
Julie Lefebvre- PhD
- Professor (Assistant) at SickKids
Julie Lefebvre
- PhD
- Professor (Assistant) at SickKids
About
40
Publications
5,315
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,680
Citations
Introduction
Current institution
Publications
Publications (40)
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mut...
The clustered protocadherins (cPcdhs) play a critical role in the patterning of several central nervous system (CNS) axon and dendritic arbors, through regulation of homophilic self and neighbouring interactions. While not explored, primary peripheral sensory afferents that innervate the epidermis may require similar constraints to convey spatial s...
Since they became observable, neuron morphologies have been informally compared with biological trees but they are studied by distinct communities, neuroscientists, and ecologists. The apparent structural similarity suggests there may be common quantitative rules and constraints. However, there are also reasons to believe they should be different....
Visual impairments in albinism result from decreased ipsilateral retinal projections. In this issue of Neuron, Slavi, Balasubramanian, and colleagues1 demonstrate how low CyclinD2 in the ciliary marginal zone perturbs generation of ipsilaterally projecting RGCs and that restoring CyclinD2 improves vision in albino mice.
Neurons form cell type-specific morphologies that are shaped by molecular cues and their cellular events governing dendrite growth. One growth rule is distributing dendrites uniformly within a neuron’s territory by avoiding sibling or ‘self’ branches. In mammalian neurons, dendrite self-avoidance is regulated by the clustered Protocadherins (cPcdhs...
Parvalbumin-expressing inhibitory neurons (PV-INs) are critical for the balance and fine-tuning of complex neuronal circuits. Studies of PV-IN biology require tools for their specific labeling, targeting and manipulation. Among these, the Cre/LoxP system is the most popular in mice, with the two commonly used PV-Cre lines cited over 5600 times. Her...
The retina is an exquisitely patterned tissue, with neuronal somata positioned at regular intervals to completely sample the visual field. Cholinergic amacrine cells are spectacular exemplars of precision, distributing in two radial layers and tangentially, forming regular mosaics. Here, we investigated how the intracellular phosphatase Pten and th...
Understanding how diverse neurons are assembled into circuits requires a framework for describing cell types and their developmental trajectories. Here we combine genetic fate-mapping, pseudotemporal profiling of morphogenesis, and dual morphology and RNA labeling to resolve the diversification of mouse cerebellar inhibitory interneurons. Molecular...
Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma ( Pcdhg ) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal b...
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted i...
Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of th...
Understanding how diverse neurons are assembled into circuits requires a framework for describing cell types and their developmental trajectories. Here, we combined genetic fate mapping and pseudo-temporal profiling to resolve the diversification of cerebellar inhibitory interneurons based on morphology. The molecular layer interneurons (MLIs) deri...
Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the cortex, the formation of inhibitory networks occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The molecular mechanisms that select GABAergic interneurons to survive or die are unknown. Here we report that t...
Down Syndrome (DS), caused by the triplication of human chromosome 21, leads to significant alterations in brain development and is a major genetic cause of intellectual disability. While much is known about changes to neurons in DS, the effects of trisomy 21 on non-neuronal cells such as astrocytes are poorly understood. Astrocytes are critical fo...
Vertebrate neurons develop dendritic trees with morphologies that are highly specific to their cell type and integral to their function. The types and numbers of inputs a neuron receives are defined by the geometry and location of its dendrites, while transmission of this information is influenced by the distribution of synapses and ion channels al...
The clustered protocadherins (Pcdhs) comprise 58 cadherin-related proteins encoded by three tandemly arrayed gene clusters, Pcdh-α, Pcdh-β, and Pcdh-γ (Pcdha, Pcdhb, and Pcdhg, respectively). Pcdh isoforms from different clusters are combinatorially expressed in neurons. They form multimers that interact homophilically and mediate a variety of deve...
Spatial patterns of neuronal connectivity are critical for neural circuit function and information processing. For many neuron types, the development of stereotyped dendritic and axonal territories involves reiterative contacts between neurites and successive re-calibration of branch outgrowth and directionality. Here I review emerging roles for me...
The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanism...
Dendrites from the same neuron usually develop nonoverlapping patterns by self-avoidance, a process requiring contact-dependent recognition and repulsion. Recent studies have implicated homophilic interactions of cell surface molecules, including Dscams and Pcdhgs, in self-recognition, but repulsive molecular mechanisms remain obscure. Here, we rep...
The mammalian Protocadherin (Pcdh) alpha, beta, and gamma gene clusters encode a large family of cadherin-like transmembrane proteins that are differentially expressed in individual neurons. The 22 isoforms of the Pcdhg gene cluster are diversified into A-, B-, and C-types, and the C-type isoforms differ from all other clustered Pcdhs in sequence a...
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites. Remarkably, some neurons that display self-avoidance...
Early during neuromuscular development, acetylcholine receptors (AChRs) accumulate at the center of muscle fibers, precisely where motor growth cones navigate and synapses eventually form. Here, we show that Wnt11r binds to the zebrafish unplugged/MuSK ectodomain to organize this central muscle zone. In the absence of such a zone, prepatterned AChR...
Twenty-two tandemly arranged protocadherin-gamma (Pcdh-gamma) genes encode transmembrane proteins with distinct cadherin-related extracellular domains and a common intracellular domain. Genetic studies have implicated Pcdh-gamma genes in the regulation of neuronal survival and synapse formation. Because mice lacking the Pcdh-gamma cluster die perin...
Vertebrates display diverse patterns of neuromuscular innervation, but little is known about how such diversity is generated. In mammals, neuromuscular junctions form predominantly at equatorial locations, giving rise to a focal innervation pattern along a central endplate band. In addition, vertebrate striated muscles exhibit two nonfocal neuromus...
Induction and patterning of the mesodermal germ layer is a key early step of vertebrate embryogenesis. We report that FoxD3 function in the Xenopus gastrula is essential for dorsal mesodermal development and for Nodal expression in the Spemann organizer. In embryos and explants, FoxD3 induced mesodermal genes, convergent extension movements and dif...
Motor axons in the trunk of the developing zebrafish exit from the ventral spinal cord in one ventral root per hemisegment and grow on a common path toward the region of the horizontal myoseptum, where they select their specific pathways. Tenascin-C, a component of the extracellular matrix, is concentrated in this choice region. Adaxial cells and o...
Precise wiring of neuromuscular connections requires motor axons to navigate through the periphery and establish synapses at their muscle targets. While these processes are typically viewed as distinct events, they must be coordinated to ensure proper matching of pre- and post-synaptic development to achieve a synapse. To explore this relationship,...
En route to their target, pioneering motor growth cones repeatedly encounter choice points at which they make pathway decisions. In the zebrafish mutant unplugged, two of the three segmental motor axons make incorrect decisions at a somitic choice point. Using positional cloning, we show here that unplugged encodes a homolog of muscle-specific kina...
Before establishing terminal synapses with their final muscle targets, migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts....