirce Cuirce Colling Cuirce Cuirce Colling Cuirce Cuirce Cuirce Colling Cuirce Cuir	Phaeoclavalina africana 39621 Stereopsis radicans OLR45395 Stereopsis sp. OKHL15544 Protubert hantnesis OSCS9673 Gallacea televalemia OSC 59621 Gallacea sclera/demia OSC 5962 Gallacea sclera/demia OSC 5962 Gallacea sclera/demia OSC 5963 Gallacea sclera/demia OSC 15545 Hysterangtiam neotanicatam OSC 115545 Hysterangtiam sclera/demia OSC 115545 Hysterangtiam sclera/demia SC 12550 Gallacea sclera/demia SC 205C 19930 Gallacea sclera/demia SC 205C 19930 Gallacea sclera/demia SC 0SC 58784	Stereopsidales	Agaricomycetes
Chandbasels and subjects Oct 2025 98 Nohocstore and subjects Oct 2025 98 Mesophellia celendi OSC 5929 93 99 Malajczukia amicosum OSC 59295 94 98 Penisphorella proteemnissa GEL 2182 = Hyphoderma proteermissam Hymenochaetales 98 Hydnochaete aestosa Dail0756 Hymenochaetales 98 Hydnochaete aestosa Dail0756 Thelephorale 99 100 Thelephora gombajin ZRL20151295 Thelephorales 99 100 Thelephoral astronomic approxim ZRL20151295 Thelephorales 99 100 Thelephora gombajin ZRL20151295 Thelephorales 91 Phamerochaete dirpsas portium ZRL20151205 Phamerochaete dirpsas portium ZRL20151205 95 Statemark Filephorales Polyporales 95 Statemark Bierkandera dakist HIB 12826 Polyporales 91 Tranets hirsida ZRL20151000 Statemark Polyporales 91 Tranets hirsida ZRL2015001-1 Statemark Polyporales	Phaeoclavalina africana 39621 Stereopsis padicans OLR45395 Stereopsis sp. OKHL15544 Protabera hantwasis OSCS9673 Trappea pinyonexis OSC 9673 Gallacea Admeteria sp.2 OSC 80140 Gallacea sclera/dema OSC 95621 Gallacea sclera/dema OSC 95621 Gallacea dingleyae OSC 59606 Gallacea sclera/dema OSC 80139 Hysterangtian sp. RMSS Miller10100 Hysterangtian softmicatian OSC 115545 Hysterangtian softmicatian	Stereopsidales	Agaricomycetes
94 Mesophellia clelandii OSC59292 93 Meliopakia amicosam OSC59295 94 Mesophellia protermisis GEL 2182 Hyphoderna praetermissum Hymenochaetales 94 Alloclavaria purpurea AFTOLID 1736 Hymenochaetales 98 Hybrochete associa Da110756 Hymenochaetales 98 Hybrochete associa Da110756 Thelephoral 99 100 Thelephora gandajin ZRL20151295 Thelephorales 99 100 Thelephora gandajin ZRL20151295 Thelephorales 99 100 Thelephoral Size Phomerochaete altras Cui7629 90 100 Thelephoral Size Phomerochaete Altras Cui7629 91 Tomenella sp. AFTOL ID 1016 Phomerochaete Chrysoportim FPLS175 Phomerochaete Chrysoportim FPLS175 92 100 Crificla frondosa DSH sn Polyporales 93 Frondosen Strigozz ZRL20151000 Polyporales 94 Ganderma tustae ZW Ganderma tustae ZW 95 Grifola frondosa DSH sn Polyporales 96 Ganderma tustae ZW Ganderma tustae ZRL20151000 91 Transets hirstae ZRL2015001-1 Frondosa DSH sn	Phaeoclavulina africana 39621 Stereopsis padicans OLR45395 Stereopsis p. OKHL15544 Protubera hautuensis OSCS9673 Trappea pinyonexis OSFAHF530 SFAHGgaster saccans OSCT13022 Gallacea dingleyae OSC 59621 Gallacea dingleyae OSC 59606 Tool Astroganiteria sp.1 OSC 80139 Hysterangtian sp. MSS Miller10100 Hysterangtian soluticatum OSC T15545 Hysterangtian mechanicatum OSC T15545 Hysterangtian soluticatum OSC T2545 Hysterangtian soluticatum OSC T2545 Hysterangtian soluticatum OSC T15545 Hysterangtian soluticatum OSC T15545 Hysterangtian soluticatum OSC T2545 Hysterangtian soluticatum OSC T15545 Hysterangtian soluticatum OSC T42280 Stationaporties that 100 Giunnitiglobus aggebatinosporties OSC 59884 Giunnitiglobus aggebatinosporties OSC 5988	Stereopsidales	Agaricomycetes
Peliophorella praetermissa GEL 2182 = Hyphoderma praetermissum Peliophorella praetermissa GEL 2182 = Hyphoderma praetermissum Hymenochaetales Hymenochaetales Hymenochaetales Hymenochaetales Polyporales Polyporales Polyporales	Phaeoclavalina africana 39621 Stereopsis sp. OKHL15544 Protubera hantuensis OSCS9673 Trappea pinyonensis OSFAHF530 Schediogaster saccosta OSCT13202 Gallacea scleroderma OSC 59621 Gallacea dingleyae OSC 59606 Gallacea dingleyae OSC 59606 Gallacea dingleyae OSC 59601 Gallacea scleroderma OSC 115302 Get Phateroganiteria sp.1 OSC 80139 Hysterangtum so. RMSS Miller10100 Hysterangtum solimonacum KS Beaton 33 Aroramyces radians OSC Verbekee99-062 Gallacea Scleroderma OSC 15545 Hysterangtum solimonacum KSC 115545 Hysterangtum solimonacum KSC 11545 Hysterangtum solimonacum KSC 11545 Hysterangtum solimonacum SSC Verbekee99-062 Gallacea Scleroderma OSC 25980 Hosterangtum aggregatum OSC H4262 Gunmiglobna ggregatum OSC H4262 Gundrogaster angustispons OSC SC2031 Chondrogaster angustispons OSC SC2041 Number 1	Stereopsidales	Agaricomycetes
4 Allociavaria pirpurea AFTOL ID 1736 0xpporus corticola ZRL20151459 Hymenochaetales 98 Hybrichcate acesso Dail0756 98 Hybrichcate acesso Dail0756 98 Honotus linteus MUCL47139 78 Cycloryse lancillans Cui7629 99 100 78 Cycloryse lancillans Cui7629 78 Cycloryse lancillans Cui7629 78 Cycloryse lancillans Cui7629 79 100 70 Thelephora ganbajin ZRL20151295 70 Tomerediaera PBM2678 70 Chancodon septentionalls ZW 71 Lentims strigosus ZRL20151738 72 Pick lacteus Do 421/951208 73 Grifola frondosa DSH an 74 Ganoderma austura Expla20151000 81 Pycoporus sanguineas ZRL2015000-1 91 Tranetes hirsula ZRL201500-1	Phaeoclavalina africana 39621 Stereopsis sp. OKHL15544 Protabera hantuensis OSCS9673 Trappea pinyonensis OSFAHF530 Gerhallogaster saccatus OSCT13202 Gallacea scleroderma OSC 59621 Gallacea dingleyae OSC 59606 Gallacea dingleyae OSC 59606 Gallacea dingleyae OSC 59601 Gerhaltorganiteria sp.1 OSC 80139 Hysterangtum sp. 2 OSC 80140 100 Austroganiteria sp.1 OSC 80139 Hysterangtum solimonaceum K Beaton 33 Aroramyces ralians OSC Verbeker99-062 Garronacea JC OSC 9930 Jon Aroramyces sp.1 OSC 122590 My Aroramyces gelatinosporus OSC 58784 Gimmigloha ggregatum OSC H4262 Gondrogaster anguesisporus OSC 62041 Ghodrogaster anguesisporus OSC 62041 Ghodrogaster anguesisporus OSC 5922	Stereopsidales	Agaricomycetes
Set Cotypons control a ZRL20151499 98 Hybrochete cascas Dail0756 98 Hybrochete cascas Dail0756 98 Hybrochete cascas Dail0756 99 100 78 Cyclomyces lamellans Cuif629 99 100 78 Thelephoral ganbajim ZRL20151295 78 Thelephorales 78 Tomenella sp. AFTOL ID 1016 59 52 74 Lentims strigosus ZRL20151738 75 Jierkandera dubast HHB 12826 76 Grifola fronkosa DSH 3n 77 Ganoderna austue ZW 78 Pycorporus sanguineas ZRL2015100 81 Pycorporus sanguineas ZRL2015001-1	Phaeoclavalina africana 39621 Stereopsis sp. OKHL15544 Protubera hautuensis OSC59673 Trappea pinyonensis OSFAHF530 Sereopsis sp. OKHL15544 Protubera hautuensis OSC59673 Trappea pinyonensis OSFAHF530 Gellacea scleroderma OSC 59621 Gellacea dingleyae OSC 59606 Gellacea dingleyae OSC 59606 Gellacea dingleyae OSC 59605 Gellacea dingleyae OSC 59605 Gellacea dingleyae OSC 59605 Gellacea scleroderma OSC 5961 Gellacea dingleyae OSC 59605 Gellacea Scleroderma OSC Verbeken99062 Gellacea OSC Verbeken99062 Gellacea aglatinosporus OSC S7874 Giunmiglobus aggetatinosporus OSC 58784 Giunmiglobus aggetatinosporus OSC 58784 Giunmiglobus aggetatinosporus OSC 58784 Giunmiglobus aggetatinosporus OSC 62041 Gellaceatea Colorader OSC 79925 Settem of the oscilation OSC 59292 Settem oSC 59292 Settem oSC 59292 Settem oSC 59295	Stereopsidales	Agaricomycetes
36 Inonotus linteus MUCL47139 78 Cyclomyces lamellans Cui7629 99 100 100 Thelephoral ganbajun ZRL20151295 76 Clintacodon septentionalis ZW 75 Phanerochaete PBN2678 97 Lentims strigosus ZRL20151295 76 Fhanerochaete Chrysosportum FPL5175 77 Lentims strigosus ZRL20151738 78 Grifola frondosa DSH sn 79 Ganoderma australe ZRL20151500 81 Propoporus sanguineus ZRL2015009 91 Tranetes hirsuta ZRL201501-1	Phaeoclavalina africana 39621 Stereopsis sp. OKHL15544 Protubera hantensis OSCS9673 Trappea pinyonexis OSC 11302 Gallacea sclera/dema OSC 59621 Gallacea sclera/dema OSC 5962 Gallacea sclera/dema OSC 11545 Hysterangtum neotanicatum OSC 11545 Hysterangtum sp. IOSC Verbeken9-062 Aroramyces sp.2 OSC 1930 Gallacea sclera/dema OSC 11545 Hysterangtum solutionaum OSC 11545 Hysterangtum solutions OSC Verbeken9-062 Aroramyces sp.2 OSC 1930 Gallacea sclera/dema OSC 11545 Hysterangtum solutions OSC 122550 Hysterangtum aggregatum OSC H4262 Chondrogaster angestaporas OSC 49298 Chondrogaster angestaporas OSC 49298 Nothocastoreaum cretaceum OSC 95925 Set Mesophelia cleandu OSC 95925 Set Mesophelia cleandu OSC 95255 Penicphorelia purpreet AFTOLID 1736	Stereopsidales	Agaricomycetes
Theorem Deletoposis Inclemboral gambajan 99 100 Thelephora gambajan Thelephorales 50 67 Climacodon septentrionalis ZW Thelephorales 51 Phanerochaete chryssoporium FPL5175 Inclembora gambajan Phanerochaete chryssoporium FPL5175 52 Bjerkandera adusta HHB 12826 Polyporales Polyporales 77 Ganoderma anstrule ZNL20151500 Field 81 Promores singuineras ZRL2015009 Junctures hirsta ZRL2015001-1	Phaeoclavalina africana 39621 Stereopsis sp. OKHL15544 Protabera hantvasis OSCS9673 Frappea pinyonaxis OSCS9673 Frappea pinyonaxis OSC11302 Gallacea sclerokarma OSC 59621 Gallacea sclerokarma OSC 59621 Gallacea dingleyae OSC 59606 Gallacea dingleyae OSC 5960 Goldacea sclerokarma OSC 15345 Hysterangtian sp. RMSS Miller10100 Hysterangtian sp. RMSS Miller10100 Hysterangtian solumotacatam OSC 115345 Hysterangtian aggelutinosporus OSC 59845 Giammiglobus joyceae OSC 59485 To Chondrogaster anglestisporus OSC 49298 Hosteratetian activacam OSC1925 95 Metaphelia cleandai OSC5929 95 Metaphelia cleandai OSC5925 95 Metaphetia cleandai OSC5925 95	Stereopsidales	Agaricomycetes
99 100 Thelephora genbajun ZRL20151295 Thelephorales 50 67 Characodon septentionalis ZW 50 57 Phanerochaete chrysosporium FPL5175 100 Lentins strigous ZRL20151288 752 Bjerkandera adusta HHB 12826 100 Ganoderna australe ZRL2015100 81 Propoporus sanguineas ZRL2015009 91 Tranetes hirsta ZRL2015001-1	Phaeoclavalina africana 39621 Stereopsis ya OKHL15544 Protubera hantansis OSCS9673 Trappea pinyonensis OSFAHF530 Gallacea talegisyae OSC 59621 Gallacea scleroderma OSC 5962 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 5962 Gallacea scleroderma OSC 5962 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 5964 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 115545 Hysterangtum nechnicatum OSC 115545 Hysterangtum sclenticatum OSC 115545 Hysterangtum sclenticatum OSC 5963 Gallacea scleroderma OSC 5983 Gallacea scleroderma OSC 5983 Gallacea scleroderma OSC 5983 Gallacea scleroderma OSC 5983 Gallacea scleroderma OSC 59925 Setting Scleroderma Cettacea OSC 5995 Feriophorella practermissa GEL 2182- Hybrioderma practermissum Holicolaria purpreva AFTOL DI 1736 Gallocaria purpreva AFTOL DI 1736 Setting Scleroderma	Stereopsidales	Agaricomycetes
Tomentella sp. AFTOL ID 1016 50 67 Climacodon septentrionalis ZW 52 Phaerochaec chrysoportum FPL3175 1 Lentinus strigous ZRL20151738 1 Irpex lacteus DO 421/951208 78 Bjerkandera adusta HHB 12826 100 Ganoderma australe ZRL2015100 81 Pycnoporus sanguineus ZRL2015100 91 Tranetes hirsula ZRL201500-1	Phaeoclavalina africana 39621 OF Phaeoclavalina 397 OF Phaeoclavalina	Stereopsidales	Agaricomycetes
Polyporales Polypo	Phaeoclavalina africana 39621 Stereopsis p. OKHL15544 Protubera hautuensis OSCS9673 Trappea pinyonensis OSFAHF530 Gallacea talegiesue OSC 59606 Gallacea scleroderma OSC 59621 Gallacea scleroderma OSC 59621 Gallacea scleroderma OSC 59621 Gallacea scleroderma OSC 59621 Gallacea scleroderma OSC 5962 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 5964 Gallacea scleroderma OSC 5964 Gallacea scleroderma OSC 5964 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 5964 Gallacea scleroderma OSC 5963 Gallacea scleroderma OSC 5955 Gallacea scleroderma OSC 59725 Gallacea scleroderma OSC 5925 Ga	Stereopsidales Hysterangiales Hymenochaetales	Agaricomycetes
Image: Construction of the string of the	Phaeoclavalina africana 39621 OF Phaeoclavalina 397 OF Phaeoclavalina	Stereopsidales Hysterangiales Hymenochaetales	Agaricomycetes
Image: Point of the standard adusts of HB 12826 Polyporales Image: Original fronds as DSH sn Canodema assigned ZNU Image: Original fronds as adusts of HB 12826 Polyporales Image: Original fronds as DSH sn Canodema assigned ZNU Image: Original fronds adusts of HB 12826 Polyporales Image: Original fronds	Phaeoclavulina africana 39621 OF Phaeoclavulina africana 39621 OF Phalogester success radicans OLR45395 OF Phalogester success OSC19673 OF Phalogester success OSC11302 OF Phalogester success OSC11302 OF Phalogester success OSC11302 OF OF OLIVER STATUS OF OL	Stereopsidales Hysterangiales Hymenochaetales	Agaricomycetes
Orifola frondosa DSH sn Polyporales 100- Ganoderna tsugae ZW 77 Ganoderna stugae ZW 81 - Pycnoports suggitues ZRL20151009 91 - Trametes hirsula ZRL2015001-1	Phaeoclavalina africana 39621 OF Phaeoclavalina africana 3962 OF Phaeoclavalina 397 OF Phaeoclavalina	Stereopsidales Hysterangiales Hymenochaetales	Agaricomycetes
100 Ganoderna tsugae ZW 77 Ganoderna astrale ZRL20151500 81 - Pycnoporus sanguineus ZRL2015009 91 - Trametes hirsula ZRL2015001-1	Phaeoclavulina africana 39621 Stereopsis sp. OKHL15544 Protubera hantnesis OSCS9673 Trappea pinyonensis OSFAHF530 Gallacea scleroderma OSC 59621 Gallacea scleroderma OSC 15245 Hysterangtum sp. NMSS Miller10100 Hysterangtum nechnicatum OSC 115245 Hysterangtum scleroderma OSC 15545 Hysterangtum scleroderma OSC 15545 Hysterangtum sp. 10 SC 122590 Hysterangtum sp. 10 SC 122590 Hysterangtum sp. 10 SC 122590 Gollacea angregatum OSC 414262 Gollacea angregatum OSC 414262 Gollacea angregatum OSC 414262 Golmonglobus agglutinosporus OSC 59784 Gammiglobus agglutinosporus OSC 59784 Gammiglobus agglutinosporus OSC 59784 Gammiglobus agglutinosporus OSC 59784 Gammiglobus agglutinosporus OSC 59784 Gondrogaster angregatum OSC 414262 Goldacea at anticosam OSC 5925 Hysterangtum and OSC 19259 Hysterangtum science and CSC 19259 Hysterangtum science and CSC 1925 Hysterangtum science and the SC 1925 Hysterangtum science andetame science andetame science	Stereopsidales Hysterangiales Hymenochaetales	Agaricomycetes
81 — Pycnoporus sanguineus ZRL2015009 91 — Trametes hirsuta ZRL2015001-1	Phaeoclavalina africana 39621 O Stereopsis sp. OKHL15544 Protubera hautuesis OSCS9673 Trappea pinyonensis OSFAHF530 Gallacea displayee OSC 59606 Gallacea displayee OSC 59608 Gallacea displayee displayee osc 59608 Gallacea displayee displayee osc 59608 Gallacea displayee displayee displayee displayee displayee displayee d	Stereopsidales Hysterangiales Hymenochaetales Thelephorales	Agaricomycetes
J Tranetes hirsuta ZRL2015001-1	Phaeoclavulina africana 39621 OF Protobern hantnessis OSCS9673 Deverysis sp. OKHL15544 Protobern hantnessis OSCS9673 Trappea physonessis OSFAHF530 Gallacea sclenxdemia OSC 59621 Gallacea sclenxdemia OSC 59621 Gallacea sclenxdemia OSC 59621 Gallacea dingleyae OSC 59606 July Atstroganiteria sp.1 OSC 80139 Hysterangtim sp. RMSS Miller10100 Hysterangtim neoninclatum OSC 11545 Hysterangtim neoninclatum OSC 11545 Hysterangtim sp.1 OSC 122590 Hysterangtim agtinosports IH010 Gammiglobus aggiutinosports OSC 59838 Gammiglobus aggiutinosports OSC 59848 Gammiglobus aggiutinosports OSC 59849 Gammiglobus aggiutinosports OSC 59859 Hysterangtim additionsports OSC 59859 Hysterangtim additionsports OSC 59859 Hysterangtim additionsports OSC 59829 Hysterangtim aggiutinosports OSC 59829 Hysterangtim aggiutinosports OSC 59925 July Anoramyces gelationsports IH010 Gammiglobus aggiutinosports OSC 59925 Hysterangtim agditions (SC 25925 July Anoramyces July 2000) Hysterangtim aggiutinosports OSC 59925 July Anoramyces July 200 Chondrogaster angustaports OSC 59925 July Anoramyces July 201	Stereopsidales Hysterangiales Hymenochaetales Thelephorales	Agaricomycetes
100— Trametes versicolor ZRL20151477	Phaeoclavalina africana 39621 O Stereopsis sp. OKHL15544 Protubera hautuesis OSCS9673 Trappea physonesis SQFAHF530 Fheliogaster success OSC11302 Gallacea sciencema OSC 59621 Gallacea sciencema OSC 5962 Gallacea sciencema OSC 5963 Gallacea sciencema OSC 5973 Gallacea sciencema OSC 59743 Gammiglohas agglutinospons H4010 Gammiglohas agglutinospons H4010 Gammiglohas agglutinospons OSC 59745 Gammiglohas agglutinospons OSC 59745 Gammiglohas agglutinospons OSC 59745 Gammiglohas agglutinospons OSC 59725 Setter anglastipons Gallocate actes Dall0756 Setter anglastipons Gallocate actes Dall0756 Setter anglastipons Setteratera adata Setter anglastipons	Stereopsidales Hysterangiales Hymenochaetales Thelephorales	Agaricomycetes
	Phaecelovalina dficana 39621 100 Stereopsis radicans OLR45395 100 Stereopsis sp. OKHL15544 Prohabra hananestis OSC59673 70 Trappea pinyonensis OSC59673 71 Trappea pinyonensis OSC59673 72 Gallacea diegeve OSC 59606 100 Austrogautieria sp. 2 OSC 80140 100 Austrogautieria sp. 2 OSC 9006 100 Austrogautieria sp. 2 OSC 9006 100 Austrogautieria sp. 2 OSC 90140 100 Austrogautieria sp. 2 OSC 90140 100 Austrogautieria sp. 2 OSC 9030 101 Austrogautieria sp. 2 OSC 12590 91 Aroramyces sp. 2 OSC 12900 91 Aroramyces sp. 2 OSC 12900 92 Aroramyces sp. 2 OSC 12900 93 Aroramyces sp. 2 OSC 12900 94 Aroramyces sp. 2 OSC 12900 95 Aroramyces sp. 2 OSC 12900 95 Aroramyces sp. 2 OSC 12900 96 Ochoologaster angestayons OSC 2928 97 Ochoologaster angestayons OSC 2928 98 Mesophellia cielandii OSC 19225 98 Mesophellia cielandii OSC 59295 98 Musicakia amicasun OSC 7925 98 Musicakia amicasun OSC 7925 99 Musicakia amicasun OSC 7925 99 Musicakia amicasun OSC 7925 90 Musicakia amicasun OSC 7925 91 Musicakia amicasun OSC 7925 92 Musicakia amicasun OSC 7925 93 Musicakia amicasun OSC 7925 94 Musicakia amicasun OSC 7925 95 Musicakia amicasun OSC 7925 96 Musicakia amicasun OSC 7925 97 Musicakia amicasun OSC 7925 98 Musicakia amicasun OSC 7925 99 Musicakia amicasun OSC 7925 90 Musicakia amicasun OSC 7925 91 Musicakia amicasun OSC 7925 92 Musicakia amicasun OSC 7925 93 Musicak	Stereopsidales Hysterangiales Hymenochaetales Thelephorales	Agaricomycetes

94 Dendrothele maculata		
Corticium roseum MG46		
Cytidia salicina Haikonen24631	Corticiales	
54 Punctulariopsis obducens		
Australovuilleminia coccinea BCP5551	Linemiales	
Jaapia argillacea CBS252-74	Jaapiales	
1000000000000000000000000000000000000		
Veluticeps abietina GBB 398		
79 51 Heliocybe sulcata IBUG 9930		
- Neolentinus kauffmanii DAOM214904	Gloeophyllales	
78 Neolentinus adhaerens DAOM214911	Checophynancs	
Gloeophyllum sepiarium Wilcox 3BB		
100 Gloeophyllum trabeum 1320 74 Gloeophyllum striatum ARIZAN027866		
Gloeophyllum subferrugineum FPRI 508		
97 Bondarzewia montana DAOM415 Heterobasidion annosum DAOM73191		
Aleurocystidiellum disciforme		
100 Hericium americanum PBM2498		
73 Laxitextum bicolor FCUG2719		
L Gloeodontia discolor Gloeocystidiellum clavuligerum He2209		
U I - Scytinostromella nannfeldtii NH7476		
Gloeohypochnicium analogum		
Amylostereum aeroletum He1674		
Echinodontium tinctorium DAOM16666 100 Confertobasidium sp. NH13108		
Confertobasidium olivaceoalbum TAA159923		
Artomyces microspora ZRL2015014		
Leucogaster citruus OSC117691 Byssoporia terrestris Hjm18172		
Polyporoletus sublividus JA030918	Russulales	
Boidinia furfiracea Wu9209-39		
94 Multifurca furcata RH7804		
Lactarius lignyotus PBM2424		
Arcangeliella variegata		
100 98 Lactarius scrobiculatus HMAS264940		
97— Lactifluus deceptivus PBM2462 Lactifluus gerardii 15147		
91 - Russula cyanoxantha HMAS253220		
91 Russula delica HMAS252596		
Russula griseocarnosa HMAS251548		
$\begin{array}{c} 90 \\ \hline \\ 54 \\ \hline \\ \hline \\ \hline \\ \end{array} \\ \begin{array}{c} Russula \ laricina \ HMAS267755 \end{array}$		
50 Cystangium sp. OSCH6145		
- Russula rosea HMAS253340 97 — Athelia arachnoidea CBS418-72		Agaricomycetes
66 Leptosporomyces raunkiaerii HHB 7628	Atheliales	
99 Lepidostroma calocerum R05		
Sulzbacheromyces caatingae DNA5385	Lepidostromatales	
69 Ertzia akagerae BR T 66 Serpula lacrymans REG 383		
Gyrodontium sacchari MUCL40589		
57 Coniophora arida FP 104367		
100 Gomphidius roseus MB95-038		
100 Rhopalogaster transversarium 81680		
80 Leucogyrophana lichenicola DAOM194172		
59 Astractis hygrometricals Bhell MB 05-029		
100 — Scieroaerma areolatiin AWW211 — Pisolithus tinctorius AWW219		
99 Gyroporus cf. castaneus HKAS63505		
Gyroporus cyanescens MB 05-[001 74] 80		
74 80 Hydnomerulius pinastri MD 312 Boletinellus merulioides MB 02-199		
Rugiboletus extremiorientalis HKAS63635		
76 Sutorius aff. eximius HKAS52672		
100 Parvixerocomus pseudoaokii HKAS77032 — Lanmaoa asiatica HKAS63603	Boletales	
☐		
Zangia erythrocephala HKAS75046		
— Xerocomellmus cisalpinus PDD94421 — Tylopilus felleus HKAS54926		
Boletus edulis HMJAU4637		
62 Boletus baniugan HKAS52235		
— Butyriboletus roseoflavus HKAS54099 — Caloboletus panniformis HKAS57410		
– Caloboletus panniformis HKAS5/410 – Veloporphyrellus velatus HKAS57490		
Rubroboletus sinicus HKAS68620		
Chamonixia sp. Muroi 361		
Austroboletus aff. fusisporus HKAS52683 Borofutus dhakamus HKAS73789		
Retiboletus zhangfeii HKAS59699		
51 Aureoboletus longicollis HKAS53398		
100 Aureoboletus thibetanus HKAS76655		

85 Anomoloma myceliosum MJL 4413			
Amylocorticium cebennense HHE	2808	Amylocorticiales	
Podoserpula pusio Podoserpula ailaoshanensis ZJL201	5015		
100 Pterula echo AFTOL ID 711	5015		
Pterula cf. echo ZRL20151311			
99 Schizophyllum radiatum CBS 30	I-32 T		
Fistulina antarctica			
Cuphophyllus basidiosus AFTOL ID 1	759		
91 100 Xeromphalina kauffmanii ZRL20151			
Xeromphalina campanella AFTOL ID 1			
Ampulloclitocybe clavipes AFTOL Hygrophorus sp. ZRL20151871	D 542		
100 Camarophyllopsis hymen	ocephala		
Clavaria zollingeri			
Typhula phacorrhiza			
59 Tricholomopsis decora A Tricholomopsis osiliensis			
86 Phyllotopsis nidulans RV96/1			
62 100L Phyllotopsis sp. MB35			
Hemimycena gracilis AFTOL ID			
Halocyphina villosa			
Megacollybia marginata ZRL2			
Hydropus marginellus AFTOL	D 1720		
56 Clitocybula oculus AFTOL ID			
Porotheleum fimbriat	an AFTOL ID 1725 AFTOL ID 1765/ voucher PBM 2411 T		
Chondrostereum purpureum AF	TOL ID 441		
100 Armillaria cepistipes ZRL2015165	4		
Armillaria mellea AFTOL ID 44			
99 Cylindrobasidium laeve AF			
65 Cyptotrama asprata ZRL20			
100 Hymenopellis radicata AFTOL			
Hymenopellis raphanipes ZRL			
Flammulina vehutipes AFTO			
Xerula sinopudens ZRL2015			
Campanella sp. MCA1689NN			
86 Crinipellis zonata OKM 25450			
93 — Crinipellis sp. ZRL20151369			Agaricomycetes
79 Marasmius oreades ZRL2015086			Agarteomycetes
Moniliophthora perniciosa DIS71		Agaricales	
Gymnopus contrarius PBM 2711			
Gymnopus contrartus PBM 2711 52 Anthracophyllum archeri AFTOL I	0 0 973		
99 Mycetinis alliaceus AFTOL ID 550			
100 Gymnopus dryophilus ZRL2015			
100 Gymnopus dryophilus AFTOL II	559		
92 Lentinula edodes TMI1941 57 Gymnopus confluens ZRL201	51148		
Rhodocollybia maculata AFT	DL ID 540 T		
100L Rhodocollybia butyracea ZRL20	151699		
99 Catathelasma ventricosum Callistosporium sp. AFTOL ID 97	0		
Gerronema nemorale ZRL 201506			
Mycena amicta AFTOL ID 1908			
84 Panellus stipticus			
91 ¹ Mycena haematopus ZRL201514	1		
100 Clitocella mundula AFTOL ID 52			
Clitopilus sp. VHAs07/02			
Clitopilus prunulus ZRL20151516	151426		
92 Enlocybe trachyospora ZRL20	151720		
79 100 Entoloma omiense ZRL20151352	2		
Entoloma sp. ZRL2015120			
100 Nolanea sp. ZRL20151219			
100 Tricholoma matsutake Tricholoma aestuans			
- Tricholoma saponaceum			
Tricholoma terreum HDT53510			
55 75 Clitocybe dealbata	ZKL20151998		
P8 Clitocybe odora ZRL20152003			
51 — Collybia tuberosa AFTOL ID 557			
Lepista sordida ZRL20151906	51710		
92 Atractosporocybe inornata ZRL201	51/10		
83 Leucocybe candicans			
Tephrocybe boudieri			
Asterophora lycoperdoides CBS17	0-86		
Onging Un Downib			
Ossicaulis lignatilis			
Ossicaulis lignatilis Lyophyllum sp. PBM 2688 65 Termitomyces sp. AFTOL ID 138-			
Lyophyllum sp. PBM 2688			

	Chrysomphalina chrysophylla AFTOL ID 1523		
	97 Pluteus hongoi ZRL20151600		
	70 Pluteus petasatus Limnoperdon incarnatum		
	Melanoleuca communis ZRL20151882-1		
	100 – Pleurotus tuberregium		
	Pleurotus pulmonarius ZRL20151671		
	Amanita muscaria NY45863 Amanita griseofolia ZRL20151138		
	100 100 Amanita phalloides		
	Amanita rimosa ZRL20151323		
	Conocybe filaris AFTOL ID 1498 Bolbitius vitellinus		
	96 Conocybe apala PBM 2706		
l	Panaeolus papilionaceus ZRL2015022-1		
100	Panaeolina foenisecii		
	Laccaria sp. ZRL20151663 Laccaria ochropurpurea		
	100 Cortinarius iodes		
	Cortinarius violaceus MTS 4854		
	80 Cortinarius aurilicis		
	Gymnopilus picreus ZRL2015011		
	100- Gymnopilus spectabilis		
	Pholiota veris AFTOL ID 1676		
	Flammula alnicola Alnicola escharioides		
	61 Alnicola eschariolaes		
	96 Hebeloma cf. cavipes ZRL20151612		
	Hebeloma angustilamellatum AFTOL ID 543		
	Agrocybe praecox AFTOL ID 728		
	78 Pholiota spumosa ZRL20151729		
	100 ^L Pholiota mubigena AFTOL ID 1500		
	Phaeomarasmius proximans AFTOL ID 979		
	Tubaria confragosa Tubaria vinicolor AFTOL ID 499		
	Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor		
	Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor Inocybe sphaerospora ZRL20151281	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe flocculosa ZRL20151789 100 Inocybe gaterospora ZRL20152002	Agaricales	Agaricomycetes
	100 Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe flocculosa ZRL20151789 100 Inocybe asterospora ZRL20152002 100 Crenidous of amlandus	Agaricales	Agaricomycetes
	100 Inocybe unicolor 100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe disculsa ZRL20151789 100 Inocybe asterospora ZRL201510202 100 Simocybe servalata AFTOL ID 970	Agaricales	Agaricomycetes
	100 Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe flocculosa ZRL20151789 100 Inocybe asterospora ZRL201510202 100 Inocybe seriatus 80 Simocybe seriulata AFTOL ID 970 56 Pleuroflammula flammea	Agaricales	Agaricomycetes
	100 Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe flocculosa ZRL20151789 100 Inocybe asterospora ZRL20152002 100 Simocybe serulata AFTOL ID 970 56 Pleuroflammula flammea 100 Pleuroflammula praestans ZRL2015066	Agaricales	Agaricomycetes
	100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe asterospora ZRL20151789 100 Inocybe asterospora ZRL20152002 100 Inocybe serrulata AFTOL ID 970 56 Pleuroflammula flammea 100 Pleuroflammula praestans ZRL2015066 76 Parasola conopilus ZRL20151990	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe asterospora ZRL20151789 100 Inocybe asterospora ZRL20152002 100 Simocybe serulata AFTOL ID 970 56 Pleuroflammula frammea 100 Pleuroflammula praestans ZRL2015066 76 Parasola conopilus ZRL20151990 96 Coprinopsis atramentaria PBM 992	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe flocculosa ZRL20151789 100 Inocybe sterospora ZRL20152002 100 Inocybe servata AFTOL ID 970 56 Pleuroflammula flammea 100 Pleuroflammula praestans ZRL2015066 76 Parasola conopilus ZRL20151990 52 Psathyrella candolleana ZRL20151400	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 100 Inocybe unicolor 100 Inocybe sphaerospora ZRL20151281 100 Inocybe asterospora ZRL20151789 100 Inocybe asterospora ZRL20152002 100 Simocybe serulata AFTOL ID 970 56 Pleuroflammula frammea 100 Pleuroflammula praestans ZRL2015066 76 Parasola conopilus ZRL20151990 96 Coprinopsis atramentaria PBM 992	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 Inocybe unicolor Inocybe sphaerospora ZRL20151281 Inocybe schaerospora ZRL20151281 Inocybe schaerospora ZRL20151281 Inocybe schaerospora ZRL20151281 Inocybe schaerospora ZRL20151281 Inocybe servilata AFTOL ID 970 Crepidotus cf. applanatus Simocybe servilata AFTOL ID 970 Pleuroflammula praestans ZRL2015066 Mythicomyces corneipes Parasola conopilus ZRL20151990 S2 Psathyrella candolleana ZRL20151400 S4 Psathyrella cardolleana ZRL20151400 S4 Psathyrella cardolleana ZRL2015047 I00 Nidularia farcta ZRL2015047_1	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 Inocybe unicolor Inocybe unicolor Inocybe sphaerospora ZRL20151281 Inocybe flocculosa ZRL20151281 Inocybe setrospora ZRL20151789 Inocybe setrospora ZRL20152002 Inocybe servata AFTOL ID 970 Simocybe servata AFTOL ID 970 Pleuroflammula flammea Inoc Pleuroflammula graestans ZRL2015066 Mythicomyces corneipes Parasola conopilus ZRL20151990 Sig Psathyrella candolleana ZRL20151400 S4 Psathyrella rhodospora Inoc Lacrymaria lacrymabunda AFTOL ID 478 Inoc Nidularia farcta ZRL2015047_1 Nidula sp. ZRL20151405 Salareta ZRL20151405	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 Inocybe unicolor Inocybe sphaerospora ZRL20151281 Inocybe schoor ZRL20151202 Inocybe serulata AFTOL ID 970 Stimocybe serulata AFTOL ID 970 Pleuroflammula frammea Inocybe schoor ZRL2015066 Mythicomyces corneipes Coprinopsis atramentaria PBM 992 S2 Psathyrella candolleana ZRL20151400 S4 Psathyrella cardolleana ZRL2015047 Inoc Lacrymaria lacrymabunda AFTOL ID 478 Inoc Lacrymaria lacrymabunda TRL2015047_1 Nidularia farcta ZRL2015047_1 Nidularia function macrocephalum Lacoparating for this primers ZRI 20151466	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe servidusa ZRL20151789 100 Inocybe servidusa ZRL20152002 100 Pleuroflammula flammea 100 Pleuroflammula praestans ZRL2015066 76 Parasola conopilus ZRL20151990 96 Coprinopsis atramentaria PBM 992 51 Psathyrella candolleana ZRL20151400 52 Psathyrella candolleana ZRL20151400 54 Psathyrella farcta ZRL2015047_1 Nidularia farcta ZRL2015047_1 Nidularia farcta ZRL20151405 Tulostoma macrocephalum Clarkeirnda trachodes xml2014104	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe servidas ZRL20151789 100 Simocybe servidata AFTOL ID 970 56 Pieuroflammula flammea 100 Pleuroflammula praestans ZRL2015066 76 Oprinopsis atramentaria PBM 992 56 Psathyrella candolleana ZRL20151400 54 Psathyrella crhodospora 100 Lacrymaria lacrymabunda AFTOL ID 478 100 Nidularia farcta ZRL20151405 54 Psathyrella chodospora 100 Lacrocoprimus fragilissimus ZRL20151466 69 Clarkeirnda trachodes xml2014104 78 Laucocoprimus cepaestipes xml2014128 78 Conviews conviews AETOL ID 478	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe scarvalas 200 R0 201 Crepidotus cf. applanatus 202 Simocybe serrulata AFTOL ID 970 203 Pleuroflammula flammea 100 Pleuroflammula praestans ZRL2015066 76 Parasola conopilus ZRL20151990 96 Coprinopsis atramentaria PBM 992 95 Psathyrella candolleana ZRL20151400 54 Psathyrella candolleana ZRL20151400 54 Psathyrella tradospora 100 Nidularia farcta ZRL2015047_1 Nidula sp. ZRL20151405 Tulostoma macrocephalum 69 Leucocoprinus fragilissimus ZRL20151466 77 Clarkeirnda trachodes xml2014104 78 Leucocoprinus cepaestipes xml2014128 78 Coprinus comatus AFTOL ID 626 74 Coprinus comatus AFTOL ID 626 76 Coprinus comatus AFTOL ID 626	Agaricales	Agaricomycetes
	Image: Construction of the system of the	Agaricales	Agaricomycetes
	Tubaria vinicolor AFTOL ID 499 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe sphaerospora ZRL20151281 100 Inocybe scarada 100 Inocybe servidusa ZRL201512802 100 Simocybe servidusa AFTOL ID 970 56 Pleuroflammula frammea 100 Pleuroflammula praestans ZRL2015066 76 Parasola conopilus ZRL20151990 96 Coprinopsis atramentaria PBM 992 51 Psathyrella candolleana ZRL20151400 52 Psathyrella candolleana ZRL20151400 54 Psathyrella farcta ZRL2015047_1 Nidularia farcta ZRL2015047_1 Nidularia farcta ZRL20151405 7100 Nidularia trachodes xml2014104 69 Clarkeirnda trachodes xml2014104 78 Leucocoprinus cepaestipes xml2014104 78 Leucocoprinus comatus AFTOL ID 626 97 Calvatia gigantea 190 Lycoperdon pyriforme DSH 96-054 94 Lycoperdon perlatum ZRL20151173	Agaricales	Agaricomycetes
	Image: State of the system	Agaricales	Agaricomycetes
	Image: State of the state	Agaricales	Agaricomycetes
	Image: State of the state	Agaricales	Agaricomycetes
	Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure <td>Agaricales</td> <td>Agaricomycetes</td>	Agaricales	Agaricomycetes
	Image: State of the state	Agaricales	Agaricomycetes
	Image: Strategy of the second seco	Agaricales	Agaricomycetes
	Image: Strategy of the strategy	Agaricales	Agaricomycetes
	Image: Second Structure Tubaria vinicolor Imocybe splaerospora ZRL20151281 Imocybe splaerospora ZRL20151281 Imocybe splaerospora ZRL20151281 Imocybe servitata AFTOL ID 970 Simocybe servitata AFTOL ID 970 Pleuroflammula frammea Imocybe servitata AFTOL ID 970 Pleuroflammula praestans ZRL2015066 Myhicomyces corneipes Parasola conopilus ZRL20151990 Simocybe servitata AFTOL ID 478 Imocybe servitata argumentaria PBM 992 Parasola conopilus ZRL20151400 Psathyrella candolleana ZRL20151400 Psathyrella candolleana ZRL20151400 Imocybe splaere	Agaricales	Agaricomycetes
	Image: Strategy of the strategy	Agaricales	Agaricomycetes
	Image: Strategy of the strategy	Agaricales	Agaricomycetes

1

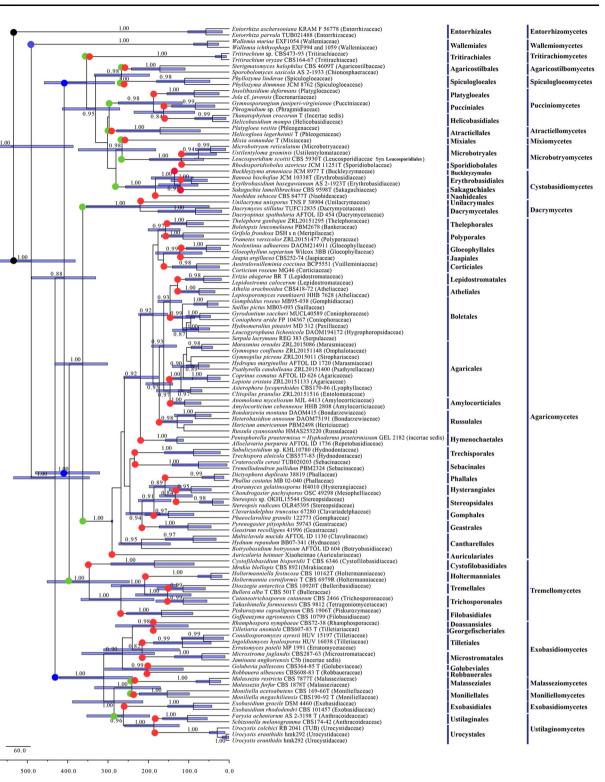


Fig. 2 Maximium Clade Credibility tree of Basidiomycota and allied phyla based on nrLSU, nrSSU, 5.8S, tef1-a, rpb1 and rpb2 sequence data with the outgroups Entorrhizomycota. Posterior probabilities which are equal or greater than 80% are annotated at the internodes.

300.0

400.0

60.0

500.0

600.0

1.00

1.00

100.0

1.00

0.0

1.00

1.00

200.0

The 95% highest posterior density of divergence time estimates are marked by horizontal bars. The *coloured dots* • • • • refer to the positions of the mean stem age of phyla, subphyls, classes and orders respectively

Microstromatales Golubeviales Robbauerales

Malasseziales

Moniliellales

Exobasidiales

Ustilaginales

Urocystales

Malasseziomycetes

Moniliellomycetes

Exobasidiomycetes

Ustilaginomycetes

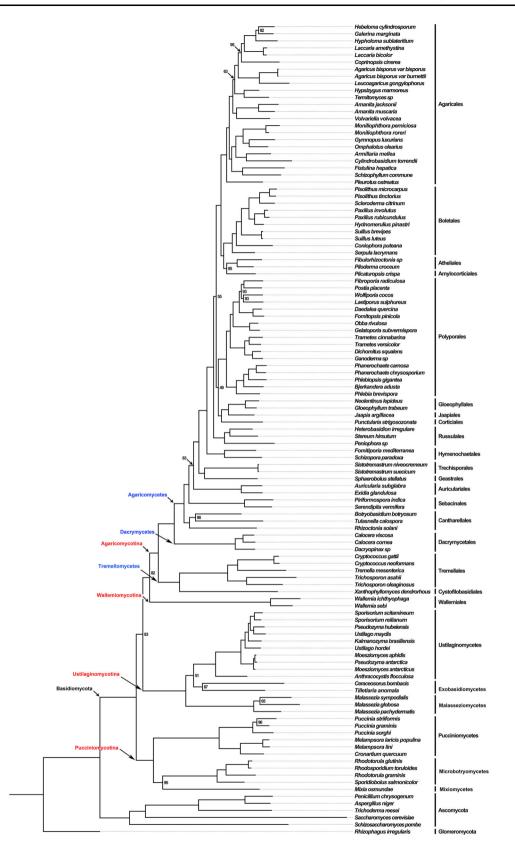


Fig. 3 Phyloproteomic tree of 109 *Basidiomycete* and six outgroup species, based on 396 protein alignments and a total of 82,536 sites. Statistical support values are based on maximum likelihood, and are shown only for nodes with lower than 100% support

Table 1 Subphyla, classes, subclasses, orders and families of Basidiomycota concluded in this study

Subphylum	Class/subclass	Order (number of families in this study/the total known families)	Families recognized in this study	Mean of stem age (Ma) in MCC tree	BS values in ML tree
Agaricomycotina				406	***
	Agaricomycetes			358	100%
	Agaricomycetidae			173	62%
		Agaricales (30/32)		147	62%
			Agaricaceae		***
			Amanitaceae		100%
			Bolbitiaceae		***
			Clavariaceae		100%
			Cortinariaceae		**
			Cyphellaceae		59%
			Hygrophoraceae		**
			Entolomataceae		***
			Fistulinaceae		100%
			Hydnangiaceae		100%
			Marasmiaceae		**
			Hygrophoraceae		**
			Inocybaceae		100%
			Limnoperdonaceae		*
			Lyophyllaceae		77%
					///%/ **
			Mycenaceae Niaceae		*
					**
			Omphalotaceae		
			Physalacriaceae		99%
			Pleurotaceae		100%
			Pluteaceae		97%
			Porotheleaceae		*
			Psathyrellaceae		76%
			Pterulaceae		100%
			Schizophyllaceae		*
			Strophariaceae		**
			Tricholomataceae		**
			Tubariaceae		*
			Typhulaceae		*
		Amylocorticiales (1/1)		147	85%
			Amylocorticiaceae		85%
		Atheliales (1/1)		146	97%
			Atheliaceae		97%
		Boletales (12/16)		146	100%
			Boletaceae		100%
			Boletinellaceae		*
			Coniophoraceae		57%
			Diplocystaceae		*
			Gomphidiaceae		*
			Gyroporaceae		***
			Hygrophoropsidaceae		*
			Paxillaceae		*
			Rhizopogonaceae		*
			Sclerodermatineae		*

Subphylum	Class/subclass	Order (number of families in this study/the total known families)	Families recognized in this study	Mean of stem age (Ma) in MCC tree	BS values in ML tree
			Serpulaceae		*
			Suillaceae		*
		Lepidostromatales (1/1)		146	99%
			Lepidostromataceae		99%
	Phallomycetidae			***	76%
		Geastrales (1/1)		217	76%
			Geastraceae		76%
		Gomphales (2/3)		187	***
			Clavariadelphaceae		97%
			Gomphaceae		**
		Hysterangiales (5/5)	-	133	**
			Hysterangiaceae		88%
			Mesophelliaceae		**
			Gallaceaceae		100%
			Phallogastraceae		**
			Trappeaceae		*
		Phallales (3/3)	Interpretere	159	95%
		Thanales (575)	Claustulaceae	107	100%
			Phallaceae		100%
			Phallogastraceae		**
	subclass incertae sedis	Auriculariales (1/7)	Thanogastraceae	290	100%
			Auriculariaceae		100%
		Cantharellales (3/7)		290	84%
			Botryobasidiaceae	270	*
			Clavulinaceae		*
			Hydnaceae		*
		Corticiales (3/3)	Tryunaceae	189	94%
		contenues (5/5)	Corticiaceae	10)	**
			Punctulariaceae		*
			Vuilleminiaceae		*
		Gloeophyllales (1/1)	vumennnaceae	124	79%
		Gloeophynales (1/1)	Classenhullassas	124	79% 79%
		$\mathbf{H}_{\mathrm{exp}}$	Gloeophyllaceae	221	
		Hymenochaetales (3/3)	TT 1 /	221	84%
			Hymenochaetaceae		98% *
			Repetobasidiaceae		
			Schizoporaceae	104	*
		Jaapiales (1/1)	. .	124	*
			Jaapiaceae	1.50	*
		Polyporales (6/10)		158	78%
			Ganodermataceae		100%
			Lentinaceae		*
			Meripilaceae		*
			Meruliaceae		52%
			Phanerochaetaceae		67%
			Polyporaceae		91%
		Russulales (11/12)		172	100%
			Albatrellaceae		100%

Subphylum	Class/subclass	Order (number of families in this study/the total known families)	Families recognized in this study	Mean of stem age (Ma) in MCC tree	BS values in ML tree
			Amylostereaceae		*
			Auriscalpiaceae		*
			Bondarzewiaceae		97%
			Echinodontiaceae		*
			Gloeocystidiellaceae		*
			Gloeodontiaceae		*
			Hericiaceae		73%
			Peniophoraceae		100%
			Russulaceae		***
			Stereaceae		*
		Sebacinales (1/1)		290	100%
			Sebacinaceae		100%
		Stereopsidales (1/1)		133	100%
		- · · ·	Stereopsidaceae		100%
		Thelephorales (2/2)	•	158	99%
		1	Bankeraceae		*
			Thelephoraceae		100%
		Trechisporales (1/1)		290	100%
			Hydnodontaceae	_, .	100%
	Dacrymycetes		119 0110 0011 000000	358	100%
	Duerymyeetes	Dacrymycetales (2/2)		225	**
			Dacrymycetaceae	223	100%
			Cerinomycetaceae		**
		Unilacrymales (1/1)	Cermonrycetaceae	225	*
		Officer ymales (1/1)	Unilacrymaceae	223	*
	Tremellomycetes		Onnaciymaceae	393	100%
	Tremenomycetes	Cystofilobasidiales (2/2)		350	100%
		Cystolilobasidiales (2/2)	Mrakiaceae	550	***
			Cystofilobasidiaceae		94%
		Filobosidialos (2/2)	Cystomobasiuraceae	271	94 <i>%</i> 100%
		Filobasidiales (2/2)	Dialaunaarun aaaaa	271	100% 90%
			Piskurozymaceae Filobasidiaceae		90 <i>%</i> ***
		$\mathbf{H}_{\mathbf{a}}$	rnobasiulaceae	211	
		Holtermanniales (1/1)	Holtermanniaceae	211	100%
		Tramellales (8/12)	Holtermanmaceae	152	100%
		Tremellales (8/12)	DU	153	100% **
			Bulleraceae		
			Bulleribasidiaceae		67% *
			Carcinomycetaceae		*
			Cryptococcaceae		
			Cuniculitremaceae		99%
			Naemateliaceae		*
			Trimorphomycetaceae		*
			Tremellaceae	1.50	*
		Trichosporonales (2/2)		153	100%
			Trichosporonaceae		100%
			Tetragoniomycetaceae		*
Pucciniomycotina				406	100%
	Agaricostilbomycetes			268	61%

Table 1 continued

Subphylum	Class/subclass	Order (number of families in this study/the total known families)	Families recognized in this study	Mean of stem age (Ma) in MCC tree	BS values in ML tree
		Agaricostilbales (1/3)		268#	61%
			Agaricostilbaceae		100%
			Chionosphaeraceae		100%
			Kondoaceae		**
	Atractiellomycetes			330	100%
		Atractiellales (1/3)		330#	100%
			Phleogenaceae	220	100%
	Classiculomycetes		Theogenaceae	_	*
	Clussiculoniyeetes	Classiculales (1/1)			*
			Classiculaceae		*
	Cystobasidiomycetes		Classiculaceae	330	99%
	Cystobasicionitycetes	Buckleyzymales (1/1)		136	*
		Buckleyzylliales (1/1)	Duaklauzumaaaaa	150	
		Custahasidialas (1/2)	Buckleyzymaceae		10007
		Cystobasidiales (1/?)		_	100%
			Cystobasidiaceae	100	96%
		Erythrobasidiales (1/?)		122	**
			Erythrobasidiaceae		**
		Naohideales (1/?)		185	*
			Naohideaceae		*
		Sakaguchiales (1/1)		122	*
			Sakaguchiaceae		*
		Order incertae sedis	Microsporomycetaceae		*
			Symmetrosporaceae		*
	Microbotryomycetes			264	100%
		Heterogastridiales (1/1)		-	*
			Heterogastridiaceae		*
		Kriegeriales (1/2)		-	*
			Kriegeriaceae		*
		Leucosporidiales (1/1) (Syn. of Microbotryales in this study)		74	69%
			Leucosporidiaceae		69%
		Microbotryales (3/3)		118	***
			Microbotryaceae		*
			Ustilentylomataceae		100%
			Leucosporidiaceae		69%
		Sporidiobolales (1/1)	•	118	100%
		1 ()	Sporidiobolaceae		100%
	Mixiomycetes		1	264	*
	ninitoni jectes	Mixiales (1/1)		264 [#]	*
			Mixiaceae	_01	*
	Pucciniomycetes			330	100%
	r accinionitycetes	Helicobasidiales (1/1)		162	93%
		Thereobasidiales (1/1)	Helicobasidiaceae	102	93% 93%
		Platyglopping $(2/2)$	mencopasiulaceae	187	93% 100%
		Platygloeales (2/?)	Foonantiassa	10/	
			Eocronartiaceae		100%
		D	Platygloeaceae	1/2	100%
		Pucciniales (8/15)		162	100%
			Coleosporiaceae		82%

Table 1 continued

Subphylum	Class/subclass	Order (number of families in this study/the total known families)	Families recognized in this study	Mean of stem age (Ma) in MCC tree	BS values in ML tree
			Cronartiaceae		**
			Melampsoraceae		*
			Phragmidiaceae		**
			Pucciniaceae		**
			Pucciniastraceae		**
			Raveneliaceae		*
			Uropyxidaceae		*
		Septobasidiales (1/?)		_	*
		• · · ·	Septobasidiaceae		*
	Spiculogloeomycetes		1	266	100%
	1 6 9	Spiculogloeales (1/1)		266#	100%
		I I B I I I B I I I I B I I I I I I I I I I	Spiculogloeaceae		100%
	Tritirachiomycetes		~18	356	100%
	111111111111111111111111111111111111111	Tritirachiales (1/?)		356#	100%
			Tritirachiaceae	550	100%
Ustilaginomycotina			111111 acmateat	430	100%
Striagmonrycouna	Exobasidiomycetes			***	**
	Exobasicioniyeetes	Microstromatales (3/3)		216	81%
		Wherostromatales (5/5)	Microstromataceae	210	**
					**
			Quambalariaceae		*
			Volvocisporiaceae	107	
		Doassansiales (3/3)		187	85%
			Doassansiaceae		92%
			Melaniellaceae		*
			Rhamphosporaceae		100%
		Entylomatales (1/1)		-	84%
			Entylomataceae		84%
		Exobasidiales (4/4)		265	***
			Brachybasidiaceae		*
			Cryptobasidiaceae		**
			Exobasidiaceae		**
			Graphiolaceae		*
		Georgefischeriales (3/4)		187	92%
			Georgefischeriaceae		*
			Gjaerumiaceae		*
			Tilletiariaceae		**
		Golubeviales (1/?)		202	*
			Golubeviaceae		*
		Robbauerales (1/?)		202	*
			Robbaueraceae		*
		Tilletiales (2/2)		216	100%
			Erratomycetaceae		*
			Tilletiaceae		100%
	Malasseziomycetes			245	100%
	-	Malasseziales (1/1)		245#	100%
			Malasseziaceae		100%
	Moniliellomycetes			245	100%
		Moniliellales (1/1)		245 [#]	100%

Table 1 continued

Subphylum	Class/subclass	Order (number of families in this study/the total known families)	Families recognized in this study	Mean of stem age (Ma) in MCC tree	BS values in ML tree
			Moniliellaceae		100%
	Ustilaginomycetes			265	100%
		Urocystales (3/?)		187	99%
			Doassansiopsidaceae		*
			Mycosyringaceae		*
			Urocystidaceae		86%
		Ustilaginales (4/9)		187	99%
			Anthracoideaceae		66%
			Melanopsichiaceae		*
			Melanotaeniaceae		100%
			Ustilaginaceae		85%
Wallemiomycotina				487	100%
	Wallemiomycetes			487#	100%
	-	Wallemiales (1/1)		487#	100%
			Wallemiaceae		100%

Bold indicates families used in both ML and BEAST analyses

* Refers to the taxa represented by a single species in this study

** Refers to taxa found to be either para- or polyphyletic in this study

*** Refers to taxa with <50%/0.8 BS/PP support

[#] Refers to the divergence times of this class/order is following those of its higher-level taxa, because this class/order is the unique class/order within its higher taxa. Those kinds of divergence times of class/order are excluded in generating the universal divergence in this study

data for *Wallemiomycetes* and *Entorrhizomycetes* was not available. However, once sequence data from *Wallemiomycetes* and *Entorrhizomycetes* are included, this subphylum is well-supported using nuclear rRNA genes; but lacks strong BS support when using combined nuclear rRNA and protein coding genes (Hibbett 2006).

In our analyses, we used rRNA and protein coding genes and include more than 500 species: *Agaricomycotina* lacks high BS support in the ML tree (Fig. 1), but has 1 PP/100% BS support in the molecular dating and phyloproteomic analyses (Figs. 2, 3). We therefore accept *Agaricomycotina* with three classes: *Agaricomycetes, Dacrymycetes* and *Tremellomycetes*.

Class Agaricomycetes

Phylogenetic support

This class is monophyletic with 100% BS and 1 PP support (Figs. 1, 2, 3). In the ML tree (Fig. 1), 12 orders (*Amylocorticiales*, *Atheliales*, *Auriculariales*, *Boletales*, *Corticiales*, *Lepidostromatales*, *Phallales*, *Russulales*, *Sebacinales*, *Stereopsidales*, *Thelephorales*, *Trechisporales*) out of 21 orders have more than 85% BS support, and six orders (*Agaricales*, *Cantharellales*, *Geastrales*, Gloeophyllales, Hymenochaetales, and Polyporales) have 62–84% BS support. The problematic orders in this ML study are Gomphales and Hysterangiales. The former lacks statistical support and the latter is polyphyletic. In the molecular dating analysis, all those 21 orders of Agaricomycetes are monophyletic with 0.95 or 1 PP support. In the phyloproteomic analysis, a total of 15 orders are included and those six weak-supported orders (Agaricales, Cantharellales, Geastrales, Gloeophyllales, Hymenochaetales, and Polyporales with 62–84% BS support in six-gene analysis) get 100% BS support (Fig. 3).

Based on the molecular dating analysis (Fig. 2), *Agaricomycetes* has a mean stem age of 358 Ma. The 21 orders within *Agaricomycetes* diverged at different times, but mostly within the mean of stem ages ranging from 124 Ma to 290 Ma (Table 1). In that analysis the order *Auriculariales* is basal (Figs. 1, 2; Table 1). However, the phyloproteomic analysis, the order *Cantharellales* has the basal position, followed by *Sebacinales* and *Auriculariales* (Fig. 3).

Discussion

The members of *Agaricomycetes* are mostly mushrooms, and include cultivated, saprotrophic and ectomycorrhizal species used as sources of food and medicine (De Silva et al. 2012a, b, 2013; Hibbett et al. 2014). Some species

also cause poisoning or psychoactivity when eaten (Chen et al. 2014). Bioactive components from these mushrooms can be used in the modern medical industries (Ruiz-Dueñas and Martínez 2009). This class previously contained 17 orders, more than 100 families, 1000 genera and 21,000 species, which is one-fifth of all known fungi (Hibbett et al. 2007; Kirk et al. 2008).

The early recognized orders have been resolved as monophyletic groups using analysis of rRNA genes, and support for some orders were weak or absent, such as Cantharellales (Binder and Hibbett 2002; Binder et al. 2005; Moncalvo et al. 2006). In part due to elevated rates of evolution in rRNA genes, protein coding genes have been introduced in fungal phylogenetic analyses, such as in Matheny et al. (2006). Several weakly supported orders based on rRNA gene analysis are strongly supported in Matheny et al. (2006). This includes Agaricales, Polyporales, and Cantharellales (excluding species of Tulasnella) and the russuloid and gomphoid-phalloid clades (Binder and Hibbett 2002; Binder et al. 2005; Moncalvo et al. 2006). Since 2010, the orders Amylocorticiales, Jaapiales, Stereopsidales and Lepidostromatales have been introduced within Agaricomycetes (Binder et al. 2010; Hodkinson et al. 2014; Sjökvist et al. 2014).

In this study, we included all 21 orders and in the ML analysis using rRNA and protein coding gene sequences from many more species than in Matheny et al. (2006). When combining the ML and molecular dating analysis (Figs. 1, 2; Table 1) as well as previous studies, the orders Agaricales, Amylocorticiales, Atheliales, Auriculariales, Boletales, Corticiales, Geastrales, Gloeophyllales, Hymenochaetales, Jaapiales, Lepidostromatales, Polyporales, Phallales, Russulales, Sebacinales, Stereopsidales, Thelephorales, and Trechisporales are well-supported. All are monophyletic groups within similar divergence times in our analyses (Figs. 1, 2, 3; Table 1). Within those orders, Jaapiales was established in 2010 based on analysis of a six-locus nuclear dataset of 191 species, and contains a single resupinate genus Jaapia comprising two species (Binder et al. 2010). In that study, Jaapiales is sister to Boletales. However in our study, Jaapia is sister to Gloeophyllales in all our analyses, including the ML (Fig. 1), molecular dating analysis (Fig. 2) and phyloproteomic analysis (Fig. 3).

The main problems in the present taxonomic system of *Agaricomycetes* are as follows:

(i) Redefinition of Cantharellales. Cantharellales has been thought to be a monophyletic group, represented by members of Cantharellaceae, Clavulinaceae and Hydnaceae (Matheny et al. 2006). Botryobasidiaceae was included in this order by Moncalvo et al. (2006), appearing to be sister to the core cantharelloid clade when using analysis of rRNA genes (Moncalvo et al. 2006). The most recent phylogenetic study on *Cantharellales* based on ITS sequences from six families, also included *Botryobasidiaceae* (Veldrea et al. 2013). In our ML analysis, we used rRNA and protein coding gene sequence data from members of *Clavulinaceae*, *Hydnaceae* and *Botryobasidiaceae*. The phylogeny shows this order is monophyletic with 84% BS support. However, this order has a 1.0 PP and 100% BS statistical support in the molecular dating and phyloproteomic analysis, but it does not have a wide taxon sampling. Thus, more comprehensive studies are needed to redefine this order in future work.

- (ii) An improved phylogenetic analysis emphasizing on *Gomphales* is needed. In the ML analysis, this order is paraphyletic as our sample of *Phaeoclavulina africana* (collection number 39,621) did not cluster with the other twelve taxa of *Gomphales*, which formed a monophyletic clade, but without statistical support (Fig. 1). However, in the molecular dating analysis this order has 0.97 PP support (Fig. 2) and has a divergence time of 187 Ma. Further studies are needed because this dating analysis is only based on two species sequences.
- (iii) A more comprehensive phylogenetic analysis of *Hysterangiales* is needed. Similar to *Gomphales*, *Hysterangiales* is monophyletic with 0.95 PP support, and a divergence time of 133 Ma based on two species sequences. However this order is paraphyletic in the ML analysis when using sequences from 22 species.

Class Dacrymycetes

Phylogenetic support

This class is represented by nine species and is supported by 100% BS (Fig. 1), 1.0 PP in the molecular dating analysis (Fig. 2) and 100% BS in the phyloproteomics analysis (Fig. 3). This class is sister to *Agaricomycetes* with 57% BS support (Fig. 1). The recently introduced order *Unilacrymales*, represented by a single species of *Unilacryma*, nests in the clade comprising *Cerinomyc*etaceae (*Dacrymycetales*) with 100% BS support (Fig. 1), but is sister to *Dacrymycetales* in the molecular dating analysis (Fig. 2). The mean stem age for *Dacrymycetes* is 358 Ma, while *Dacrymycetales* and *Unilacrymales* are both 225 Ma (Fig. 2; Table 1).

Discussion

Dacrymycetes comprises the jelly fungi, and traditionally contains a single order Dacrymycetales, one family Dacrymycetaceae, nine genera and more than 100 species (Hibbett 2006; James et al. 2006; Hibbett et al. 2007; Kirk et al. 2008). Members of this class are mainly brown rot and rarely white rot fungi. The divergence time for this class was estimated at 280–360 Ma (Dentinger et al. 2010), so the class is regarded as one of the earliest wood decomposers to diverge in the Basidiomycota as compared to the later-evolved wood decomposers in Agaricomycetes (Shirouzu et al. 2013); such as the order Polyporales (Agaricomycetes), which is about 114 Ma old (Fig. 2). Recent molecular phylogenetic studies support the monophyly of *Dacrymycetes* and show it has a sister relationship to Agaricomycetes (Hibbett 2006; James et al. 2006; Hibbett et al. 2007).

Cerinomycetaceae (Jülich 1981; Larsson et al. 2004) is a second family of *Dacrymycetales* introduced by Shirouzu et al. (2009). A new genus *Unilacryma* was introduced with a single species *U. unisporus*; this species always occupies a sister position to other species of *Dacrymycetes*. To accommodate this taxon, a new family *Unilacrymaceae* and a new order *Unilacrymales* were introduced (Shirouzu et al. 2013).

However, in our study, *Unilacrymales* clusters in the clade of *Cerinomycetaceae* of *Dacrymycetales* with 100% BS support in ML analysis (Fig. 1), but sister to *Dacrymycetales* in the molecular dating analysis (Fig. 2). Their divergence times are both 225 Ma (Table 1). Then we accept *Unilacrymales* as an order in this study, but a more detailed study should be conducted using more genes.

Class Tremellomycetes

Phylogenetic support

In this study, *Tremellomycetes* as represented by 43 species, is monophyletic with 100% BS support in the ML tree (Fig. 1). *Tremellomycetes* is sister to the classes *Agaricomycetes* and *Dacrymycetes* and they form a larger clade which respect to the subphylum *Agaricomycotina* with the BS values less than 50% support. However, in the MCC and phyloproteomic trees (Figs. 2, 3), *Tremellomycetes* is sister to the clade of *Agaricomycetes* + *Dacrymycetes*, and all cluster within *Agaricomycotina* with 1.0 PP/100% BS support.

Both analyses show the same topology within the class *Tremellomycetes* (Figs. 1, 2): the order *Cystofilobasidiales* and the orders *Filobasidiales*, *Holtermanniales*, *Trichosporonales* and *Tremellales* represent a deep dichotomy; *Filobasidiales* is sister to the clade composed of

Holtermanniales, Trichosporonales and Tremellales. All orders have 99–100% BS and 0.99–1.0 PP support.

The mean of stem age of *Tremellomycetes* is 393 Ma, and the mean of stem ages of its orders mostly range from 153 Ma to 270 Ma with the exception of order *Cystofilobasidiales* is older (350 Ma, Table 1).

Discussion

Tremellomycetes, the jelly fungi, have gelatinous fruiting bodies. However, the classes also contain yeasts and dimorphic fungi. The phylogenetic position of *Tremellomycetes* has been well-studied (Fell et al. 2000; Matheny et al. 2006; Hibbett et al. 2007), and three orders *Cystofilobasidiales*, *Filobasidiales* and *Tremellales* have been widely accepted within this class (Kirk et al. 2008). *Holtermanniales* and *Trichosporonales* are additional orders (Boekhout et al. 2011; Wuczkowski et al. 2011; Weiss et al. 2014), and a related robust framework and updated taxonomic system of this class has been provided using analysis of combined sequence data from seven genes (Liu et al. 2015a,b).

In our study, *Tremellomycetes* is strongly supported and it contains five well-supported orders (Figs. 1, 2; Table 1). However, this class is loosely related to the subphylum *Agaricomycotina* in the ML analysis (Fig. 1), this is similar to the phylogenetic overview of *Agaricomycotina* (Hibbett 2006): the protein-coding gene sequences reduce the support of *Tremellomycetes* as a member of subphylum *Agaricomycotina*. However, in the molecular dating and phyloproteomic analysis, *Tremellomycetes* is strongly supported as a member of *Agaricomycotina*. On the other hand, the older age of order *Cystofilobasidiales* may indicate that it could eventually be raised to a higher taxon.

- Subphylum Pucciniomycotina R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 45 (2006)
- Class Agaricostilbomycetes R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 45 (2006)
- Class Atractiellomycetes R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 45 (2006)
- Class Classiculomycetes R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006)
- Class *Cryptomycocolacomycetes* R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006) (not involved in this study)
- Class Cystobasidiomycetes R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006)

- Class *Microbotryomycetes* R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 47 (2006)
- Class Mixiomycetes R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 47 (2006)
- Class *Pucciniomycetes* R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 48 (2006)
- Class Spiculogloeomycetes Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Stud. Mycol. 81: 172 (2015)
- Class *Tritirachiomycetes* Aime & Schell, in Schell, Lee & Aime, Mycologia 103(6): 1339 (2011)

Phylogenetic support

This subphylum is a monophyletic clade with 100% BS support (Fig. 1), and sister to subphylum *Agaricomycotina*. Nine of the ten classes of *Pucciniomycotina* were included in this study. *Cryptomycocolacomycetes* is not included as it lacks reliable sequence data. All nine classes are monophyletic with 99% BS or 1.0 PP support, except for *Agaricostilbomycetes* with 61% BS support in the ML analysis (Fig. 1). Eight classes (*Classiculomycetes* is excluded due to limited sequence data) are included in the molecular dating analysis. All classes are monophyletic, and have 0.95–1.0 PP support (Fig. 2; Table 1). In the phyloproteomic analysis, this subphylum is fully supported and represented by three classes (*Pucciniomycetes, Microbotryomycetes* and *Mixiomycetes*), however it is sister to the *Agaricomycotina* + Ustilaginomycotina clade (Fig. 3).

The orders Classiculales, Heterogastridiales, Kriegeriales, Mixiales, Naohideales, Sakaguchiales ord. nov. and Septobasidiales are represented by a single species, so they lack statistical support (Fig. 1). The orders Atractiellales, Cystobasidiales, Helicobasidiales, Platygloeales, Pucciniales, Spiculogloeales, Sporidiobolales and Tritirachoales have 93% to 100% BS support; and the orders Erythrobasidiales, Leucosporidiales Agaricostilbales, (proposed as a synonym of *Micorbotryales* in this study) and Microbotryales have 61, 81, 69 and 71% BS support respectively (Fig. 1). In the class Cystobasidiomycetes, the genera Buckleyzyma, Microsporomyces, Sakaguchia and Symmetrospora are represented by a single type specimen in the ML analysis.

In the molecular dating analysis, the mean of stem age of *Pucciniomycotina* is 406 Ma, its classes have mean stem ages mostly from ca. 264 Ma to 356 Ma. The mean stem ages of the orders are mainly from 118 Ma to 187 Ma, however *Leucosporidiales* and *Microbotryales* have a similar stem age (74 Ma), which is much younger than those of other orders (Fig. 2; Table 1).

Discussion

There are more than 8000 species in *Pucciniomycotina*, which makes up one third of the described *Basidiomycota*

(Aime et al. 2006, Bauer et al. 2006). Previous systematic studies mainly compared ultrastructural features, such as septal pore apparatus, form and behaviour of the spindle pole bodies, types of host-parasite interaction, presence or absence of colacosomes, symplechosomes, atractosomes and cystosomes as well as analyses of nuclear rRNA gene sequence data. A taxonomic arrangement has been proposed with eight classes: Agaricostilbomycetes, Atractiellomycetes, Classiculomycetes, Cryptomycocolacomycetes, Cystobasidiomycetes, Microbotryomycetes, Mixiomycetes, and *Pucciniomycetes* (Hamamoto and Nakase 2000; Nakase 2000; Fell et al. 2000; Scorzetti et al. 2002; Aime et al. 2006, 2014; Bauer et al. 2006; Hibbett et al. 2007; Boekhout et al. 2011. Among these classes, Pucciniomvcetes includes the most species from this subphylum (around 8000 species, Kirk et al. 2008) and most are plant pathogens. The class Tritirachiomycetes is based on a single genus Tritirachium Limber, which are hyphomycetes recently placed as incertae sedis within the Pezizomycotina (Ascomycota). Now the genus is placed in Tritirachiomycetes and as the ninth class of Pucciniomycotina (Schell et al. 2011). The tenth class, Spiculogloeomycetes Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, comprises yeast and yeast-like species which were introduced by Wang et al. (2015a, c).

All classes are monophyletic groups based on the phylogenies of the ML and molecular dating analyses. The recently introduced classes *Tritirachiomycetes* and *Spiculogloeomycetes* are well-supported, not only from the phylogenetic analysis, but also have similar divergence times.

Most orders of Pucciniomycotina are well-supported in this study. Exceptions are: (i) In class Microbotryomycetes, Leucosporidiales which is represented by its type species and type specimen Leucosporidium scottii in this study. The molecular dating analysis shows this order has a very young divergence time (74 Ma) and is sister to Microbotryales in molecular dating analysis. In the ML analysis Leucosporidiales is sister to Kriegeriales without statiscal support, then both of them are sister to Microbotryales without statiscal support too. Based on the younger divergence time of Leucosporidiales and its clustering with Microbotryales under 1.0 pp value support, we propose combining Leucosporidiales under Microbotryales. Its related orders (such as Kriegeriales) therefore need further studies. (ii) In class Cystobasidiomycetes, the genera Buckleyzyma, Microsporomyces, Sakaguchia and Symmetrospora are the only genera representing the families Buckleyzymaceae, Microsporomycetaceae. Sakaguchiaceae and Symmetrosporaceae respectively, and are placed in Cystobasidiomycetes incertae sedis at the ordinal level (Wang et al. 2015c). In the ML analysis, the type specimens of those four genera do not cluster with any known orders with good statiscal support. *Buckleyzyma armeniaca* (type JCM 8977) and *Sakaguchia lamellibrachiae* (type CBS9598) are included in the molecular dating analysis and are positioned as sister to *Erythrobasidiales* with divergence times of 136 Ma and 122 Ma respectively. From these results we introduce the new orders *Buckleyzymales* and *Sakaguchiales* to accommodate the families *Buckleyzymaceae* and *Sakaguchiaea*. Sequence data for members of the families *Microsporomycetaceae* and *Symmetrosporaceae* were not available for molecular dating and phyloproteomic analyses in this study; we therefore keep them in the *Cystobasidiomycetes*.

Buckleyzymales R.L. Zhao & K. D. Hyde, order nov. Fungal Names: FN570465

Type Family: *Buckleyzymaceae* Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Stud. Mycol. 81:176 (2015)

Type genus: *Buckleyzyma* Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout. Stud. Mycol. 81:176 (2015)

The diagnosis of the order *Buckleyzymales* is based on the description of family Buckleyzymaceae, which is based on the description of the genus *Buckleyzyma*: "Sexual reproduction not known. Colonies brownish-orange or orange and butyrous. Budding cells present. Hyphae and pseudohyphae present or not. Ballistoconidia present or not, ellipsoidal allantoid to amygdaliform" (Wang et al. 2015c).

Sakaguchiales R.L. Zhao & K.D. Hyde, order nov. Fungal Names: FN570466

Type family: *Sakaguchiaceae* Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Stud. Mycol. 81:177 (2015)

Type genus: *Sakaguchia* Y. Yamada et al., Biosc. Biotechn. Biochem. 58:102. 1994. emend. Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout., Stud. Mycol. 81:177 (2015)

The diagnosis of the order *Sakaguchiales* is based on the description of the family *Sakaguchiaceae*, which is based on the genus *Sakaguchia*: "Sexual reproduction in some species. Clamp connections present. Teliospores laterally or terminally on the hyphae. Teliospores germinate with two- to four-celled metabasidium with lateral and terminal basidiospores. Colonies red or orange-red and butyrous. Budding cells present. Pseudohyphae or true hyphae present or not. Ballistoconidia not produced" (Wang et al. 2015c).

Microbotryales R. Bauer & Oberw., Can. J. Bot. 75:1309 (1997)

= *Leucosporidiales* J.P. Samp. et al., Mycol. Prog. 2: 61 (2003)

Type family: *Microbotryaceae* R.T. Moore. Can. J. Bot. 75:1309 (1997)

3. Subphylum *Ustilaginomycotina* Doweld, Prosyllabus Tracheophytorum, Tentamen Systematis Plantarum Vascularium (Tracheophyta) (Moscow): LXXVIII (2001)

- Class *Exobasidiomycetes* Begerow, M. Stoll & R. Bauer, Mycologia 98(6): 908 (2007) [2006]
- Class *Malasseziomycetes* Denchev & T. Denchev, Index Fungorum 145: 1 (2014)
- Class *Moniliellomycetes* Boekhout, Q.M. Wang & F.Y. Bai, Persoonia 33:46 (2014)
- Class Ustilaginomycetes R. Bauer, Oberw. & Vánky, Can. J. Bot. 75: 1311 (1997)

Phylogenetic support

Ustilaginomycotina is a monophyletic group with 100% BS and 1.0 PP support (Figs. 1, 2, 3). The classes Malasseziomycetes, Moliliellomycetes and Ustilaginomycetes have 100% BS and 0.96-1.0 PP support in both analyses, however Exobasidiomycetes is polyphyletic in the molecular dating analysis and lacks good support in the ML analysis. Ustilaginomycotina diverged at 430 Ma, and the classes later diverged between 245 and 265 Ma (Fig. 2; Table 1). The orders of Ustilaginomycetes, Malasseziomycetes and Moliliellomycetes are monophyletic with 100% BS and 1.0 PP support (Figs. 1, 2, 3; Table 1). The orders Exobasidiales and Doassansiales of Exobasidiomycetes do not have high BS support in the ML analysis, but have 1 PP support in the molecular dating analysis, which only includes a small number of species. The mean of stem age of all orders in this subphylum are generally 187-265 Ma (Fig. 2; Table 1). Two recently proposed orders Golubeviales and Robbauerales of Exobasidiomycetes are divergent at 202 Ma (Fig. 2; Table 1).

Discussion

Ustilaginomycotina contains more than 1000 species, and comprises plant pathogenic fungi (smuts), which are mostly dimorphic and have a yeast-like stage during their life cycle. Traditionally Ustilaginomycotina contained two classes: *Ustilaginomycetes* and Exobasidiomycetes (Begerow et al. 2006; Matheny et al. 2007a; Hibbett et al. 2007). Malassezia grows on skin of animals and Moniliella (syn. Trichosporonoides) is a yeast-like taxon representing Moliliellomycetes. Those two genera and related orders are maintained in Ustilaginomycotina incertae sedis for a long time because their variable phylogenetic positions in different gene trees. They nest into Exobasidiomycetes or in Ustilaginomycetes using rDNA sequence data alone or in combination with protein genes (Begerow et al. 2000, 2006; Bauer et al. 2001; Weiß et al. 2004; Matheny

et al. 2007a). Until 2014, different analyses based on the sequences of six-gene confirmed that *Malassezia* and *Moniliella* belong to *Ustilaginomycotina*, and forming deep and well-supported lineages. The classes *Malasseziomycetes* and *Moniliellomycetes* were therefore proposed for these lineages, with additional support from phenotypic characters (Wang et al. 2014). In a recent phylogenetic study on *Ustilaginomycotina* using seven genes, *Exobasidiomycetes* resulted paraphyletic (Wang et al. 2015b). Two orders *Golubeviales* and *Robbauerales* were introduced in *Exobasidiomycetes*, so that there are eight orders in this class (Wang et al. 2015b).

In our study, the recently introduced classes *Malasseziomycetes* and *Moniliellomycetes* along with *Ustilaginomycetes* are well-supported and their divergence times fall within ranges of 245–330 Ma which is the most classes have. The class *Exobasidiomycetes* is paraphyletic as in the previous studies (Wang et al. 2014, 2015b). Two recently proposed orders *Golubeviales* and *Robbauerales* of *Exobasidiomycetes* are also supported in our study.

4. Subphylum *Wallemiomycotina* Doweld, in Index Fungorum no. 73 (2014)

Type class: *Wallemiomycetes* Zalar, de Hoog et Schroers, Antonie van Leeuwenhoek, 87:322 (2005)

Type order: *Wallemiales* Zalar, de Hoog & Schroers, Antonie van Leeuwenhoek 87(4): 322 (2005)

Type family: *Wallemiaceae* R.T. Moore, Rhizoctonia Species, Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control (Dordrecht): 20 (1996)

Type genus: *Wallemia* Johan-Olsen. designated by Doweld in Index Fungorum no. 73 (2014)

Type species: *Wallemia ichthyophaga* Johan-Olsen 1887, designated by Zalar et al., Antonie van Leeuwenhoek, 87:322 (2005)

Phylogenetic support

Wallemiomycota is represented by four species in the ML analysis (Fig. 1). Sequences from the type strain of Wallemia tropicalis (stain number EXF_8739, from Jančič et al. 2016), and those of voucher stains for W. ichthyophaga, W. muriae and W. sebi from previous studies (Zalar et al. 2005; Matheny et al. 2007a) are included in the analyses. All Wallemia species cluster together with 100% BS and 1.0 PP support (Figs. 1, 2, 3). Wallemiomycotina is sister to other three subphyla of Basidiomycota in the ML and molecular dating analyses with 100% BS and 1.0 PP support (Figs. 1, 2) respectively. The mean of stem age of Wallemiomycotina is 487 Ma (Fig. 2). However in the phyloproteomics analysis it is sister to subphylum Agaricomycotina, then clade of Agaricomycotina + Wallemiomycotina is sister to the subphylum Ustilaginomycotina (Fig. 3).

Discussion

Subphylum *Wallemiomycotina* was proposed with a brief morphological description in Index Fungorum (Doweld 2014).

Based on a previous study, *Wallemia* is classified in the only family *Wallemiaceae* under the only order *Wallemiales* and the only class *Wallemiomycetes* based on phylogenetic analysis of 18S sequence data (Zalar et al. 2005). Four more species have recently been described (Jančič et al. 2016). Species of this class are xerophilic molds and have an unusual mode of asexual reproduction. Matheny et al. (2007a) investigated the phylogenetic placement using six nuclear genes. Their combined gene tree supports this class as being an isolated lineage and its position is basal to the core clade of *Pucciniomycotina*, *Ustilaginomycotina* and *Agaricomycotina* in *Basidiomycota* (Matheny et al. 2007a).

Our analysis, based on a larger sampling from *Basidiomycota* and *Entorrhizomycota* (*Ascomycota* as outgroups), confirms its distinct phylogenetic position, which is sister to other three subphyla of *Basidiomycota* with 100% BS and 1.0 PP support (Figs. 1, 2). While in the phyloproteomic analysis it shows up as sister to the *Agaricomycotina* (Fig. 3), which is in agreement with previous genomic studies (Zajc et al. 2013; Padamsee et al. 2012). In this study, we accept the class *Wallemiomycotina* (Doweld 2014) to better fit its evolutionary history.

Phylum *Entorrhizomycota* R. Bauer, Garnica, Oberw., K. Riess, M. Weiß & Begerow, PLoS ONE 10(7): 10 (2015)

Phylogenetic support

Entorrhizomycota is represented by four species in our analysis, having 100% BS and 1.0 PP support, and is sister to the clade of *Basidiomycota* + *Wallemiomycota* (Figs. 1, 2). *Entorrhiza* and *Talbotiomyces* represent a deep dichotomy within the *Entorrhizomycota* in the ML Tree (Fig. 1). The stem age of this phylum is 530 Ma and is represented by two *Entorrhiza* species (Fig. 2).

Discussion

This phylum was established for a single genus, *Entorrhiza*, which is a small group of unusual teliosporic root parasites on *Juncaceae* and *Cyperaceae* (Begerow et al. 2006). Traditionally, species of *Entorrhiza* were considered as smut fungi and classified in *Tilletiaceae* (Zundel 1953). More recently based on ultrastructure and molecular phylogeny, *Entorrhiza* was accommodated in the distinct family, order and class, *Entorrhizaceae*, *Entorrhizales* and *Entorrhizomycetes* in the subphylum *Ustilaginomycotina* (Bauer et al. 1997; Begerow et al. 1997, 2006) and phylum *Basidiomycota*. It was recently separated from *Basidiomycota* and established as a novel phylum *Entorrhizomycota* containing the only class *Entorrhizomycetes* (Bauer et al. 2015). Molecular phylogenetic analyses as well as morphological and ecological data indicate that *Talbotiomyces calosporus* belongs to *Entorrhizomycota*, and a novel order *Talbotiomycetales* K. Riess, R. Bauer, R. Kellner, Kemler, Piątek, Vánky & Begerow and family *Talbotiomycetaceae* K. Riess, R. Bauer, R. Kellner, Kemler, Piątek, Vánky & Begerow were established based on this genus (Riess et al. 2015). Our study accepts this phylum based on the phylogeny and deep divergence.

Conclusions

Phylogenetic overview of Basidiomycota

In this study, we used sequence data from six-gene and a broad sampling that represents all classes of *Basidiomycota* except the *Cryptomycocolacomycetes* which lack proper sequence data. Almost all orders from each class have been included and are represented by all or most of known families. Exceptions are *Auriculariales* and *Cantharellales* (*Agaricomycetes*), *Atractiellales* (*Classiculomycetes*) and *Ustilaginales* (*Ustilaginomycetes*). We evaluated the relevance of higher-level taxa by considering whether or not they are monophyletic and have similar relative divergence times using the mean of stem age.

In our six-gene phylogenetic analysis (Figs. 1, 2), most higher-level taxa are monophyletic with sufficient statistical support (BS > 50% and PP > 0.8). Taxa that lacked high support included the Agaricomycotina, Gomphales and Exobasidiales (Figs. 1, 2); while some resulted polyphyletic/paraphyletic: Exobasidiomycetes, Cantharellales and Hysterangiales (Agaricomycetes), and Unilacrymales (Dacrymycetes). The recently introduced order Unilacrymales nests in the Cerinomycetaceae clade of Dacrymycetales in ML tree. Some of these unsupported taxa agree with previous studies, such as the polyphyletic groups in Exobasidiomycetes (Wang et al. 2015a), but the others differ from previous studies (Cantharellales in Veldrea et al. 2013; Hysterangiales in Hosaka et al. 2006; Unilacrymales in Shirouzu et al. 2013). Thus, further comprehensive studies are needed to clarify these disagreements.

Our results widely agree with dating estimates reported by previous researchers. For example, the phylum *Basidiomycota* originated more than 500 Ma according to Floudas et al. (2012), compared to 530 Ma in this study; *Agaricomycotina* diverged 429 Ma according to Floudas et al. (2012), compared to 406 Ma in this study. The divergence estimates for *Agaricomycetidae* were 149 Ma in Floudas et al. (2012) and 203–250 Ma in GarciaSandoval et al. (2011), versus 173 Ma in our study. The class *Dacrymycetes* originated 280–360 Ma according to Dentinger et al. (2010), versus 358 Ma in this study. The orders *Boletales* and *Gloeophyllales* originated during the early Cretaceous (around 66–146 Ma in Garcia-Sandoval et al. 2011) and in our study, they are divergent at 146 and 124 Ma respectively. However, in our study, *Polyporales* has a younger divergence time compared to the estimates of Garcia-Sandoval et al. (2011), which estimated the order *Polyporales* to have evolved during the late Jurassic, about 203–250 Ma.

Based on our study, the phyla and subphyla of Basidiomycota formed ca. 530 Ma and 406-490 Ma respectively, so we accept these divergence times ranges as supplementary criteria in ranking phyla and subphyla. These estimated divergence times of classes within Basidiomycota, were variable in different subphyla. For example, divergence times of classes in Agaricomycotina were estimated in a narrow range of 358-393 Ma. However, divergence times for classes of Pucciniomycotina and Ustilaginomycotina are mostly estimated 245-356 Ma, which are much wider than those classes of Agaricomycotina. However, the estimated divergence times of orders within those different subphyla remain between 120 and 290 Ma (Table 1). We use these divergence time ranges as criteria for the ranking of phyla, subphyla, classes and orders within Basidiomycota in this study.

Based on our relative divergence time estimates and phylogenetic analyses, we conclude that most higher-level taxa in *Basidiomycota* are well-supported, especially the recently introduced taxa: phylum *Entorrhizomycota*, classes *Malasseziomycetes*, *Moniliellomycetes*, *Spiculogloeomycetes*, *Tritirachiomycetes* and orders *Holtermanniales*, *Trichosporonales*, *Golubeviales*, *Robbauerales*, *Amylocorticiales*, *Jaapiales*, *Stereopsidales* and *Lepidostromatales*.

However, some taxa are not well-supported. The problems are found at the order level as follows: (1) Unilacrymales (Dacrymycetes) nests in the clade of Cerinomycetaceae of Dacrymycetales with 100% BS in ML tree (Fig. 1), however it is sister to Dacrymycetales with divergence time of 225 Ma in the MCC tree (Fig. 2). In this study we accept Unilacrymales but further scrutiny is needed. (2) Leucosporidiales (Microbotryomycetes) has a divergence of 74 Ma, which is much younger than other orders (120-290 Ma), thus we propose combining Leucosporidiales under the older name of Microbotryales. (3) Two new orders Buckleyzymales and Sakaguchiales are introduced to accommodate the families Buckleyzymaceae and Sakaguchiaceae (Cystobasidiomycetes) due to their older divergence times. (4) The oldest divergence time and distinct phylogenetic position of Cystofilobasidiales of Tremellomycetes indicates it should be raised to a higher rank. We however, do not introduce a new class here, as DNA sequence data from these taxa are not from their respective types, thus we await further studies. (5) Monophyletic evaluation and divergence time estimates for some higher-level taxa (i.e. *Exobasidiomycetes, Cantharellales, Gomphales,* and *Hysterangiales*) were based on limited species sequences in this study, therefore, await further scrutiny.

The tree topology of our phyloproteomic analysis largely agrees with the six-gene trees (Figs. 1, 2, 3). The main exceptions are followings: (1) the monophyletic *Wallemiomycetes* is sister to three subphyla of *Basidiomycota* (*Agaricomycotina* + *Pucciniomycotina* + *Ustilaginomycotina*) in the six-gene analysis, however, it sister to subphylum *Agaricomycotina* in phyloproteomic analysis. In this study we recognize this group at the subphylum level (*Wallemiomycotina*) but further studies are needed. (2) the positions of the *Agaricomycetes* orders *Amylocorticiales*, *Auriculariales, Cantharellales, Geastrales, Sebacinales* and *Trechisporales* are inconsistent between the six-gene phylogeny and phyloproteomic analyses, therefore, also need further scrutiny (Figs. 1, 2, 3).

Discussion on taxa rank using divergence times

The divergence time of a lineage could be used as a universal criterion for ranking taxa. However, there are still some obstacles to overcome, and one is how to choose proper calibration points in the dating analysis. Fossil isotopic ages aid estimation of molecular divergence time by providing points of calibration (Berbee and Taylor 2010). Several mushroom fossils have been discovered and these are used as calibration points in modern molecular clock analysis within Basidiomycota. Fossils included are Archaeomarasmius leggetti within the order Agaricales (Hibbett et al. 1995, 1997) and Quatsinoporites cranhamii within the order Hymenochaetales (Smith et al. 2004). These fossils calibrations have been used in several studies (Gueidan et al. 2011; Skrede et al. 2011, Floudas et al. 2012; Sánchez-Ramírez et al. 2015; Zhao et al. 2016; see Sánchez-Ramírez et al. 2017 for other potentially useful fossils). However, the fossil record for such a large group as Basidiomycota is relatively poor. Other sources that have the potential to address ages, are vicariant events and fossils of obligate symbionts of ectomycorrhiza hosts (Hibbett 2001; Hibbett and Matheny 2009; Matheny et al. 2009; Wilson et al. 2012; Sánchez-Ramírez et al. 2017), such as the putative suilloid ectomycorrhiza (LePage et al. 1997). The genera Termitomyces and Amylostereum which are associated with termite and sawflies respectively, could be dated through these arthropods (Slippers et al. 2003; Mikheyev et al. 2010; Nobre et al. 2011). Reliably identified fossils are still thought to be too few to establish reliable dates (Berbee and Taylor 2010; Hibbett 2014; Sánchez-Ramírez et al. 2017). Different researchers may also choose different calibration points in their dating analysis, and this may result in inconsistent divergence times for the same group (Sánchez-Ramírez et al. 2017). For example, the divergence estimates for *Inocybaceae* (*Agaricales*) was 143 (99–191) Ma according to Matheny et al. (2009), whereas the common ancestor of *Inocybaceae* and *Crepidotaceae* evolved ca. 45 (30–60) Ma according to Skrede et al. (2011).

Another difficulty in dating analysis is the diversification rates. In cladistics, a lineage consists of a stem and a crown group. The stem group refers to those of origin, which may include not only the most recent common ancestor of all of its members and their descendants, but also extinct lineages. The crown group comprises the last common ancestor of a living clade, plus all of its descendants (Budd and Jensen 2000; Budd 2001). Reflection of groups in divergence times are stem and crown age respectively. This means that for any given group of taxa the crown age is always younger than the stem age (Stadler et al. 2014). Some researchers have determined that the length of branch between stem ancestor and crown clade depends on factors, such the timescale, the net diversification rate, and the species richness of the clade (McPeek and Brown 2007; Stadler et al. 2014). At the species level, the most recent research has synthesized a global time tree of life from 50,632 species, and examined the pattern and rate of diversification, as well as the timing of speciation using genomic data. The rate of diversification in eukaryotes has been mostly constant (Hedges et al. 2015). In the present and our previous study (Zhao et al. 2016), we use stem ages to reflect divergence times.

Other factors which may affect the reliability of divergence time estimates are the exorbitant data sizes, the difficulty in correctly modelling the rate heterogeneity in highly diverse taxonomic groups, and the uncertain evolutionary rates for most groups of species. Evolutionary rates vary extensively among lineages when following autocorrelated and uncorrelated models (Berbee and Taylor 2010; Tamura et al. 2012). Some researchers have attempted to estimate the dating of evolutionary events using relaxed molecular clock analyses, which could compensate for the rate heterogeneity (Drummond et al. 2006; Garcia-Sandoval et al. 2011).

Tamura et al. (2013) proposed a method of relative time estimates (RelTime) for determining the relative ordering and spacing of evolutionary events, identifying lineages with significantly slower or faster evolutionary rates, diagnosing the effect of selected calibrations on absolute divergence times, and estimating absolute times of divergence when highly reliable calibration points are available. Divergence times from BEAST and RelTime methodologies are becoming universal criteria in taxa ranking. Although challenges in dating analysis are apparent as discussed above, the introduction of divergence times into systematics research under the framework of a robust phylogeny, will provide extra evidence to evaluate the application of higher taxon ranks. Presently, these may not be perfect clocks that reflects perfect lineages, but they provide extra quantitative evidence as compared to the known limitations expressed in morphologies in present modern systematics arrangements.

Phylogenomics perspectives

The examination of more than 400 articles reveals that aprox. 40% of the phylogenetic studies that used more than one gene have reported incongruence among gene phylogenies (Rokas and Chatzimanolis 2010). Thus, the phylogeny based on single-gene data is still insufficient to reconstruct consistent and accurate phylogenetic hypotheses due to the conflicting gene trees. Phylogenetic reconstructions from genome-scale data could eventually solve these problems (Rokas et al. 2003; Delsuc et al. 2005; Bushley and Turgeon 2010; Medina et al. 2011; Capella-Gutiérrez et al. 2012; Shelest and Voigt 2014).

In this study, we used 396 orthologous genes from 109 taxa with published genomes in Basidiomycota to detect the phylogenetic positions of the most higher-level taxa in this phylum. The results largely agree to those of phylogenetic topology based on six-gene sequences. However, there are some inconsistencies, such for the subphylum Wallemiomycotina, orders Amylocorticiales, Auriculariales. Cantharellales, Geastrales, Sebacinales and Trechisporales from Agaricomycetes. The increasing availability of genomic data will enable researchers to overcome those phylogenetic problems in the future. On the other hand, those inconsistent positions would provide the clues to demonstrate potential horizontal gene transfer, introgression, hidden paralogs and lineage sorting throughout the evolution of the Basidiomycota.

Acknowledgements This work was supported by grants from the National Natural Science Foundation of China to R.-L. Zhao (Project IDs 31470152 and 31360014) and G.-J. Li (Project ID 31500013), the Innovative Group of Edible Mushrooms Industry of Beijing (Project ID: BAIC05-2017) and the Key Research and Development Program from Government of Guangxi Zhuang Autonomous Region (Project ID: 2016AB05317) to R.-L. Zhao, the Thailand Research Fund to K.D. Hyde (Grant BRG 5580009), and the Natural Sciences and Engineering Research Council of Canada and the ROM Governors to J.-M. Moncalvo.

References

Aime MC, Matheny PB, Henk DA, Frieders EM et al (2006) An overview of the higher-level classification of *Pucciniomycotina* based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98:896–905

- Aime MC, Toome M, McLaughlin D (2014) The *Pucciniomycotina*. In: McLaughlin D, Spatafora JW (eds) The mycota VII part A. Systematics and evolution, 2nd edn. Springer, Berlin, pp 271–294
- Avise JC, Johns GC (1999) Proposal for a standardized temporal scheme of biological classification for extant species. Proc Natl Acad Sci USA 96:7358–7363
- Bauer R, Begerow D, Nagler A, Oberwinkler F (2001) The *George-fischeriales*: a phylogenetic hypothesis. Mycol Res 104:416–424
- Bauer R, Begerow D, Sampaio JP, Weiß M, Oberwinkler F (2006) The simple-septate *basidiomycetes*: a synopsis. Mycol Prog 5:41–66
- Bauer R, Garnica S, Oberwinkler F, Riess K et al (2015) Entorrhizomycota: A new fungal phylum reveals new perspectives on the evolution of fungi. PLoS ONE 10:e0128183
- Bauer R, Oberwinkler F, Vánky K (1997) Ultrastructural markers and systematics in smut fungi and allied taxa. Can J Bot 75:1273–1314
- Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol Res 104:53–60
- Begerow D, Bauer R, Oberwinkler F (1997) Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Can J Bot 75:2045–2056
- Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916
- Beimforde C, Feldberg K, Nylinder S, Rikkinen J et al (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398
- Berbee ML, Taylor JW (2010) Dating the molecular clock in fungihow close are we? Fungal Biol Rev 24:1-16
- Binder M, Hibbett DS (2002) Higher-level phylogenetic relationships of *homobasidiomycetes* (mushroom-forming fungi) inferred from four rDNA regions. Mol Phylogenet Evol 22:76–90
- Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E (2005) The phylogenetic distribution of resupinate forms in the *homobasidiomycetes*. Syst Biodivers 3:113–157
- Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102:865–880
- Blackwell M, Hibbett DS, Taylor JW, Spatafora JW (2006) Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98:829–837
- Boekhout T, Fonseca A, Sampaio JP, Bandoni RJ et al (2011) Discussion of teleomorphic and anamorphic basidiomycetous yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study. Elsevier, Amsterdam, pp 1356–1367
- Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498
- Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59-60
- Budd GE (2001) Climbing life's tree. Nature 412:487
- Budd GE, Jensen S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biol Rev 75:253–295
- Bushley KE, Turgeon BG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10:26
- Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T (2012) Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10:47
- Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

- Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694
- Chen ZH, Zhang P, Zhang ZG (2014) Investigation and analysis of 102 mushroom poisoning cases in Southern China from 1994 to 2012. Fungal Divers 64:123–131
- Dai YC, Cui BK, Si J, He SH et al (2015) Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycol Prog 14:62
- Dai YC, Cui BK, Yuan HS, Li BD (2007) Pathogenic wood-decaying fungi in China. For Pathol 37:105–120
- Dai YC, Yang ZL, Cui BK, Yu CJ, Zhou LW (2009) Species diversity and utilization of medicinal mushrooms and fungi in China (Review). Int J Med Mushrooms 11:287–302
- Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772
- De Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD (2012a) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Divers 55:1–35
- De Silva DD, Rapior S, Hyde KD, Bahkali AH (2012b) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers 56:1–29
- De Silva DD, Rapior S, Sudarman E, Stadler M et al (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40
- Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375
- Dentinger BT, Ammirati JF, Both EE, Desjardin DE et al (2010) Molecular phylogenetics of porcini mushrooms (Boletus section Boletus). Mol Phylogenet Evol 57:1276–1292
- Doweld AB (2014) Index Fungorum no. 73. http://www.indexfun gorum.org/Names/NamesRecord.asp?RecordID=550364
- Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88
- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Phylogenet Evol 29:1969–1973
- Edgar RC (2004a) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797
- Edgar RC (2004b) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113
- Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371
- Floudas D, Binder M, Riley R, Barry K et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719
- Garcia-Sandoval R, Wang Z, Binder M, Hibbett DS (2011) Molecular phylogenetics of the *Gloeophyllales* and relative ages of clades of *Agaricomycotina* producing a brown rot. Mycologia 103:510–524
- Garnica S, Weiss M, Walther G, Oberwinkler F (2007) Reconstructing the evolution of agarics from nuclear gene sequences and basidiospore ultrastructure. Mycol Res 111:1019–1029
- Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rockinhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996
- Hamamoto M, Nakase T (2000) Phylogenetic analysis of the ballistoconidium-forming yeast genus *Sporobolomyces* based on 18S rDNA sequences. Int J Syst Evol Microbiol 50:1373–1380
- Hedges S, Marin J, Suleski M, Paymer M, Kumar S (2015) Tree of life reveals clock-like speciation and diversification. Mol Biol Evol. doi:10.1093/molbev/msv037

- Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana
- Hibbett DS (2001) Shiitake mushrooms and molecular clocks: historical biogeography of *Lentinula*. J Biogeogr 28:231–241
- Hibbett DS (2006) A Phylogenetic overview of the *Agaricomycotina*. Mycologia 98:917–925
- Hibbett DS (2014) Major events in the evolution of the Fungi. In: Losos J (ed) Princeton guide to evolution. Princeton University Press, Princeton, pp 152–158
- Hibbett DS, Bauer R, Binder M, Giachini AJ et al (2014) Agaricomycetes. In: McLaughlin DJ, Spatafora JW (eds) The mycota, vol. VII, part A. Systematics and evolution, 2nd edn. Springer, Berlin, pp 373–429
- Hibbett DS, Binder M, Bischoff JF, Blackwell M et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547
- Hibbett DS, Matheny PB (2009) Relative ages of ectomycorrhizal mushrooms and their plant hosts. BMC Biol 7:13
- Hibbett DS, Pine EM, Langer E, Langer G, Donoghue MJ (1997) Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc Natl Acad Sci USA 94:12002–12006
- Hibbett DS, Tsuneda A, Fukumasa-Nakai Y, Donoghue MJ (1995) Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia 87:618–638
- Hickerson MJ, Carstens BC, Cavender-Bares J (2010) Phylogeography's past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol 54:291–301
- Hodkinson BP, Moncada B, Lücking R (2014) Lepidostromatales, a new order of lichenized fungi (Basidiomycota, Agaricomycetes), with two new genera, Ertzia and Sulzbacheromyces, and one new species, Lepidostroma winklerianum. Fungal Divers 64:165–179
- Hongsanan S, Sánchez-Ramírez S, Crous PW, Ariyawansa HA et al (2016) The evolution of fungal epiphytes. Mycosphere 7:1690–1712
- Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan W 3rd, Domínguez LS, Nouhra ER, Geml J, Giachini AJ, Kenney SR, Simpson NB, Spatafora JW, Trappe JM (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass *Phallomycetidae* and two new orders. Mycologia 98:949–959
- Hyde KD, Hongsanan S, Jeewon R, Bhat DJ et al (2016) Fungal Diversity Notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. doi:10.1007/s13225-016-0373-x
- Hyde KD, Jones EBG, Liu JK, Ariyawansa H et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313
- Hyde KD, Nilsson RHSA, Ariyawansa HA et al (2014) One stop shop: backbones trees for important phytopathogenic genera: I. Fungal Divers 67:21–125
- James TY, Kauff F, Schoch CL, Matheny PB et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 98:829–837
- Jančič S, Zalar P, Kocev D, Schroers H-J et al (2016) Halophily reloaded: new insights into the extremophilic life-style of *Wallemia* with the description of *Wallemia hederae* sp. nov. Fungal Divers 76:97–118
- Jülich W (1981) Higher taxa of Basidiomycetes. Bibliogr Mycol 85:1–845
- Kemler M, Lutz M, Göker M, Oberwinkler F, Begerow D (2009) Hidden diversity in the non-caryophyllaceous plant-parasitic members of *Microbotryum (Pucciniomycotina: Microbotryales)*. Syst Biodivers 7:297–306
- Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby's dictionary of the fungi, 10th edn. CABI, Wallingford
- Kottke I, Beiter A, Weiss M, Haug I et al (2003) *Heterobasid-iomycetes* form symbiotic associations with hepatics:

Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

- Kozlov AM, Aberer AJ, Stamatakis A (2015) ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics 31:2577–2579
- Kuhnert E, Surup F, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Stadler M (2015) Lenormandins A—G, new azaphilones from *Hypoxylon lenormandii* and *Hypoxylon jaklitschii* sp. nov., recognised by chemotaxonomic data. Fungal Divers 71:165–184
- Largent DL (1986a) How to identify mushrooms to genus vol. 1. Macroscopic features. Mad River Press, Eureka
- Largent DL (1986b) How to identify mushrooms to genus vol. 3. Microscopic features. Mad River Press, Eureka
- Larsson KH, Larsson E, Kõljalg U (2004) High phylogenetic diversity among corticioid *Homobasidiomycetes*. Mycol Res 108:983–1002
- Lawrey JD, Binder M, Diederich P, Molina MC et al (2007) Phylogenetic diversity of lichen-associated *Homobasid-iomycetes*. Mol Phylogenet Evol 44:778–789
- LePage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410–412
- Lepage T, Bryant D, Philippe H, Lartillot N (2007) A general comparison of relaxed molecular clock models. Mol Biol Evol 24:2669–2680
- Li GJ, Hyde KD, Zhao RL, Hongsanan S et al (2016) Fungal Diversity Notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 78:1–237
- Liu JK (2004) Mycochemistry of high fungi. China Sci and Tech Press, Beijing
- Liu NN, Ariyawansa HA, Hyde KD, Maharachchikumbura SSN et al (2016) Mycosphere essays X Perspectives into the value of genera, families and orders in fungal classification. Mycosphere 7:1649–1668
- Liu XZ, Wang QM, Göker M, Groenewald M et al (2015a) Towards an integrated phylogenetic classification of the *Tremellomycetes*. Stud Mycol 81:85–147
- Liu XZ, Wang QM, Theelen B, Groenewald M et al (2015b) Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 81:1–26
- Lutzoni F, Kauff F, Cox CJ, McLaughlin D et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1146–1180
- Maddison WP, Maddison DR (2016). Mesquite: a modular system for evolutionary analysis. Version 3.2. http://mesquiteproject.org/ mesquite/mesquite.html
- Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al (2015) Towards a natural classification and backbone tree for *Sodariomycetes*. Fungal Divers 72:199–301
- Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al (2016) Families of Sordariomycetes. Fungal Divers 79:1–317
- Matheny PB, Aime MC, Bougher NL, Buyck B et al (2009) Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. J Biogeogr 36:577–592
- Matheny PB, Curtis JM, Hofstetter V, Aime MC et al (2006) Major clades of *Agaricales*: a multilocus phylogenetic overview. Mycologia 98:982–995
- Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS (2007a) Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can J Botany 84:1794–1805

- Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (*Inocybe*, *Agaricales*). Am J Bot 89:688–698
- Matheny PB, Wang Z, Binder M, Curtis JM et al (2007b) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (*Basidiomycota*, Fungi). Mol Phylogenet Evol 43:430–451
- McPeek MA, Brown JM (2007) Clade age and not diversification rate explains species richness among animal taxa. Am Nat 169:E97– E106
- Medina ME, Jones GW, Fitzpatrick DA (2011) Reconstructing the fungal tree of life using phylogenomics and a preliminary investigation of the distribution of yeast prion-like proteins in the fungal kingdom. J Mol Evol 73:116–133
- Mikheyev AS, Mueller UG, Abbot P (2010) Comparative dating of attine ant and lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. Am Nat 175(6):E126–E133
- Moncalvo J-M, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305
- Moncalvo J-M, Nilsson RH, Koster B, Dunham SM et al (2006) The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937–948
- Moore RT (1980) Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts. Bot Mar 23:361–373
- Morehouse EA, James TY, Ganley ARD, Vilgalys R et al (2003) Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol 12:395–403
- Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol S 36:563–569
- Nakase T (2000) Expanding world of ballistosporous yeasts: distribution in the phyllosphere, systematics and phylogeny. J Gen Appl Microbiol 46:189–216
- Nobre T, Fernandes C, Boomsma JJ, Korb J, Aanen DK (2011) Farming termites determine the genetic population structure of *Termitomyces* fungal symbionts. Mol Ecol 20:2023–2033
- Oberwinkler F (2012) Evolutionary trends in Basidiomycota. Stapfia 96:45–104
- Padamsee M, Kumar TK, Riley R, Binder M et al (2012) The genome of the xerotolerant mold *Wallemia sebi* reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49:217–226
- Peláez F, Martínez MJ, Martínez AT (1995) Screening of 68 species of *Basidiomycetes* for enzymes involved in lignin degradation. Mycol Res 99:37–42
- Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33
- Pointing SB, Pelling AL, Smith GJD, Hyde KD, Reddy CA (2005) Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol Res 109:115–124
- Rambaut A, Suchard M, Drummond A (2013) Tracer. http://tree.bio. ed.ac.uk/software/tracer/. Accessed 15 Sept 2016
- Riess K, Bauer R, Kellner R, Kemler M et al (2015) Identification of a new order of root-colonising fungi in the *Entorrhizomycota*: *Talbotiomycetales* ord. nov. on eudicotyledons. IMA Fungus 6:129–133
- Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers 33:1–45
- Robinson NE, Robinson AB (2001) Molecular clocks. Proc Natl Acad Sci USA 98:944–949

- Rokas A, Chatzimanolis S (2010) From gene-scale to genome-scale phylogenetics: the data flood in, but the challenges remain. In: Murphy WJ (ed) Phylogenomics. Humana Press, Totowa
- Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approachs to resolving incongruence in molecular phylogenies. Nature 425:798–804
- Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbiol Biotechnol 2:164–167
- Ryberg M, Matheny PB (2012) Asynchronous origins of ectomycorrhizal clades of *Agaricales*). Proc R Soc B Biol Sci 279:2003–2011
- Samarakoon MC, Hyde KD, Ariyawansa HA, Hongsanan S (2016) Mycosphere Essays X: divergence and ranking of taxa across the kingdoms Animalia, Fungi and Plantae. Mycosphere 7:1678–1689
- Sánchez-Ramírez S, Wilson AW, Ryberg M (2017) An overview of phylogenetic and historical approaches to mycorrhizal biogeography, diversity, and evolution. In: Tedersoo L (ed) Mycorrhizal biogeography, ecological studies 230. Springer, Berlin
- Sánchez-Ramírez S, Tulloss RE, Amalfi M, Moncalvo J-M (2015) Palaeotropical origins, boreotropical distribution and increased rates of diversification in a clade of edible ectomycorrhizal mushrooms (*Amanita* section *Caesareae*). J Biogeogr 42:351–363
- Schell WA, Lee AG, Aime MC (2011) A new lineage in Pucciniomycotina: class Tritirachiomycetes, order Tritirachiales, family Tritirachiaceae. Mycologia 103:1331–1340
- Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517
- Shelest E, Voigt K (2014) Genomics to study basal lineage fungal biology: phylogenomics suggests a common origin. Fungal genomics. In: Nowrousian M (ed) The mycota XIII, 2nd edn. Springer, Berlin
- Shirouzu T, Hirose D, Oberwinkler F, Shimomura N et al (2013) Combined molecular and morphological data for improving phylogenetic hypothesis in *Dacrymycetes*. Mycologia 105:1110–1125
- Shirouzu T, Hirose D, Tokumasu S (2009) Taxonomic study of the Japanese *Dacrymycetes*. Persoonia 23:16–34
- Sinclair WA, Lyon HH, Johnson WT (1987) Diseases of trees and shrubs. Cornell University Press, Ithaca, p 574
- Sjökvist E, Pfeil BE, Larsson E, Larsson KH (2014) *Stereopsidales* a new order of mushroom-forming fungi. PLoS ONE 9:e95227
- Skrede I, Engh IB, Binder M, Carlsen T et al (2011) Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. BMC Evol Biol 11:230
- Slippers B, Coutinho TA, Wingfield BD, Wingfield MJ (2003) A review of the genus *Amylostereum* and its association with woodwasps. S Afr J Sci 99:70–74
- Smith SY, Currah RS, Stockey RA (2004) Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia 96:180–186
- Stadler T, Rabosky DL, Ricklefs R, Bokma F (2014) On age and species richness of higher taxa. Am Nat 184:447–455
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690
- Stefani FOP, Jones RH, May TW (2014) Concordance of seven gene genealogies compared to phenotypic data reveals multiple cryptic species in Australian dermocyboid *Cortinarius (Agaricales)*. Mol Phylogenet Evol 71:249–260

- Swann EC, Taylor JW (1993) Higher taxa of *Basidiomycetes*: an 18S rRNA gene perspective. Mycologia 85:923–936
- Swann EC, Taylor JW (1995) Phylogenetic perspectives on basidiomycete systematics: evidence from the 18S rRNA gene. Can J Bot 73:S862–S868
- Talavera G, Lukhtanov VA, Pierce NE, Vila R (2013) Establishing criteria for higher-level classification using molecular data: the systematics of *Polyommatus* blue butterflies (*Lepidoptera*, *Lycaenidae*). Cladistics 29:166–192
- Tamura K, Battistuzzib FU, Billing-Rossb P, Murillob O et al (2012) Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci USA 109(47):19333–19338
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729
- Taylor JW, Jacobson DJ, Kroken S, Kasuga T et al (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Gen Biol 31:21–32
- van Dongen S (2000) Graph clustering by flow simulation. PhD thesis, University of Utrecht, Netherlands
- Van Driel GA, Humbel BM, Verkleu AJ, Stalpers J et al (2009) Septal pore complex morphology on the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycol Res 113:559–576
- Veldrea V, Abarenkova K, Bahrama M, Martosc F et al (2013) Evolution of nutritional modes of *Ceratobasidiaceae (Cantharellales, Basidiomycota)* as revealed from publicly available ITS sequences. Fungal Ecol 6:256–268
- Vilgalys R, Hopple JS, Hibbett DS (1994) Phylogenetic implications of generic concepts in fungi: the impact of molecular systematic studies. Mycol Helv 6:73–91
- Wang QM, Begerow D, Groenewald M, Liu XZ et al (2015a) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83
- Wang QM, Groenewald M, Takashima M, Theelen B et al (2015b) Phylogeny of yeasts and related filamentous fungi within *Pucciniomycotina* determined from multigene sequence analyses. Stud Mycol 81:27–53
- Wang QM, Theelen B, Groenewald M, Bai FY, Boekhout T (2014) Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Personia 33:41–47
- Wang QM, Yurkov AM, Göker M, Lumbsch HT et al (2015c) Phylogenetic classification of yeasts and related taxa within *Pucciniomycotina*. Stud Mycol 81:146–189
- Wang YZ, Zhuang JY (1998) Flora fungorum sinicorum vol. 10 Pucciniales 1. Scinece Press, Beijing (in Chinese)
- Wannathes N, Desjardin DE, Hyde KD, Perry BA, Lumyong S (2009) A monograph of *Marasmius (Basidiomycota)* from Northern Thailand based on morphological and molecular (ITS sequences) data. Fungal Divers 37:209–306
- Weiß M, Bauer R, Begerow D (2004) Spotlights on heterobasidiomycetes. In: Agerer R, Blanz P, Piepen-bring M (eds) Frontiers in *Basidiomycete* mycology. Germany, IHW-Verlag, München, pp 7–48
- Weiss M, Bauer R, Sampaio JP, Oberwinkler F (2014) *Tremellomycetes* and related groups. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution, the mycota VII part A. Springer, Berlin, pp 349–350
- White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322
- Wilson AW, Binder M, Hibbett DS (2012) Diversity and evolution of ectomycorrhizal host associations in the *Sclerodermatineae* (*Boletales*, *Basidiomycota*). New Phytol 194:1079–1095

- Wu G, Feng B, Xu J, Zhu XT et al (2014) Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic lineages in the fungal family *Boletaceae*. Fungal Divers 69:93–115
- Wuczkowski M, Passoth V, Turchetti B, Andersson AC et al (2011) Description of *Holtermanniella* gen. nov., including *Holtermanniella takashimae* sp. nov. and four new combinations, and proposal of the order *Holtermanniales* to accommodate tremellomycetous yeasts of the *Holtermannia* clade. Int J Syst Evol Microbiol 61:680–689
- Yang ZL (2011) Molecular techniques revolutionize knowledge of basidiomycete evolution. Fungal Divers 50:47–58
- Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genom 14:617
- Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek J Microb 87:311–328
- Zhang JX, Chen Q, Huang CY, Gao W, Qu JB (2015) History, current situation and trend of edible mushroom industry development. Mycosystema 34:524–540

- Zhao Q, Feng B, Yang ZL, Dai YC et al (2013) New species and distinctive geographical divergences of the genus *Sparassis* (*Basidiomycota*): evidence from morphological and molecular data. Mycol Prog 12:445–454
- Zhao RL, Karunarathna SC, Raspé O, Parra LA et al (2011) Major clades in tropical *Agaricus*. Fungal Divers 51:279–296
- Zhao RL, Zhou JL, Chen J, Margaritescu S et al (2016) Towards standardizing taxonomic ranks using divergence times—a case study for reconstruction of the *Agaricus* taxonomic system. Fungal Divers 78:239–292
- Zhuang JY (2003) Flora Fungorum Sinicorum Vol. 19 *Pucciniales* 2. Scinece Press, Beijing, 324 pp (In Chinese)
- Zhuang JY (2005) Flora fungorum sinicorum vol. 25 *Pucciniales* 3. Scinece Press, Beijing (**in Chinese**)
- Zhuang JY (2012) Flora fungorum sinicorum vol. 41 *Pucciniales* 4. Scinece Press, Beijing (in Chinese)
- Zundel GL (1953) The *Ustilaginales* of the world, vol 176. Contributions from the Department of Botany Pennsylvania State College, pp. 1–410