Julie Meissner

Julie Meissner
  • MSc
  • PhD Student at Technische Universität Berlin

About

11
Publications
954
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
187
Citations
Introduction
Skills and Expertise
Current institution
Technische Universität Berlin
Current position
  • PhD Student

Publications

Publications (11)
Article
We consider the online traveling salesperson problem (TSP), where requests appear online over time on the real line and need to be visited by a server initially located at the origin. We distinguish between closed and open online TSP, depending on whether the server eventually needs to return to the origin or not. While online TSP on the line is a...
Article
Full-text available
We introduce a novel adversarial model for scheduling with explorable uncertainty. In this model, the processing time of a job can potentially be reduced (by an a priori unknown amount) by testing the job. Testing a job j takes one unit of time and may reduce its processing time from the given upper limit \(\bar{p}_j\) (which is the time taken to e...
Article
Full-text available
We introduce a novel model for scheduling with explorable uncertainty. In this model, the processing time of a job can potentially be reduced (by an a priori unknown amount) by testing the job. Testing a job $j$ takes one unit of time and may reduce its processing time from the given upper limit $\bar{p}_j$ (which is the time taken to execute the j...
Conference Paper
Full-text available
We consider the minimum spanning tree (MST) problem in an uncertainty model where uncertain edge weights can be explored at extra cost. The task is to find an MST by querying a minimum number of edges for their exact weight. This problem has received quite some attention from the algorithms theory community. In this paper, we conduct the first prac...
Conference Paper
Full-text available
The General Scheduling Problem (GSP) generalizes scheduling problems with sum of cost objectives such as weighted flow time and weighted tardiness. Given a set of jobs with processing times, release dates, and job dependent cost functions, we seek to find a minimum cost preemptive schedule on a single machine. The best known algorithm for this prob...
Conference Paper
Full-text available
We investigate the problem of scheduling the maintenance of edges in a network, motivated by the goal of minimizing outages in transportation or telecommunication networks. We focus on maintaining connectivity between two nodes over time; for the special case of path networks, this is related to the problem of minimizing the busy time of machines....
Article
Full-text available
We investigate the problem of scheduling the maintenance of edges in a network, motivated by the goal of minimizing outages in transportation or telecommunication networks. We focus on maintaining connectivity between two nodes over time; for the special case of path networks, this is related to the problem of minimizing the busy time of machines....
Preprint
We investigate the problem of scheduling the maintenance of edges in a network, motivated by the goal of minimizing outages in transportation or telecommunication networks. We focus on maintaining connectivity between two nodes over time; for the special case of path networks, this is related to the problem of minimizing the busy time of machines....
Conference Paper
Full-text available
We consider the online traveling salesperson problem (TSP), where requests appear online over time on the real line and need to be visited by a server initially located at the origin. We distinguish between closed and open online TSP, depending on whether the server eventually needs to return to the origin or not. While online TSP on the line is a...
Article
Given a graph with "uncertainty intervals" on the edges, we want to identify a minimum spanning tree by querying some edges for their exact edge weights which lie in the given uncertainty intervals. Our objective is to minimize the number of edge queries. It is known that there is a deterministic algorithm with best possible competitive ratio 2 [T....
Chapter
We consider the problem of finding a minimum spanning tree (MST) in a graph with uncertain edge weights given by open intervals on the edges. The exact weight of an edge in the corresponding uncertainty interval can be queried at a given cost. The task is to determine a possibly adaptive query sequence of minimum total cost for finding an MST. For...

Network

Cited By