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Haemolytic uraemic syndrome
Fadi Fakhouri, Julien Zuber, Véronique Frémeaux-Bacchi, Chantal Loirat

Haemolytic uraemic syndrome is a form of thrombotic microangiopathy aff ecting predominantly the kidney and 
characterised by a triad of thrombocytopenia, mechanical haemolytic anaemia, and acute kidney injury. The term 
encompasses several disorders: shiga toxin-induced and pneumococcus-induced haemolytic uraemic syndrome, 
haemolytic uraemic syndrome associated with complement dysregulation or mutation of diacylglycerol kinase ε, 
haemolytic uraemic syndrome related to cobalamin C defect, and haemolytic uraemic syndrome secondary to a 
heterogeneous group of causes (infections, drugs, cancer, and systemic diseases). In the past two decades, 
experimental, genetic, and clinical studies have helped to decipher the pathophysiology of these various forms 
of haemolytic uraemic syndrome and undoubtedly improved diagnostic approaches. Moreover, a specifi c 
mechanism-based treatment has been made available for patients aff ected by atypical haemolytic uraemic syndrome 
due to complement dysregulation. Such treatment is, however, still absent for several other disease types, including 
shiga toxin-induced haemolytic uraemic syndrome.

Introduction
Haemolytic uraemic syndrome is a rare but severe disease 
that has in the past two decades generated many studies. 
Experimental and genetic studies have helped to decipher 
the pathophysiology of various forms of haemolytic 
uraemic syndrome, while clinical studies have better 
delineated the picture and improved diagnosis. These 
breakthroughs have paved the way for new targeted 
therapies. Haemolytic uraemic syndrome is a rapidly 
evolving fi eld but is one of the best examples of precision 
medicine—ie, tailored mechanism-based treatment—
and of how translational research can improve the 
management of a disease. In this Seminar, we discuss the 
defi nitions and classifi cations, pathophysiology, genetics, 
clinical presentation, diagnostics, and management of 
haemolytic uraemic syndrome subsets.

Defi nitions and classifi cations
Haemolytic uraemic syndrome belongs to a range of 
thrombotic microangiopathies and arises from an initial 
endothelial cell injury. The term thrombotic micro-
angiopathy refers primarily to pathological features of 
vascular damage. In haemolytic uraemic syndrome, 
these features are documented mainly in the kidney as 
fi brin and platelet thrombi in capillaries and arterioles, 
endothelial cell swelling and detachment from the 
glomerular basement membrane, and the appearance of 
so-called double contours on the glomerular basement 
membrane. These pathological features translate 
clinically into a classic triad: peripheral thrombocytopenia, 
mechanical haemolytic anaemia, and damage to various 
organs, predominantly the kidney and the brain.

The pathophysiology of haemolytic uraemic syndrome 
is complex because several mechanisms can lead to the 
same pattern of endothelial cell damage and similar 
clinical and biological abnormalities. Additionally, several 
types of haemolytic uraemic syndrome might share 
common mechanisms of endothelial cell damage. 
At least seven classifi cations have been previously 
proposed, which are continually evolving as new 
mechanisms are discovered (appendix pp 1–3). The 2016 

classifi cation proposed by the International Haemolytic 
Uraemic Syndrome group1 will be used in this Seminar 
(fi gure 1).

The term haemolytic uraemic syndrome encompasses 
a heterogeneous group of disorders, including typical 
haemolytic uraemic syndrome due to an infection 
from shiga toxin-producing Escherichia coli (STEC), 
compared with atypical haemolytic uraemic syndrome 
during which genetic or acquired dysregulation of the 
complement alternative pathway is detected in 40–60% 
of patients.2,3 Cobalamin C (cblC)4,5 and diacylglycerol 
kinase ε (DGKE) defi ciency6 are two rare genetic forms 
of haemolytic uraemic syndrome. Approximately 30% of 
atypical haemolytic uraemic syndrome arises from 
unknown mechanisms. Haemolytic uraemic syndrome 
can occur as a complication of, or be precipitated by, 
various diseases, conditions, and treatments, including 
malignant hyper tension, autoimmune diseases, cancers, 
use of medications or abuse of recreational drugs, 
haemopoietic stem-cell or solid organ transplantation, 
or infections. Whether secondary haemolytic uraemic 
syndrome should be included within the range of 
atypical haemolytic uraemic syndrome is debatable, 
which has important implications for diagnosis and 
treatment.
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Search strategy and selection criteria

We searched PubMed between Jan 1, 1989, and 
March 1, 2016, with the terms “hemolytic uremic syndrome”, 
“thrombotic microangiopathy”, “shigatoxin”, 
“pneumococcus”, “cobalamin C defect”, “complement”, 
and “eculizumab” in combination with the terms 
“pathophysiology”, “diagnosis”, “causes”, and “treatment”. 
We restricted our search to English and French publications. 
We selected reports from the past 5 years but did not exclude 
important and highly cited older publications. We searched 
the reference lists of articles identifi ed by this search strategy 
and selected those we judged relevant. Review articles are 
also cited to provide more detail. 

http://crossmark.crossref.org/dialog/?doi=10.1016/S0140-6736(17)30062-4&domain=pdf


Seminar

2 www.thelancet.com   Published online February 24, 2017   http://dx.doi.org/10.1016/S0140-6736(17)30062-4

The relevance of the term atypical haemolytic uraemic 
syndrome itself can be questioned, and new terminologies 
that use complement–haemolytic uraemic syndrome, 
DGKE mutation–haemolytic uraemic syndrome, and 
cblC defect–haemolytic uraemic syndrome might be 
more appropriate because they refer to the pathogenic 
mechanisms and, therefore, indicate targets for optimal 
treatment.

Incidence and epidemiology
In children with haemolytic uraemic syndrome, the 
proportion with STEC–haemolytic uraemic syndrome is 
85–90%, atypical haemolytic uraemic syndrome is 5–10%, 
and S pneumoniae–haemolytic uraemic syndrome is 
about 5%. By contrast, the respective frequency of 
haemolytic uraemic syndrome secondary to coexisting 
diseases or conditions, or infections; and atypical 
haemolytic uraemic syndrome is not precisely 
documented in adults.

Although the frequency of invasive pneumococcal disease 
substantially decreased in children after the introduction of 
the 7-valent pneumococcal conjugate vaccine (PCV7),7 the 
annual incidence of S pneumoniae–haemolytic uraemic 
syndrome (0·06 cases per 100 000 children <18 years) did 
not decrease.8 This fi nding was related to the replacement 
of the pre-PCV7 serotypes by non-PCV7 serotypes, especially 
the 19A serotype in children with S pneumoniae–haemolytic 
uraemic syndrome.9 Whether PCV13 vaccine, including the 
19A serotype, allows for a decreased incidence of 
S pneumoniae–haemolytic uraemic syndrome is not known.

STEC–haemolytic uraemic syndrome is mostly a disease 
of children younger than 3–5 years (annual incidence in 
Europe and North America of 0·6–0·8 cases per 
100 000 children <15–18 years,10–12 and 1·9–2·9 cases per 
100 000 children <3–5 years10,11), possibly because anti-
STEC antibodies develop later in life.13 Importantly, 
incidence of STEC–haemolytic uraemic syndrome in 
Latin America remains ten times higher than in other 
continents (eg, 10–17 cases per 100 000 children <5 years 
in Argentina).14 5–10% of patients with sporadic 
STEC–gastroenteritis develop haemolytic uraemic 
syndrome, a frequency that can reach 20% or more during 
outbreaks.15,16 Although E coli O157 was predominantly 
isolated in patients with STEC–gastroenteritis or 
haemolytic uraemic syndrome until 2010, non-O157 
STECs (mostly O26, O111, O121, O145, O91, O103, O104, 
and O80) altogether are now as frequent as O157 in Europe 
and North America,11,17,18 whereas O157 remains the 
predominant strain (>70%) in Latin America.14

Estimation of the annual incidence of atypical 
haemolytic uraemic syndrome has been revisited 
according to current defi nition of the disease (haemolytic 
uraemic syndrome without coexisting disease or 
condition, or specifi c infection) to be 0·23–0·42 cases per 
million population (0·10–0·11 in children <16–17 years 
per million population; appendix pp 26, 27).2,19,20

Pathophysiology
The common feature to all forms of haemolytic uraemic 
syndrome is the presence of endothelial cell lesions in the 
microvasculature of the kidney and, less frequently, of 
other organs. The trigger of endothelial cell lesions might 
be extrinsic and transient, such as Streptococcus 
pneumoniae or STEC infections, drugs, or cancer. In these 
settings, the thrombotic microangiopathy process usually 
abates once the trigger has been removed or controlled, 
with no risk of relapse. Conversely, the driving force of 
endothelial cell damage might be endogenous and 
sustained, such as inherited or acquired dysregulation of 
the complement alternative pathway in atypical haemolytic 
uraemic syndrome, permanent endothelial cell activation 
due to the loss of DGKE in DGKE mutation–haemolytic 
uraemic syndrome, or a defi cient cobalamin metabolism 
(mutations in methylmalonic aciduria [cobalamin 
defi ciency type C with homocystinuria]) in cblC defect–
haemolytic uraemic syndrome. In these situations, 
haemolytic uraemic syndrome relapses are frequent and 
the outcome is poor in untreated patients.

The current understanding of the pathophysiology of 
various forms of primary and secondary haemolytic 
uraemic syndrome is shown in fi gure 2 and table 1. The 
mechanisms underlying some forms of haemolytic 
uraemic syndrome are unknown or only partially 
understood—ie, atypical haemolytic uraemic syndrome 
with no documented complement or DGKE gene 
variants. The implication of complement activation as a 
second-hit mechanism that amplifi es endothelial cell 
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Figure 1: Classifi cation of various forms of haemolytic uraemic syndrome
2016 International Haemolytic Uraemic Syndrome group classifi cation. Adapted from Loirat and colleagues,1 by 
permission of SpringerNature. HUS=haemolytic uraemic syndrome. STEC=shiga toxin-producing Escherichia coli. 
DGKE=diacylglycerol kinase ε. CFH=complement factor H. CFI=complement factor I. MCP=membrane-cofactor 
protein. C3=component 3. CFB=complement factor B. THBD=thrombomodulin.
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damage is suggested in STEC-induced and S pneumoniae-
induced haemolytic uraemic syndrome (fi gure 2) and in 
several secondary forms of haemolytic uraemic syndrome 
(table 1). All forms of haemolytic uraemic syndrome 
share a fi nal common procoagulant and proinfl ammatory 
phenotype of activated endothelial cells (fi gure 2). In 
addition to endothelial cell damage, some forms of 
haemolytic uraemic syndrome involve podocyte injury—
eg, anti-vascular endothelial growth factor drug-associated 
haemolytic uraemic syndrome,36 DGKE–haemolytic 
uraemic syndrome,79,80 and STEC–haemolytic uraemic 
syndrome.81

Genetics
Haemolytic uraemic syndrome can be a familial 
monogenic recessive disease caused by pathogenic 
variants in a single gene (cblC-defect–haemolytic uraemic 
syndrome4 and DGKE–haemolytic uraemic syndrome6). 
Complement–haemolytic uraemic syndrome is frequently 
sporadic (85% of families2) despite presence of pathogenic 
variants in complement genes in the patient and one of 
their healthy parents. These fi ndings suggest that the 
genetic background predisposes the patient to the disease 
rather than directly causing the disease. The reasons 
underlying the incomplete penetrance of complement–
haemolytic uraemic syndrome are unclear. It has been 
suggested that combined pathogenic variants (found in 3% 
of patients82) or associated at-risk haplotypes (in 
complement factor H [CFH], membrane cofactor protein 
[MCP or CD46], and CFH-related protein 1 [CFHR1]) 
increase the risk of disease occurrence.2,3 Genetic screening 
of large cohorts of patients with atypical haemolytic 
uraemic syndrome revealed pathogenic variants in CFH, 
MCP, complement factor I (CFI), component 3 (C3), 
complement factor B (CFB) genes, or hybrid genes caused 
by non-allelic homologous recombination between CFH 
and CFHR1 or CFHR3 in 27–59% of adults and 19–52% of 
children (appendix pp 6, 7).

An interactive database dedicated to atypical haemolytic 
uraemic syndrome summarises the pathogenic variants 
that specifi cally impair the protection of endothelial cells 
from complement damage.83 Pathogenic changes 
identifi ed in patients with atypical haemolytic uraemic 
syndrome are non-sense and missense variants, small and 
large deletions, splice site changes, and complex 
rearrangements. However, several new rare missense 
variants have been identifi ed,84 thus it is crucial to assess 
the eff ect of a given variant on the regulation of the 
complement alternative pathway. In practice, pathogenic 
CFH, CFI, and MCP missense variants generally lead to 
impaired protein synthesis or protein function. Whereas, 
pathogenic C3 and CFB missense variants are usually 
gain-of-function mutations. The challenge for genetic 
testing in atypical haemolytic uraemic syndrome is to 
show the pathogenic relevance of all novel or rare variants, 
defi ned in this Seminar as variants with a minor allele 
frequency of less than 1% (appendix p 9).85

Variants in genes coding for proteins involved in the 
coagulation pathway, such as thrombomodulin86 or 
plasminogen,87 have been reported in patients with 
atypical haemolytic uraemic syndrome, but further 
studies are needed to confi rm the role of this pathway in 
haemolytic uraemic syndrome. Finally, a few studies have 
identifi ed novel or rare variants in complement genes in 
secondary forms of haemolytic uraemic syndrome—
eg, rare pathogenic variants in pregnancy-associated 
haemolytic uraemic syndrome (86% of cases),72 and rare 
variants, mostly without functional studies done as yet,  
in de-novo haemolytic uraemic syndrome after kidney 
transplantation (20%)50 and haemopoietic stem-cell 
transplantation (65%).46

Clinical presentation
The clinical symptoms of haemolytic uraemic syndrome 
are non-specifi c and include fatigue, pallor, shortness 
of breath, reduced urine output, and oedema. 
STEC–haemolytic uraemic syndrome frequently follows 
prodromic bloody diarrhoea88–90 (appendix pp 4, 5) and by 
contrast has seldom been reported after STEC urinary 
tract infection.91 S pneumoniae–haemolytic uraemic 
syndrome occurs in individuals with severe S pneumoniae 
sepsis, associated usually with pleural or pulmonary 
infection, and in 30% of cases, with meningitis (appendix 
pp 4, 5).9,23 In the context of atypical haemolytic uraemic 
syndrome, onset of the disease might follow intercurrent 
events (including viral gastroenteritis, infl uenza, 
vaccination, or childbirth), referred to as trigger events, 
in roughly half of children and a third of adults. Age of 
onset varies between patients and across causes of 
haemolytic uraemic syndrome. Although post-infectious 
haemolytic uraemic syndrome predominates in children 
younger than 3 years, the onset of complement–
haemolytic uraemic syndrome occurs almost as 
frequently in children as in adults.2,3 By contrast, all 
patients with DGKE–haemolytic uraemic syndrome have 
onset before 12–13 months of age (appendix pp 4, 5).2,6

The classic triad combining thrombocytopenia, 
haemolytic mechanical anaemia, and acute kidney injury 
remains the typical hallmarks of the disease. However, 
thrombocytopenia is usually mild in atypical haemolytic 
uraemic syndrome92 and is absent at presentation in 
15–20% of patients.2,3 Renal presentation of atypical 
haemolytic uraemic syndrome is variable across patients 
and might include nephrotic range proteinuria resulting 
from glomerular basement membrane damage,93 
sometimes associated with C3 deposits in mixed atypical 
haemolytic uraemic syndrome and C3 glomerulopathy 
forms.70 Renal failure requires prompt initiation of 
dialysis in more than 50% of cases regardless of the 
cause, and in more than 75% of adults with atypical 
haemolytic uraemic syndrome (appendix pp 4, 5). 
Additionally, some patients with atypical haemolytic 
uraemic syndrome develop inaugural accelerated and 
malignant hypertension, raising the complex issue of 
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whether malignant hypertension complicates haemolytic 
uraemic syndrome or the other way around.94 In the 
scenario of malignant hypertension complicating 
haemolytic uraemic syndrome, the control of hyper-
tension is expected to lead to rapid resolution of 
thrombocytopenia and haemolysis.

Systemic presentation of haemolytic uraemic syndrome 
varies greatly between patients, depending on the organs 
aff ected by the thrombotic microangiopathy process. 
CNS involvement can be as high as 20% in paediatric 
STEC–haemolytic uraemic syndrome88,95 and was reported 
in 50% of adults during the 2011 German E coli 
O104 outbreak.96 Similarly, the percentage of patients with 
atypical haemolytic uraemic syndrome and extra-renal 
manifestations in retrospective studies ranges from 8% 
to 25% in adults and 16% to 29% in children (appendix 
pp 4, 5). These extra-renal manifestations predominantly 
include neurological symptoms2,3,97 and pancreato-
intestinal involvement,2 and less frequently gangrene of 
the fi ngers or toes,98,99 ulcerative–necrotic skin lesions,100 
or myocardial infarction or ischaemic cardiomyopathy.101–104

Diagnostic investigations and diff erential 
diagnosis
A practical diagnostic approach of patients suspected of 
haemolytic uraemic syndrome is detailed in fi gure 3.105–107 
Several working groups have proposed diagnostic 
algorithms.1,19,108,109 This approach relies on stepwise 
procedures, which aim to confi rm or rule out distinct 
causative forms of haemolytic uraemic syndrome on the 
basis of direct tests. However, diagnosis of atypical 
haemolytic uraemic syndrome can be made by default 
when other causes have been eliminated with a 
reasonable clinical probability. The diagnostic algorithm 
is more straightforward in children than in adults 

because there is less confounding with coexisting 
diseases related to haemolytic uraemic syndrome;1 
additional investigations, guided by anamnesis and 
clinical examination, are usually needed in adults 
(fi gure 3).19,109

The main diff erential diagnosis of atypical haemolytic 
uraemic syndrome in children is STEC–haemolytic 
uraemic syndrome, whereas the two main diff erential 
diagnoses in adults are ADAMTS13 (a disintegrin and 
metalloprotease with thrombospondin type 1 repeats-13) 
defi ciency–thrombotic thrombocytopenic purpura and 
secondary haemolytic uraemic syndrome. S pneumoniae–
haemolytic uraemic syndrome is suspected on the basis 
of clinical presentation.23 cblC defect–haemolytic uraemic 
syndrome has long been considered as a disease of 
infants (<1 year) with severe forms of cblC defects.4,5 
Some reports110–112 suggest that cblC defects can be 
detected in older children or adults with eculizumab-
resistant atypical haemolytic uraemic syndrome (panel 1). 
This fi nding prompted experts to recommend plasma 
homocysteine and urine or plasma methylmalonic acid 
assessments as part of all investigations for STEC-
negative atypical haemolytic uraemic syndrome.113 In 
patients in whom stepwise investigations have led to the 
diagnosis of atypical haemolytic uraemic syndrome by 
elimination, complement and DGKE investigations are 
done (fi gure 3).

To date, no direct diagnostic test for atypical 
haemolytic uraemic syndrome exists. Available 
biomarkers are not completely reliable. For example, 
normal complement concentrations do not rule out 
complement–haemolytic uraemic syndrome because 
low concentrations of circulating C3 have low sensitivity 
(about 30% of patients with atypical haemolytic uraemic 
syndrome2), whereas high concentrations of circulating 

Figure 2: Pathophysiology of various forms of haemolytic uraemic syndrome
(A) Stx enters the endothelial cell via Gb3-dependent and Gb3-independent pathways, and exerts its cytotoxic eff ect via protein synthesis inhibition and 
enhancement of the CXCR4/CXCR7/SDF1 pathway.21 Stx also induces the translocation of P-selectin to the endothelial cell surface, favouring the assembly of 
alternative C3 convertase, the release of C3a, and TM shedding.22 (B) SP–HUS is a prototypic NA-induced HUS.23,24 The NA produced by SP cleaves SA of glycoproteins 
on red blood cells, platelets, and the cell surface of glomerular endothelial cells, exposing the cryptic Thomsen–Friedenreich antigen (T antigen). It is assumed that 
the reaction of T antigen with anti-T IgM antibodies normally present in plasma results in TMA. (C) DGKE is an intracellular lipid kinase that phosphorylates 
preferentially AA-DAG to PA and thus terminates DAG signalling. The loss of DGKE in endothelial cells enhances p38/MAPK pathway activation and ultimately leads 
to a prothrombotic and proinfl ammatory phenotype of the endothelial cell. In-vitro loss of DGKE does not seem to alter C3 deposition on endothelial cells.25 (D) CblC 
defi ciency with MMACHC is the most common congenital disorder of cobalamin metabolism (autosomal recessive; estimated incidence of one in 
100 000 livebirths),26 and results in an accumulation of homocysteine and methylmalonic acid and in decreased synthesis of methionine. Pathogenesis of organ 
damage in cblC defi ciency remains partially understood. Endothelial cell damage can result from various consequences of homocysteine accumulation and 
methionine defi cit, including deregulated glutathione and energy metabolism, and—of particular interest for HUS—enhanced platelet aggregation and 
coagulation,27 and increased proliferation of vascular SMC and intima thickening.28,29 (E) In atypical HUS, the loss of the inhibitory eff ect of CFH, CFI, or MCP (from 
inactivating mutations or anti-CFH antibodies) results in the loss of endothelial cell protection from CAP-induced damage. Similarly, gain-of-function mutations in 
the genes coding for C3 and CFB,30,31 the two main components of the alternative C3 convertase, are associated with excessive activation of CAP, resulting in the 
endothelial cell acquiring a procoagulant and proinfl ammatory phenotype that triggers thrombosis.32 (F) Distinct initial pathogenic mechanisms of HUS lead to a 
common fi nal proinfl ammatory and prothrombotic phenotype of endothelial cells resulting from increased secretion of vWF multimers and ADP, decreased release 
of NO and PGI2, the upregulation at the endothelial cell surface of various adhesion molecules, expression and secretion of TF, alterations in the glycocalyx, and the 
shedding of TM. A detailed fi gure legend and references are provided in the appendix (pp 18–23). HUS=haemolytic uraemic syndrome. Stx=shiga toxin. 
Gb3=globotriaosylceramide 3. TM=thrombomodulin. SP=Streptococcus pneumoniae. NA=neuraminidase. SA=sialic acid. TMA=thrombotic microangiopathy. 
DGKE=diacylglycerol kinase ε. AA-DAG=arachidonic acid-containing diacylglycerol. PA=phosphatidic acid. TF=tissue factor. cblC=cobalamin C. 
MMACHC=methylmalonic aciduria. SMC=smooth muscle cell. CAP=complement alternative pathway. CFH=complement factor H. CFI=complement factor I. 
MCP=membrane-cofactor protein. MAC=membrane-attack complex. C3=component 3. CFB=complement factor B. vWF=von Willebrand factor. ADP=adenosine 
diphosphate. NO=nitric oxide. PGI2=prostacyclin.
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C5a and soluble C5b-9 might have insuffi  cient 
specifi city.114–116 Similarly, diagnosis of atypical haemolytic 
uraemic syndrome should not be based on the detection 
of complement gene variants, which are identifi ed in 
only 40–60% of patients or less (appendix pp 6, 7).2,3 
Genetic investigations might take up to several weeks 
and should not delay treatment of atypical haemolytic 
uraemic syndrome. Studies have tackled the challenge 
to shift atypical haemolytic uraemic syndrome from a 
diff erential diagnosis to a direct diagnosis, using 
complement biomarkers. Sophisticated assays have 
yielded promising results115,117 but need to be validated in 
prospective studies.

Management and outcome
Supportive therapy (appendix p 10) is the cornerstone of 
haemolytic uraemic syndrome treatment and has largely 
contributed to the decrease in mortality following 
development of any form of haemolytic uraemic syndrome.

S pneumoniae–haemolytic uraemic syndrome
Early recognition and prompt initiation of antibiotics 
(mainly amoxicillin or third generation cephalosporin in 
case of meningitis) with supportive intensive care largely 
accounts for the improvement of S pneumoniae–
haemolytic uraemic syndrome outcomes in the past two 
decades (appendix pp 4, 5). Because plasma contains anti-
Thomsen–Friedenreich antibodies, which might enhance 
agglutination of Thomsen–Friedenreich-anti-Thomsen–
Friedenreich and worsen haemolytic uraemic syndrome 
course, plasma and unwashed red blood cells or platelets 
are traditionally avoided, as long as agglutination tests are 
positive.23

STEC–haemolytic uraemic syndrome
Outcome and predictive factors
Central to management of STEC–haemolytic uraemic 
syndrome is early assessment of haemolytic uraemic 
syndrome severity, which correlates with the risk of 
sequelae (appendix pp 4, 5). Overall, early death rates 
have been reduced to 1·4–2·9% in children since the 
early 2000s;89,118 whereas people aged 60 years or older 
still have the highest risk of death.15 In the same period, 
the proportion of children who progressed to end-stage 
renal disease was 1·4%, or had renal (chronic kidney 
disease stage 1 or 2, proteinuria, or hypertension) or 
neurological sequels 5 years after STEC–haemolytic 
uraemic syndrome was 30% and 4%, respectively.88 Risk 
factors for poor short-term and long-term outcomes 
include mainly increased leucocyte count, haemo-
concentration, and dialysis need and duration 
(panel 2).15,88–90,118,119

Management
Correct management of circulatory volume is of utmost 
importance during the early course of STEC–haemolytic 
uraemic syndrome. Early fl uid infusion reduces the rate 
of CNS involvement, need for dialysis, in-hospital stays, 
and long-term renal and extra-renal sequelae.120 
Therefore, volume depletion should be restricted to 
patients with anuria and life-threatening fl uid overload.

Antibiotics have long been contraindicated in patients 
with STEC gastroenteritis, despite the paucity of 
supportive evidence from meta-analyses121,122 or large 
series.88,89,123 Antibiotics might increase the risk of 
haemolytic uraemic syndrome because antibiotic-
induced injury to the bacterial membrane might favour 
the release of shiga toxin, antibiotics might give STEC a 
selective advantage if these organisms are not as readily 
eliminated from the bowel as the normal intestinal fl ora, 
and some antibiotics (such as fl uoroquinolones, 

Mechanism of TMA

Malignancy

Prostate, gastric, 
breast, lung, 
lymphoma, 
and others33

Intravascular tumoural emboli with coagulation activation and vessel wall 
proliferation.34 Precise frequency of mutations of complement genes unknown. 
Anecdotal cases of eculizumab effi  cacy (possible bias in reporting).35

Drugs

Anti-VEGF drugs Direct dose-dependent endothelial cell toxicity. Anti-VEGF-induced TMA 
involves podocyte injury.36

Ciclosporin, tacrolimus, 
everolimus, 
gemcitabine, 
and mitomycin

Precise frequency of mutations of complement genes unknown. Anecdotal 
cases of eculizumab effi  cacy (possible bias in reporting).37,38

IFNα/β, cocaine, 
quinine,* oxaliplatine, 
and others39

Quinine-dependent antibodies against endothelial cell, platelets, and 
leukocytes.40 Potential oxaliplatin-dependent antibodies against platelets.40

HSCT Severe multivisceral TMA aff ecting almost invariably the kidney41 but also the 
CNS, lung, and gastrointestinal tract,42 and is associated with a high mortality 
(>80%).43,44 Multifactorial endothelial cell damage: chemotherapy, total body 
irradiation, immunosuppressive drugs, graft vs host disease, and infections. 
Anti-CFH antibodies identifi ed in three patients.45 Increased frequency of 
variants in complement (C3, C5, CD46, CD55, and CFD) and ADAMTS13 genes in 
patients with HSCT–TMA compared with patients without TMA after HSCT 
(clinical relevance of these variants to be fully assessed).46 Increased soluble 
C5b-945 and positive C4d renal arteriolar staining47 in patients with HSCT–TMA. 
In two retrospective cases series48,49 of HSCT–TMA (30 patients in all), 
eculizumab use was associated with a haematological response in 56% of 
patients and a mortality rate of 40% (compared with 0–35% of haematological 
response and 78–96% mortality rate in historical controls treated mainly with 
PE43,44).

Solid organ transplantation

Renal (de novo), lung, 
heart, and intestinal

Multifactorial: CNI and mTOR inhibitor toxicity, human leucocyte antigen 
mismatch, and infections. TMA might complicate acute humoral rejection of the 
renal graft. In one series, seven (29%) of 24 patients with de-novo TMA after renal 
transplantation had rare variants (initially reported as mutations) in CFH and CFI 
genes.50 Anecdotal cases of eculizumab effi  cacy (possible bias in reporting).51–53

Infections†

HIV Putative direct HIV toxicity to endothelial cell. Incidence has decreased with 
highly active antiretroviral therapy.54 Might be coincidental with CMV or HHV8 
co-infection.55,56

H1N1 infl uenza Unmasking of the cryptic Thomsen–Friedenreich antigen on red blood cells and 
endothelial cells has been suggested. Pneumococcal infection or HUS might be 
superimposed to H1N1 infl uenza infection. H1N1 infl uenza can trigger HUS in 
patients with complement or DGKE mutations.

CMV, HHV6, parvovirus 
B19, malaria, or others

Potential direct viral endothelial cell toxicity. Mainly in immunocompromised 
patients.57

(Table 1 continues on next page)
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particularly ciprofl oxacin) are potent inducers of shiga 
toxin gene expression. In view of these reasons, 
discrepant results might occur from the class of 
antibiotics used: data from two prospective studies in 
children with O157 STEC–diarrhoea showed an 
increased risk of haemolytic uraemic syndrome either in 
the children treated with any kind of antibiotics124 or only 
in those given bactericidal antibiotics.125 This highly 
topical issue was re-examined after the outbreak in 
Germany, when O104 shedding was shown to be 
shortened in patients with haemolytic uraemic syndrome 
or in long-term carriers of O104 who were treated 
with azithromycin (a non-bactericidal antibiotic).126–128 
Conversely, no occurrence of haemolytic uraemic 
syndrome was reported in O104 carriers treated with 
azithromycin.126 Azithromycin reduces the release of 
shiga toxin from STEC in vitro and STEC-induced 
mortality in animal models.128 The current view about 
azithromycin has shifted towards a more balanced 
benefi t to risk ratio, prompting an ongoing prospective 
study (NCT02336516).

Randomised trials did not show benefi t from the use 
of anti-thrombotic and antifi brinolytic or shiga toxin 
binding agents, or plasma infusions (appendix p 11). 
The benefi t conveyed by plasma exchanges over 
supportive therapy alone remains far from 
certain.95,123,129,130 Notably, a few patients with severe 
neurological complications, which were unresponsive 
to plasma exchanges and eculizumab, during the 2011 
German outbreak showed a prompt recovery upon 
immunoadsorption.131–133 These promising results in 
patients with life-threatening conditions warrant 
confi rmation in properly designed prospective studies. 
Innovative approaches that target shiga toxin synthesis, 
as well as entry and toxic eff ect in endothelial cells134 
might lead to new specifi c treatments for STEC–
haemolytic uraemic syndrome.

A report of three children with O157 STEC–haemolytic 
uraemic syndrome that showed a prompt neurological 
recovery from eculizumab therapy has raised tremendous 
hopes.135 However, on the one hand, two large series from 
the 2011 German outbreak have since shown similar 
outcomes in patients treated with or without eculizumab, 
including those with neurological impairment.123,130 On the 
other hand, subsequent smaller series have reported rapid 
improvements with eculizumab for life-threatening heart 
or brain manifestations, or both, in severe forms of STEC–
haemolytic uraemic syndrome.136–138 Notably, these reports 
were retrospective and non-controlled, and an ongoing 
randomised controlled trial (NCT02205541) should clarify 
the benefi t of eculizumab in STEC–haemolytic uraemic 
syndrome.

Treatment remains supportive in most cases (fi gure 3). 
However, for those with life-threatening complications, 
short-term eculizumab therapy and immunoadsorption 
sessions in unresponsive cases might be a suitable 
treatment strategy.

Atypical haemolytic uraemic syndrome
Outcome and predictive factors
Before eculizumab was available for treatment of 
haemolytic uraemic syndrome, the death rate (reported in 
two European cohorts)2,3 was higher in children than in 
adults (8–14% vs 2–4%) at 3–5 years’ follow-up. Conversely, 
the rate of end-stage renal disease was higher in adults than 
in children (table 2 and appendix pp 4, 5).2,3 In adults, 
outcomes were similarly poor irrespective of whether a 
patient had a complement variant or not. CFH–haemolytic 

Mechanism of TMA

(Continued from previous page)

Autoimmune diseases

SLE Endothelial cell injury mediated by immune complexes.58 Might be related to 
intravascular immunoglobulin thrombi59 and coexist with proliferative lupus 
nephritis or APS, or both. Anecdotal reports of the effi  cacy of eculizumab 
(possible bias in reporting).60,61

APS Two-hit hypothesis.62 First hit: binding of anti-b2GPI antibodies to their target 
on endothelial cells leads to the upregulation of adhesion molecules and TF, and 
the displacement of the anticoagulant annexin A5. Second hit: infl ammatory 
trigger (eg, infection or surgery) and activation of the complement cascade 
leading to thrombosis.63 C5a increases the release of TF by neutrophils.64 
Suggested role of b2GPI as a complement regulator (binding to C3b).65 Few cases 
of eculizumab effi  cacy in catastrophic APS (possible bias in reporting).66–68

Systemic sclerosis Vessel wall intimal proliferation and lumen obstruction. Might be precipitated 
by steroids.

Polymyositis or 
dermatomyositis, 
Still’s disease, or other

Few cases of HUS reported.69 Dermatomyositis is a complement-mediated 
disorder.

Malignant hypertension Diff erential diagnosis with atypical HUS might prove diffi  cult because atypical 
HUS might present with malignant hypertension, and any form of malignant 
hypertension might lead to TMA.

Coexisting nephropathies HUS might complicate the course of IgA nephropathy, C3 glomerulopathy, or 
other membranoproliferative glomerulonephritis,70 ANCA, or anti-GBM vasculitis. 
Possible link between complement activation and TMA in ANCA vasculitis.71

Pregnancy–HUS In a retrospective study,72 among 21 patients with pregnancy–HUS (79% in 
post-partum), 52% reached end-stage renal disease within 6 months of onset 
vs 57% in women with non-pregnancy-related atypical HUS, and 86% had 
mutations of complement genes vs 74% in female patients with 
non-pregnancy-related atypical HUS. Patients with pregnancy–HUS might have 
disease relapse outside pregnancy.73 Few cases of eculizumab effi  cacy in 
pregnancy–HUS or post-partum–HUS.73,74

Diff erential diagnosis of pregnancy–HUS

HELLP syndrome, 
pre-eclampsia, 
or eclampsia

Endothelial cell injury results from an imbalance between antiangiogenic 
(soluble Flt1 and endoglin) and angiogenic factors (placental growth factor).75 
Initial cause of the disease is unknown but probably multifactorial. Variants of 
complement genes reported in 10–12% of patients with HELLP syndrome,76 
in 18% of patients with SLE-associated or APS-associated pre-eclampsia, and 
in 8% of patients with non-immune pre-eclampsia.77

Post-partum 
haemorrhage

High risk of renal cortical necrosis in the setting of gravid renal endothelium.78 
Current data not supportive of a defi nitive role of complement.

The main causes of secondary HUS and their underlying proven or supposed mechanisms. TMA=thrombotic 
microangiopathy. VEGF=vascular endothelial growth factor. mTOR=mammalian target of rapamycin. IFN=interferon. 
HSCT=haemopoietic stem cell transplantation. CFH=complement factor H. ADAMTS13=a disintegrin and 
metalloprotease with thrombospondin type 1 repeats-13. PE=plasma exchange. CNI=calcineurin inhibitors. 
CFI=complement factor I. CMV=cytomegalovirus. HHV8=human herpesvirus-8. SLE=systemic lupus erythematosus. 
APS=antiphospholipid syndrome. TF=tissue factor. HUS=haemolytic uraemic syndrome. ANCA=antineutrophil 
cytoplasm antibodies. GBM=glomerular basement membrane. HELLP=haemolysis, elevated liver enzymes, low 
platelet count. *Includes quinine containing beverages. †STEC–HUS and SP–HUS are discussed separately.

Table 1: HUS associated with coexisting diseases or conditions, and pregnancy–HUS and its 
diff erential diagnosis 
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uraemic syndrome had the most severe outcomes for 
children and adults.2,3 Only children with MCP variants 
retained relatively favourable outcomes despite frequent 
relapses (25% end-stage renal disease at median follow-up 
of 17·8 years).2 Although a similar percentage 
(approximately 30%) of adults and children had relapses 
during the fi rst year, relapse was more common  in children 
in subsequent years (approximately 50% vs 20%) because 
of the high frequency of relapses in children with MCP 
variants.2 Patients with DGKE–haemolytic uraemic 
syndrome usually progress to severe chronic kidney disease 
and end-stage renal disease by the age of 20–25 years 
(appendix p 12). The use of immunosuppressive drugs has 

substantially improved the renal survival and decreased the 
risk of relapse in patients with anti-CFH antibodies 
(appendix p 13).

Management
There are no prospective randomised controlled trials 
assessing the safety and effi  cacy of any therapeutics for 
atypical haemolytic uraemic syndrome, primarily 
because of the rarity of the disease. Industry-sponsored 
trials with eculizumab, the fi rst licensed complement 
blocker, in atypical haemolytic uraemic syndrome were 
prospective but not controlled.139–144 Therefore, the 
assessment of eculizumab effi  cacy relies on a 

First episode of TMA

Atypical HUS

Children Adults
Identify STEC–HUS

Stool culture for STEC and PCR for stx genes
or test for free stx or O157 antigen with or
without LPS serology vs STEC serogroups

Rule out TTP
Plasma ADAMTS13 activity

(if <10%, anti-ADAMTS13 antibodies)
STEC–HUS

Supportive
treatment

SP–HUS

Amoxicillin
or third 

generation
cephalosporin

Identify cblC-defect–HUS
Plasma homocysteine concentrations
Concentrations of methylmalonic acid

in urine or plasma with or without
MMACHC direct sequencing (if high

concentrations of MMA)

Intramuscular hydroxocobalamin
with folinic acid, betaine,

and carnitine

Persistent thrombocytopenia during first 7–10 days of eculizumab

Plasma C3, C4, CFH, and CFI with or without CFB dosages, anti-CFH antibodies, MCP expression on leukocytes
Screening for mutations in CFH, CFI, MCP, C3, CFB, THBD* and for CFH hybrid gene†

All patients with atypical HUS are eligible for eculizumab treatment, including those with normal platelet count
Do not wait for complement genetic tests to start eculizumab because the earlier the initiation of eculizumab,

the better is the renal outcome

First-line eculizumab within <24h of onset whenever
possible. If not available, start PE with FFP

(60 mL/kg per session; use PI if PE not available)

Switch to eculizumab
Haematological remission under PE does not

invariably lead to renal function improvement

Identify DGKE–HUS
DGKE sequencing

Supportive treatment
Uncertain benefit from

PE and eculizumab

Initial work-up (<24–48 h)
During initial work-up (5–7 days)

Start daily PE with FFP
(1–1·5 plasma volume per session)

At any age
Personal or familial history of atypical HUS

Recurrence of HUS in the renal graft

First-line
eculizumab

PE with or without IS
(PI if congenital TTP)

Identify coexistent disease-related TMA
Medical history, physical examination, 

laboratory tests (HIV, ANA, anti-DNA, and APL)
Malignant hypertension, HSCT or SOT, malignancies,

systemic diseases, drugs, or HIV

Specific treatment

No trend towards increase in platelet count
Check complement blockade, eculizumab concentration,

or C5 polymorphism
Recheck and complete differential diagnosis

Non-complement-mediated TMA

Trend towards increase in platelet count
Check complement blockade

(CH50 <10%, eculizumab trough concentration >100 mg/mL)
Do not resume PE

Early onset (<2 years)

Anti-CFH antibody >1000 U/mL

PE and IS with or without eculizumab

Identify SP–HUS
Blood, CSF, pleural fluid culture, and test for
SP soluble antigen with or without SP PCR

Chest radiograph or CT scan
DAT (direct Coombs test) with or without

T–F antigen detection

Persistent thrombocytopenia after 7–10 days of eculizumab

Figure 3: Practical diagnostic approach and treatment options for HUS according to age at onset
Dashed arrows point to a clinical situation less frequent than those pointed with solid arrows. HUS=haemolytic uraemic syndrome. TMA=thrombotic microangiopathy. STEC=shiga toxin-
producing Escherichia coli. Stx=shiga toxin. LPS=lipopolysaccharide. SP=Streptococcus pneumoniae. CSF=cerebrospinal fl uid. DAT=direct anti-globulin test. T–F=Thomsen–Friedenreich. 
cblC=cobalamin C. MMA=methylmalonic aciduria. MMACHC=methylmalonic aciduria (cbl defi ciency) cblC type. DGKE=diacylglycerol kinase ε. PE=plasma exchange. TTP=thrombotic 
thrombocytopenic purpura. IS=immunosuppressive treatment. ADAMTS13=a disintegrin and metalloprotease with thrombospondin type 1 repeats-13. PI=plasma infusion. ANA=antinuclear 
antibodies. APL=antiphospholipid antibodies. HSCT=haemopoietic stem cell transplantation. SOT=solid organ transplantation. FFP=fresh frozen plasma. MCP=membrane cofactor protein. 
CH50=total complement activity 50. CFH=complement factor H. CFI=complement factor I. MCP=membrane-cofactor protein. C3=component 3. C4=component 4. THBD=thrombomodulin. 
*Variants can be screened either by Sanger or new generation sequencing methods. †Complex gene rearrangements are sought through multiplex ligation-dependent probe amplifi cation. See the 
appendix (pp 23–26) for a detailed fi gure legend.  
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comparison between historical controls from the pre-
eculizumab era and patients treated with eculizumab, 
who were enrolled in either prospective or retrospective 
studies.

There is no strong evidence for plasma therapy effi  cacy 
in atypical haemolytic uraemic syndrome. Data from a 
2015 study suggest that plasma therapy does not decrease 
serum concentrations of complement alternative pathway 
activation markers during acute atypical haemolytic 
uraemic syndrome.145 Moreover, in two independent large 
cohort studies,2,3 plasma therapy had little eff ect on renal 
survival. In an Italian study,3 although plasma therapy 
induced haematological remission in 78% of children 
and 53% of adults with episodes of atypical haemolytic 
uraemic syndrome, half of the children and two-thirds of 
the adults progressed to end-stage renal disease or died at 
3 years’ follow-up. Similarly, in a French study,2 children 
and adults had poor renal outcomes after the fi rst episode 
of atypical haemolytic uraemic syndrome, whether they 
had high-dose plasma therapy (>5 plasma exchanges or 
plasma infusions >10 mL/kg per day for >5 days) or not. 
Moreover, the improved long-term renal outcomes 
observed in children with MCP variants cannot not be 
attributed to plasma effi  cacy because MCP is a membrane-
anchored protein. Plasma exchange is associated with 
high morbidity in children (31%), mainly due to central 
catheter complications.20

Eculizumab, a monoclonal anti-C5 antibody that blocks 
the entry of C5 into C5 convertase,109 has revolutionised 
the treatment of atypical haemolytic uraemic syndrome. 
Recommended doses and treatment regimens for 

Panel 1: Main clinical characteristics in patients with 
early-onset4 and late-onset5,110–112 cobalamin C 
defect-related haemolytic uraemic syndrome

Clinical presentation
• Early-onset forms (<1 year): feeding issues (vomiting or 

poor sucking), failure to thrive, neurological symptoms 
(hypotonia, lethargy, developmental delay, seizures, 
microcephaly, or hydrocephalus), and visual impairment 
(pigmentary retinopathy or nystagmus)

• Late-onset forms: (≥1 year) pulmonary hypertension and 
neuropsychiatric symptoms (cognitive impairment, 
ataxia, seizures, or myelopathy)

Epidemiology
• Around 37 cases of haemolytic uraemic syndrome reported 

so far (17 with an onset >1 year)
• Haemolytic uraemic syndrome in 5% of cases with onset 

≤1 year; 25% of cases with onset >1 year

Natural history
• Both early-onset and late-onset haemolytic uraemic 

syndrome present with severe hypertension 
(sometimes misdiagnosed as malignant hypertension), 
proteinuria, with or without nephrotic syndrome, 
haematuria, progressing chronic kidney disease, with or 
without acute kidney injury, mechanical haemolytic 
anaemia, macrocytosis, thrombocytopenia, with or 
without leucocytopenia

• Early-onset forms: progression to multivisceral failure, 
end-stage renal disease, cardiomyopathy, neurological 
deterioration, and eventually death (roughly 100% if 
untreated)

• Late-onset haemolytic uraemic syndrome forms 
frequently associated with pulmonary 
hypertension (40%)

Treatment
• Intramuscular hydroxocobalamin (doses titrated to target 

plasma homocysteine concentrations <40–60 µmol/L); 
normalisation of total homocysteine concentration 
(<15 µmol/L) rarely achieved, except in some patients 
with late onset

• Supplements in folinic acid, betaine, and carnitine
• Protein restriction not recommended

Outcomes upon early-initiated hydroxycobalamin treatment
• Early-onset forms: treatment prevents death, allows renal 

recovery, but does not protect from neurocognitive and 
vision deterioration

• Late-onset forms: treatment allows renal recovery, prevents 
haemolytic uraemic syndrome relapses, and improves 
pulmonary hypertension and neuropsychiatric symptoms 

Panel 2: Predictors of short-term and long-term outcome 
of patients with STEC–haemolytic uraemic syndrome

In-hospital death
Older than 60 years15,118

In children:89

• White blood cell count >25 400 cells per mL
• Haemoconcentration (haematocrit [Ht] ≥20%)
• Recent respiratory tract infection

Three greater risk profi les:
• White blood cell count >41 900 cells per mL (n=44, 

nine deaths, 20·5% probability of death, OR 45)
• White blood cell count 25 400–41 900 cells per mL and 

Ht >19·6% (n=86, eight deaths, 9·3% probability of 
death, OR 18)

• White blood cell count ≤25 400 cells per mL and recent 
respiratory tract infection (n=37, one death, 
2·7% probability of death, OR 4·9)

Sequelae in the long term
In children:88

• White blood cell count >20 000 cells per mL
• Use of plasma exchange during the acute phase
• Dialysis duration
• Hypertension at the acute phase
• Haemoconcentration (haemoglobin >5·6 mmol/L)119

STEC=shiga toxin-producing Escherichia Coli. OR=odds ratio. For a detailed explanation 
of panel 2 see the appendix (pp 28,29). 
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eculizumab, according to patient weight, along with 
recommendations for monitoring complement blockade 
are shown in the appendix (p 14). Eculizumab tolerability 
is generally good. The main risk of complement blockade 
is meningococcal meningitis, which occurred in two of 
100 patients included in prospective trials.139,141–144 Specifi c 
meningococcal prophylaxis is therefore mandatory in 
patients receiving eculizumab.1 Phase 4 studies are 
required to fully assess the increased risk of other 
bacterial or viral infections, particularly in patients who 
have had a transplant.146

Eculizumab for treating atypical haemolytic uraemic 
syndrome has been tested in four prospective trials (three 
in adults141–144 and one in children139,140) and one 
retrospective series93 (table 2). In plasma-responsive or 
plasma-dependent adult patients with chronic kidney 
disease, eculizumab maintained haematological 
normalisation in 90% of patients despite plasma therapy 
cessation, and was associated with a small but signifi cant 
increase in estimated glomerular fi ltration rate (eGFR; 
6–8 mL/min) at 1-year and 2-year follow-up.141,142 This 
fi nding suggests that cryptic active thrombotic 
microangiopathy was ongoing in some patients who had 
plasma therapy despite haematological remission. 
Presently, long-term plasma therapy is infrequently the 
preferred fi rst-line treatment, and is mostly used when 
access to eculizumab is limited (fi gure 3).

In the other prospective studies, treatment with 
eculizumab was initiated shortly after plasma therapy was 
proved ineffi  cacious (ie, haematological remission was 
not achieved) or as fi rst-line treatment. Haematological 
normalisation was achieved and maintained in 82% of 
children at 1-year follow-up,139,140 and in 88–90% of adults 
at 1-year143,144 and 2-year follow-up.142 The increase in eGFR 
was more pronounced in children (64 mL/min)139,140 than 
in adults (30–35 mL/min).141–144 This fi nding is in accords  
with the overall better renal prognosis of atypical 
haemolytic uraemic syndrome in children than in adults.2 
However, early initiation of eculizumab as fi rst-line 
therapy accounts for better outcomes in more than half of 

children. Indeed, the time between onset of atypical 
haemolytic uraemic syndrome episode and treatment 
initiation inversely correlates with the increase in 
eGFR.141,142,147 None of the children and only one (1%) of the 
78 adults died within the 1–2 years of study follow-up  
with use of eculizumab. End-stage renal disease or death 
at 1-year or 2-year follow-up occurred in 6–15% in adults 
and 9% in children, which is far lower than occurred in 
the pre-eculizumab era (table 2). A retrospective study 
showed a similar signifi cant benefi t from eculizumab 
treatment.93 Several case reports99,148–151 of patients with 
plasma exchange and plasma infusion-resistant atypical 
haemolytic uraemic syndrome show the capability of 
eculizumab to relieve neurological, cardiac, and 
peripheral ischaemic complications.1 On the basis of 
these studies, which support the superiority of 
eculizumab over plasma therapy in atypical haemolytic 
uraemic syndrome, all patients with atypical haemolytic 
uraemic syndrome are eligible for treatment with 
eculizumab, if it is available (fi gure 3).

Important information can also be yielded from these 
studies that help to address pending questions about 
long-term management of eculizumab treatment 
(appendix p 15). Increasing the time between eculizumab 
infusions would reduce the treatment burden and cost 
but requires close monitoring of the complement 
blockade by CH50 (complement haemolytic 50) and 
eculizumab trough concentration, if available. Some 
patients (mostly paediatric), receiving eculizumab every 
3–4 weeks can still show a potent drug eff ect as refl ected 
by sustained undetectable CH50 activity.152 The most 
crucial question is, however, the duration of therapy. If 
renal function fails to recover, in the absence of other 
signs of active disease, a 3–6 month treatment is 
nonetheless recommended before considering 
eculizumab discontinuation, because late renal recovery 
is possible.1,104 In patients who had stable haematological 
and renal remission following treatment with 
eculizumab, the issue of whether or not to discontinue 
eculizumab therapy after a few months is debated. One 

Children Adults

Pre-eculizumab era Eculizumab Pre-eculizumab era Eculizumab

French cohort2 
(n=89)

Italian cohort3 
(n=149)

Trial 3139,140 
(n=22)

French Cohort2 
(n=89)

Italian cohort3 
(n=149)

Trial 1141,142 
(n=17)

Trial 2141,142 
(n=20)

Trial 4143,144 
(n=41)

First episode 16% ·· ·· 46% ·· ·· ·· ··

6-month follow-up ·· ·· 9% ·· ·· 6% 10% 15%

1-year follow-up 29% ·· 9% 56% ·· 6% 10% 15%

2-year follow-up ·· ·· ·· ·· ·· 12% 10% ··

3-year follow-up ·· 48% ·· ·· 67% ·· ·· ··

5-year follow-up 36% ·· ·· 64% ·· ·· ·· ··

For a detailed table legend see the appendix (pp 27,28). HUS=haemolytic uraemic syndrome.

Table 2: Percentage of patients with atypical HUS who progressed to end-stage renal disease or who died in four prospective trials of eculizumab 
compared with the Italian and French registries of the pre-eculizumab era 
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argument is that the unpredictable relapse rate, the 
increased risk of meningococcal infection by roughly 
5000 times,153 and the high cost of the drug supports 
discontinuation. However, the risk of relapse with 
ensuing acute kidney injury and potentially irreversible 
chronic kidney disease favours long-term treatment. 
Ongoing prospective studies (NCT02574403) will provide 
valuable information in this debate.

Preliminary data from retrospective studies suggest 
that pathogenic variants in complement genes might 
be the most important predictors of relapse of 
atypical haemolytic uraemic syndrome after treatment 
discontinuation (appendix p 8). Patients with CFH 
variants seem to have the highest risk (fi ve [50%] of 
ten patients) whereas those without complement variants 
seem to have a very low risk (one [5%] of 18 patients). 
Regardless of the genetic background, eculizumab 
discontinuation requires a close monitoring of the 
biological features of thrombotic microangiopathy using 
urinary dipsticks (twice weekly, increased to daily in case 
of infection) and blood tests (once weekly initially). 
Education of the patient and prompt resuming of 
eculizumab for early-diagnosed relapses should reduce 
the risk of irreversible chronic kidney disease. Progressive 
tapering of eculizumab doses before its discontinuation 
is not supported by any data.

Two subtypes of atypical haemolytic uraemic syndrome 
have specifi c considerations. Firstly, no clear benefi t—
especially in terms of proteinuria reduction—from 
plasma exchanges and plasma infusions or eculizumab 
has been reported in children with DGKE–haemolytic 
uraemic syndrome (appendix p 12). Secondly, plasma 
exchange associated with corticosteroids and immuno-
suppressors are the established treatment for anti-CFH 
antibody–haemolytic uraemic syndrome. But some case 
reports show that eculizumab is effi  cient to induce 
remission and rescue life-threatening complications in 
this subtype (appendix p 13),154–157 suggesting that further 
studies are necessary to defi ne the role of eculizumab in 
these settings.

Secondary haemolytic uraemic syndrome
Haemolytic uraemic syndrome associated with coexisting 
diseases or conditions comprise a heterogeneous group, 
of a variety of types of endothelial cell damage (table 1). 
The identifi cation of complement alternative pathway 
dysregulation as a major driver of atypical haemolytic 
uraemic syndrome has prompted some investigators to 
reconsider the pathogenesis of secondary haemolytic 
uraemic syndrome, leading for instance to the 
reclassifi cation of pregnancy–haemolytic uraemic 
syndrome. Similarly, the implication of complement 
alternative pathway dysregulation has been suggested in 
several secondary haemolytic uraemic syndrome (table 1).

The treatment of secondary haemolytic uraemic 
syndrome relies on treatment and withdrawal of the 
triggering condition whenever feasible. Plasma therapy is 

often empirically used despite the lack of established 
benefi t. A paucity of case reports suggest that complement 
blockade might be a potential second-line treatment in 
some secondary haemolytic uraemic syndrome that is 
resistant to conventional management (table 1). However, 
the reporting bias inherent to these cases constitutes a 
strong limitation. Screening for variants of complement 
genes in large cohorts of secondary haemolytic uraemic 
syndrome and studies assessing complement blockade in 
this setting are urgently needed.

Haemolytic uraemic syndrome in pregnancy
Pregnancy can trigger diff erent types of thrombotic 
microangiopathies, including ADAMTS13-defi ciency–
thrombotic thrombocytopenic purpura (mostly during 
the second and third trimesters), haemolytic uraemic 
syndrome (mostly in peripartum or post-partum), and 
HELLP (haemolysis, elevated liver enzymes, and low 
platelet count) syndrome, a thrombotic microangiopathy 
aff ecting the liver and inconstantly the kidney (table 1). 
Features of thrombotic microangiopathy might also be 
encountered in severe pre-eclampsia or eclampsia and 
post-partum haemorrhage. A retrospective study showed 
that pregnancy–haemolytic uraemic syndrome shares 
features with atypical haemolytic uraemic syndrome, 
including severity at diagnosis and during follow-up, 
frequency of variants of complement genes, and a similar 
pattern of relapse.72 Thus, most investigators assume that 
pregnancy-related atypical haemolytic uraemic syndrome 
is an atypical haemolytic uraemic syndrome precipitated 
by pregnancy. Large international studies are needed 
to achieve consensus across the fi eld. Diagnosis 
of haemolytic uraemic syndrome might be diffi  cult 
when thrombotic microangiopathy develops during a 
complicated peripartum course. Clinical history, 
measurement of ADAMTS13 activity, the presence of 
marked liver enzymes elevation (HELLP syndrome), or 
rapid (48–72 h) regression of thrombotic microangiopathy 
features after delivery (usual in HELLP syndrome and 
pre-eclampsia or eclampsia) might help clinicians to 
distinguish atypical haemolytic uraemic syndrome from 
other thrombotic microangiopathy disorders.

As for atypical haemolytic uraemic syndrome, 
eculizumab has been found remarkably effi  cient to 
control pregnancy–haemolytic uraemic syndrome.74,158,159 
Data mainly from cohorts of patients with paroxysmal 
nocturnal haemoglobinuria suggest that the use of 
eculizumab appears safe during pregnancy.160 
Transplacental passage of the drug was documented 
in 35% of women—however, at concentrations below the 
therapeutic range—and the drug was not detected in the 
milk of breastfeeding mothers. No eculizumab-related 
side-eff ects were reported in newborn babies and infants. 
Nevertheless, up to half of pregnant patients might 
require an increase in the dose or the frequency of 
eculizumab infusions, or both, to maintain an optimal 
complement blockade.160
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Renal transplantation and haemolytic uraemic syndrome
The diff erent forms of haemolytic uraemic syndrome 
whose pathogenic mechanism primarily involves 
damage to the endothelial cells by environmental factors 
have a low rate of recurrence after kidney transplantation. 
By contrast, atypical haemolytic uraemic syndrome 
related to complement alternative pathway dysregulation, 
involving circulating factors, is associated with a high 
rate of recurrence after kidney transplantation (appendix 
p 16). Importantly, in the pre-eculizumab era, atypical 
haemolytic uraemic syndrome recurrence was strongly 
and independently associated with kidney graft failure in 
patients with atypical haemolytic uraemic syndrome 
(risk ratio 4·86, 95% CI 1·30–13·81; p=0·001), because of 
the poor effi  cacy of plasma exchange in the treatment of 
overt recurrence.161 However, the past 5 years have seen a 
shift toward safer and more successful outcomes, based 
on targeted and individualised strategies (appendix p 16).

The risk of recurrence in atypical haemolytic uraemic 
syndrome is dependent on the genetic background. 
Patients with isolated variants in membrane-anchored 
(eg, MCP) or intracellular (eg, DGKE) proteins have a low 
risk of post-transplant recurrence, because the kidney 
allograft expresses a functional protein, whereas patients 
with variants in circulating factors have a risk of 
recurrence that ranges from 50% to nearly 100%.3,161 
Consequently, the risk of post-transplant recurrence 
diff ers in carriers of MCP variants from 7·6% to 30%, 
depending on whether or not the MCP variant is with 
other variants involving circulating factors.82 With respect 
to DGKE, none of the three reported variants of DGKE 
carriers transplanted so far have had a recurrence.6

The greatest risk of post-transplant recurrence (>90%) is 
associated with CFH, C3, and CFB variants, whereas 
patients with neither pathogenic variant nor homozygous 
at-risk CFH haplotype (polymorphism) have a much lower 
post-transplant recurrence rate (about 20%), and patients 
with CFI pathogenic variant or at-risk CFH haplotype 
have an intermediate risk (about 50%).161 Hence, tailored 
therapeutic strategies have been proposed, based on 
complement and genetic investigations, to prevent 
recurrence of atypical haemolytic uraemic syndrome. 
Combined liver and kidney transplantation with 
perioperative plasma or eculizumab has also been done in 
a few patients with mostly CFH variants (appendix p 16). 
With respect to overt atypical haemolytic uraemic 
syndrome recurrence, long-term eculizumab therapy has 
emerged as the new gold standard fi rst-line treatment. 
The earlier treatment is initiated after the onset of the 
recurrence, the better the recovery of graft function.

Conclusion
Much has been achieved in the fi eld of haemolytic uraemic 
syndrome in the past 10 years (appendix p 17). 
A mechanistic approach of haemolytic uraemic syndrome 
has been developed, an innovative effi  cacious treatment— 
the anti-C5 antibody eculizumab—has been made 

available for atypical haemolytic uraemic syndrome, and 
new mechanisms of pathogenesis have been identifi ed. 
Several aspects remain unclear. Reliable biomarkers for 
the diagnosis and monitoring of haemolytic uraemic 
syndrome are missing. The optimal duration of 
complement blockade in patients with atypical haemolytic 
uraemic syndrome, and the place of this treatment in 
STEC–haemolytic uraemic syndrome and secondary 
haemolytic uraemic syndrome need further assessment. A 
specifi c treatment of STEC–haemolytic uraemic syndrome 
is urgently needed. Ongoing studies will undoubtedly 
provide clues or defi nite answers to these questions.
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