Julio Saez-Rodriguez

Julio Saez-Rodriguez
RWTH Aachen University · Faculty of Medicine and University Hospital

PhD

About

511
Publications
63,142
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,983
Citations
Introduction
The goal of my research is to acquire a functional understanding of signaling networks and their deregulation in disease, and to apply this knowledge to novel therapeutics. Our research is hypothesis-driven and tailored towards producing mathematical models that integrate diverse data sources. To this end, we collaborate closely with experimental groups and pharmaceutical companies.
Additional affiliations
July 2015 - present
RWTH Aachen University
Position
  • Full (W3) Professor of Computational Biomedicine
July 2010 - June 2015
EMBL-EBI
Position
  • Group Leader
February 2007 - June 2010
Harvard Medical School
Position
  • PostDoc Position

Publications

Publications (511)
Article
Full-text available
Mass spectrometry is widely used to probe the proteome and its modifications in an untargeted manner, with unrivalled coverage. Applied to phosphoproteomics, it has tremendous potential to interrogate phospho-signalling and its therapeutic implications. However, this task is complicated by issues of undersampling of the phosphoproteome and challeng...
Article
Full-text available
The ability to computationally predict the effects of toxic compounds on humans could help address the deficiencies of current chemical safety testing. Here, we report the results from a community-based DREAM challenge to predict toxicities of environmental compounds with potential adverse health effects for human populations. We measured the cytot...
Article
Full-text available
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silic...
Article
Full-text available
Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy numbe...
Article
Full-text available
Increasing evidence points towards the key role of the epithelium in the systemic and over-activated immune response to viral infection, including SARS-CoV-2 infection. Yet, how viral infection alters epithelial–immune cell interactions regulating inflammatory responses, is not well known. Available experimental approaches are insufficient to prope...
Article
Full-text available
The growing availability of single-cell data, especially transcriptomics, has sparked an increased interest in the inference of cell-cell communication. Many computational tools were developed for this purpose. Each of them consists of a resource of intercellular interactions prior knowledge and a method to predict potential cell-cell communication...
Preprint
Full-text available
Treatment and relevant targets for breast cancer (BC) remain limited, especially for triple-negative BC (TNBC). We quantified the proteomes of 76 human BC cell lines using data independent acquisition (DIA) based proteomics, identifying 6091 proteins. We then established a 24-protein panel distinguishing TNBC from other BC types. Integrating prior...
Article
Full-text available
Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key e...
Article
Full-text available
In diabetic patients, dyslipidemia frequently contributes to organ damage such as diabetic kidney disease (DKD). Dyslipidemia is associated with both excessive deposition of triacylglycerol (TAG) in lipid droplets (LD) and lipotoxicity. Yet, it is unclear how these two effects correlate with each other in the kidney and how they are influenced by d...
Article
Full-text available
The advancement of highly multiplexed spatial technologies requires scalable methods that can leverage spatial information. We present MISTy, a flexible, scalable, and explainable machine learning framework for extracting relationships from any spatial omics data, from dozens to thousands of measured markers. MISTy builds multiple views focusing on...
Article
Full-text available
Comparing SARS-CoV-2 infection-induced gene expression signatures to drug treatment-induced gene expression signatures is a promising bioinformatic tool to repurpose existing drugs against SARS-CoV-2. The general hypothesis of signature-based drug repurposing is that drugs with inverse similarity to a disease signature can reverse disease phenotype...
Article
Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present decoupleR, a Bioconductor and Python package containing computational methods to extract these activities within a unified...
Article
Full-text available
Extrapulmonary manifestations of COVID-19 have gained attention due to their links to clinical outcomes and their potential long-term sequelae1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) displays tropism towards several organs, including the heart and kidney. Whether it also directly affects the liver has been debated2,3. Here we...
Article
Full-text available
Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the h...
Article
Motivation: Omics data are broadly used to get a snap-shot of the molecular status of cells. In particular, changes in omics can be used to estimate the activity of pathways, transcription factors and kinases based on known regulated targets, that we call footprints. Then the molecular paths driving these activities can be estimated using causal r...
Article
Full-text available
The Columbia Cancer Target Discovery and Development (CTD2) Center is developing PANACEA, a resource comprising dose-responses and RNA sequencing (RNA-seq) profiles of 25 cell lines perturbed with ∼400 clinical oncology drugs, to study a tumor-specific drug mechanism of action. Here, this resource serves as the basis for a DREAM Challenge assessing...
Article
The hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and to ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help o...
Article
Full-text available
Mechanism-based risk assessment is urged to advance and fully permeate into current safety assessment practices, possibly at early phases of drug safety testing. Toxicogenomics is a promising source of mechanisms-revealing data, but interpretative analysis tools specific for the testing systems (e.g. hepatocytes) are lacking. In this study, we pres...
Preprint
Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present decoupleR, a Bioconductor package containing computational methods to extract these activities within a unified framework....
Article
Mutations in the Melanoma-Associated Antigen D2 (MAGED2) cause antenatal Bartter syndrome type 5 (BARTS5). This rare disease is characterized by perinatal loss of urinary concentration capability and large urine volumes. The underlying molecular mechanisms of this disease are largely unclear. Here, we study the effect of MAGED2 knockdown on kidney...
Article
Prostaglandin E2 (PGE2) promotes an immunosuppressive microenvironment in cancer, partly by signaling through four receptors (EP1, EP2, EP3, and EP4) on T cells. Here, we comprehensively characterized PGE2 signaling networks in helper, cytotoxic, and regulatory T cells using a phosphoproteomics and phosphoflow cytometry approach. We identified ~150...
Article
Full-text available
Abstract Recent technological developments allow us to measure the status of dozens of proteins in individual cells. This opens the way to understand the heterogeneity of complex multi‐signaling networks across cells and cell types, with important implications to understand and treat diseases such as cancer. These technologies are, however, limited...
Article
Recent technological developments allow us to measure the status of dozens of proteins in individual cells. This opens the way to understand the heterogeneity of complex multi-signaling networks across cells and cell types, with important implications to understand and treat diseases such as cancer. These technologies are, however, limited to prote...
Preprint
Full-text available
Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we combined multi-omics datasets of primary and metastatic clonally related clear cell renal cancer cells (ccRCC) and generated a computational tool to explore the metabo...
Preprint
Full-text available
Anti-cancer therapies often exhibit only short-term effects. Tumors typically develop drug resistance causing relapses that might be tackled with drug combinations. Identification of the right combination is challenging and would benefit from high-content, high-throughput combinatorial screens directly on patient biopsies. However, such screens req...
Preprint
Full-text available
Comparing SARS-CoV-2 infection-induced gene expression signatures to drug treatment-induced gene expression signatures is a promising bioinformatic tool to repurpose existing drugs against SARS-CoV-2. The general hypothesis of signature based drug repurposing is that drugs with inverse similarity to a disease signature can reverse disease phenotype...
Preprint
Full-text available
In diabetic patients, dyslipidemia contributes to organ damage such as diabetic kidney disease (DKD). DKD is associated with excessive renal deposition of triacylglycerol (TAG) in lipid droplets (LD). Yet, it is unclear whether LDs play a protective or damaging role and how this might be influenced by dietary patterns. We find here that feeding dia...
Article
Full-text available
Macrophages exhibit a spectrum of activation states ranging from classical to alternative activation1. Alternatively, activated macrophages are involved in diverse pathophysiological processes such as confining tissue parasites2, improving insulin sensitivity3 or promoting an immune-tolerant microenvironment that facilitates tumour growth and metas...
Article
Full-text available
Mouse models are frequently used to study chronic liver diseases (CLDs). To assess their translational relevance, we quantified the similarity of commonly used mouse models to human CLDs based on transcriptome data. Gene-expression data from 372 patients were compared with data from acute and chronic mouse models consisting of 227 mice, and additio...
Preprint
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents an unprecedented worldwide health problem. Although the primary site of infection is the lung, growing evidence points towards a crucial role of the intestinal epithelium. Yet, the exact effects of viral infection and the role of intestinal epithelial-immune cell interactions i...
Article
Full-text available
5-Fluorouracil (5-FU) is a widely used chemotherapeutical that induces acute toxicity in the small and large intestine of patients. Symptoms can be severe and lead to the interruption of cancer treatments. However, there is limited understanding of the molecular mechanisms underlying 5-FU-induced intestinal toxicity. In this study, well-established...
Article
Full-text available
Background The protein 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a key stimulator of glycolytic flux. Systemic, partial PFKFB3 inhibition previously decreased total plaque burden and increased plaque stability. However, it is unclear which cell type conferred these positive effects. Myeloid cells play an important role in a...
Preprint
Full-text available
Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the h...
Preprint
Full-text available
The advancement of technologies to measure highly multiplexed spatial data requires the development of scalable methods that can leverage the spatial information. We present MISTy, a flexible, scalable and explainable machine learning framework for extracting interactions from any spatial omics data. MISTy builds multiple views focusing on differen...
Article
Full-text available
Background Multiple sclerosis (MS) is a major health problem, leading to a significant disability and patient suffering. Although chronic activation of the immune system is a hallmark of the disease, its pathogenesis is poorly understood, while current treatments only ameliorate the disease and may produce severe side effects. Methods Here, we app...
Article
In recent years, network-based methods have become an attractive analytical approach for Toxicogenomics studies. They can capture not only the global changes of regulatory gene networks but also the relationships between their components. Among them, a causal reasoning approach depicts the mechanisms of regulation that connect upstream regulators i...
Article
Full-text available
Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic options. In the last decade, several omics studies have provided significant insights into the molecular mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored independently in public repositories and a unified...
Article
Full-text available
Computational models of biological systems can exploit a broad range of rapidly developing approaches, including novel experimental approaches, bioinformatics data analysis, emerging modelling paradigms, data standards and algorithms. A discussion about the most recent advances among experts from various domains is crucial to foster data-driven com...
Preprint
Full-text available
Genetic alterations in cancer cells trigger oncogenic transformation, a process largely mediated by the dysregulation of kinase and transcription factor (TF) activities. While the mutational profiles of thousands of tumours has been extensively characterized, the measurements of protein activities has been technically limited until recently. We com...
Article
Computational and mathematical models are key to obtain a system-level understanding of biological processes, but their limitations have to be clearly defined to allow their proper application and interpretation. Crowdsourced benchmarks in the form of challenges provide an unbiased assessment of methods, and for the past decade, the Dialogue for Re...
Preprint
Full-text available
The growing availability of single-cell data has sparked an increased interest in the inference of cell-cell communication from this data. Many tools have been developed for this purpose. Each of them consists of a resource of intercellular interactions prior knowledge and a method to predict potential cell-cell communication events. Yet the impact...
Preprint
Full-text available
Mechanism-based risk assessment is urged to advance and fully permeate into current safety assessment practices, possibly at early phases of drug safety testing. Toxicogenomics is a promising source of comprehensive and mechanisms-revealing data, but analysis tools to interpret mechanisms of toxicity and specific for the testing systems (e.g. hepat...
Article
Full-text available
Drug-induced liver injury (DILI) is the most prevalent adversity encountered in drug development and clinical settings leading to urgent needs to understand the underlying mechanisms. In this study, we have systematically investigated the dynamics of the activation of cellular stress response pathways and cell death outcomes upon exposure of a pane...
Article
Full-text available
One goal of precision medicine is to tailor effective treatments to patients' specific molecular markers of disease. Here, we used mass cytometry to characterize the single-cell signaling landscapes of 62 breast cancer cell lines and five lines from healthy tissue. We quantified 34 markers in each cell line upon stimulation by the growth factor EGF...
Article
Full-text available
Detailed maps of the molecular basis of the disease are powerful tools for interpreting data and building predictive models. Modularity and composability are considered necessary network features for large-scale collaborative efforts to build comprehensive molecular descriptions of disease mechanisms. An effective way to create and manage large sys...
Article
Full-text available
Background: Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with diverse clinical manifestations. Although most of the SLE-associated loci are located in regulatory regions, there is a lack of global information about transcription factor (TFs) activities, the mode of regulation of the TFs, or the cell or sample-specific regula...
Article
Background Transcriptomic studies have contributed to fundamental knowledge of myocardial remodeling in human heart failure (HF). However, the key HF genes reported are often inconsistent between studies, and systematic efforts to integrate evidence from multiple patient cohorts are lacking. Here, we aimed to provide a framework for comprehensive c...
Preprint
Full-text available
Recent technological developments allow us to measure the status of dozens of proteins in individual cells. This opens the way to understand the heterogeneity of complex multi-signaling networks across cells and cell-types, with important implications to understand and treat diseases such as cancer. These technologies are however limited to protein...
Article
Full-text available
Post-translational modifications of proteins play an important role in the regulation of cellular processes. The mass spectrometry analysis of proteome modifications offers huge potential for the study of how protein inhibitors affect the phosphosignaling mechanisms inside the cells. We have recently proposed PHONEMeS, a method that uses high-conte...
Preprint
Full-text available
The current COVID-19 pandemic represents a global challenge. A better understanding of the immune response against SARS-CoV-2 is key to unveil the differences in disease severity and to develop future vaccines targeting novel SARS-CoV-2 variants. Feature barcode technology combined with CITE-seq antibodies and DNA-barcoded peptide-MHC I Dextramer r...
Article
Full-text available
Molecular knowledge of biological processes is a cornerstone in omics data analysis. Applied to single-cell data, such analyses provide mechanistic insights into individual cells and their interactions. However, knowledge of intercellular communication is scarce, scattered across resources, and not linked to intracellular processes. To address this...
Article
Full-text available
Objective Neuroimmune interactions between the sympathetic nervous system (SNS) and macrophages are required for the homeostasis of multiple tissues, including the adipose tissue. It has been proposed that SNS maintains adipose tissue macrophages (ATMs) in an anti-inflammatory state via direct norepinephrine (NE) signaling to macrophages. Our objec...
Preprint
Full-text available
Toxicogenomics studies typically reveal a group of genes relevant to the pathophysiology of drug-induced organ injury. In recent years, network-based methods have become an attractive analytical approach as they can capture not only the global changes of regulatory gene networks but also the relationships between their components. Among them, a cau...