• Home
  • Institut FEMTO-ST
  • Department of Micro Nano Sciences and Systems (MN2S)
  • Julio Andrés Iglesias Martínez
Julio Andrés Iglesias Martínez

Julio Andrés Iglesias Martínez
Institut FEMTO-ST | FEMTO ST · Department of Micro Nano Sciences and Systems (MN2S)

About

14
Publications
3,213
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
52
Citations

Publications

Publications (14)
Article
Full-text available
Three-dimensional direct laser writing technology enables one to print polymer microstructures whose size varies from a few hundred nanometers to a few millimeters. It has been shown that, by tuning the laser power during writing, one can adjust continuously the optical and elastic properties with the same base material. This process is referred to...
Article
Periodic truss-lattice materials, especially when combined with current additive manufacturing techniques, are attracting attention in lightweight material engineering. As a member of the elementary cubic truss family, the simple-cubic truss lattice possesses the highest stiffness and strength along the principal directions and plays an important r...
Article
Stepper motors and actuators are among the main constituents of control motion devices. They are complex multibody systems with rather large overall volume due to their multifunctional parts and elaborate technological assembly processes. Miniaturization of individual parts is still posing assembly problems. In this paper, a single‐step lithography...
Article
Full-text available
Shape morphing and the possibility of having control over mechanical properties via designed deformations have attracted a lot of attention in the materials community and led to a variety of applications with an emphasis on the space industry. However, current materials normally do not allow to have a full control over the deformation pattern and o...
Preprint
Full-text available
The topological backscattering immunity of waves guided along a domain wall is associated with symmetry protection in valley-Hall and quantum-Hall phononic crystal waveguides. This desirable property results from a topological transition at a Dirac point of the 2D crystal, leading to the opening of an initially closed band gap but to a limited avai...
Article
Previously, rotons were observed in correlated quantum systems at low temperatures, including superfluid helium and Bose-Einstein condensates. Here, following a recent theoretical proposal, we report the direct experimental observation of roton-like dispersion relations in two different three-dimensional metamaterials under ambient conditions. One...
Article
Full-text available
Metamaterials have attracted wide scientific interest to break fundamental bounds on materials properties. Recently, the field has been extending to coupled physical phenomena where one physics acts as the driving force for another. Stimuli-responsive or 4D metamaterials have been demonstrated for thermo-elasticity, magneto-optics or piezo-electric...
Article
The propagation of acoustic or elastic waves in artificial crystals, including the case of phononic and sonic crystals, is inherently anisotropic. As is known from the theory of periodic composites, anisotropy is directly dictated by the space group of the unit cell of the crystal and the rank of the elastic tensor. Here, we examine effective veloc...
Article
We use square and rectangular phononic crystals to create experimental realizations of complex topological phononic circuits. The exotic topological transport observed is wholly reliant upon the underlying structure that must belong to either a square or rectangular lattice system and not to any hexagonal-based structure. The phononic system we use...
Preprint
Full-text available
The propagation of acoustic or elastic waves in artificial crystals, including the case of phononic and sonic crystals, is inherently anisotropic. As is known from the theory of periodic composites, anisotropy is directly dictated by the space group of the unit cell of the crystal and the rank of the elastic tensor. Here, we examine effective veloc...
Article
Full-text available
Phononic crystals have attracted wide attention in diverse scientific communities due to their ability to efficiently reflect, focus, and guide acoustic and elastic waves. Their use in ultrasonic applications such as medical imaging, however, remains elusive since three-dimensional phononic crystals with lattice constants in the range of hundreds o...
Preprint
Full-text available
We systematically engineer a series of square and rectangular phononic crystals to create experimental realisations of complex topological phononic circuits. The exotic topological transport observed is wholly reliant upon the underlying structure which must belong to either a square or rectangular lattice system and not to any hexagonal-based stru...
Preprint
Full-text available
Cork is a natural amorphous material with near-zero Poisson's ratio that is ubiquitously used for sealing glass bottles. It is an anisotropic, transversally isotropic, composite that can hardly be scaled down. Here, we propose a new class of isotropic and reusable cork-like metamaterial that is designed from an hybrid truss-lattice material to show...

Network

Cited By