
ORIGINAL ARTICLE

A multi-criteria geographic information systems approach
for the measurement of vulnerability to climate change

Daniel Miller Runfola1 & Samuel Ratick2 & Julie Blue3 &

Elia Axinia Machado4 & Nupur Hiremath3 &

Nick Giner2 & Kathleen White5 & Jeffrey Arnold5

Received: 8 October 2014 /Accepted: 12 July 2015
# Springer Science+Business Media Dordrecht 2015

Abstract A flexible procedure for the development of a multi-criteria composite index to
measure relative vulnerability under future climate change scenarios is presented. The com-
posite index is developed using the Weighted Ordered Weighted Average (WOWA) aggrega-
tion technique which enables the selection of different levels of trade-off, which controls the
degree to which indicators are able to average out others. We explore this approach in an
illustrative case study of the United States (US), using future projections of widely available
indicators quantifying flood vulnerability under two scenarios of climate change. The results
are mapped for two future time intervals for each climate scenario, highlighting areas that may
exhibit higher future vulnerability to flooding events. Based on a Monte Carlo robustness
analysis, we find that the WOWA aggregation technique can provide a more flexible and
potentially robust option for the construction of vulnerability indices than traditionally used
approaches such as Weighted Linear Combinations (WLC). This information was used to
develop a proof-of-concept vulnerability assessment to climate change impacts for the US
Army Corps of Engineers. Lessons learned in this study informed the climate change screening
analysis currently under way.
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1 Introduction

Identifying, measuring, and analyzing the level, extent, and spatial patterns of vulnerability has
a rich and growing literature (Clark et al. 1998; Cutter et al. 2003; Turner et al. 2003; Ratick
et al., 2009; Polsky et al. 2009; Preston et al. 2011; Ratick and Osleeb 2011; Perveen and Allen
James 2011). While there are numerous variations, assessments often rely on a tripartite
operational definition of vulnerability that involves measures of the exposure to the hazard,
the sensitivity or susceptibility to the potential harm caused by the hazard, and the ability to
cope with the harm. One key challenge to research examining vulnerability to climate change
is in measurement—as the coupled biophysical and social systems that experience differential
vulnerability require a wide variety of both data and expertise to accurately model, describe,
and address those hazards (Turner et al. 2003; O’Neill et al. 2006).

In this paper, we present an approach to quantifying vulnerability to climate change by
implementing and evaluating the multi-criteria Weighted OrderedWeighted Average (WOWA)
procedure (Jiang and Eastman 2000; Liu 2006; Malczewski et al. 2003, Ratick et al., 2009,
Ratick and Osleeb 2011). While the methods we present here are globally applicable, to
illustrate the pros and cons of this approach at a relatively fine spatial scale, we focus on the
context of a case study examining flooding vulnerability within the USA. Methodologically,
we focus on one major issue relevant to the development of all composite indicators as
aggregates of constituent indicators: trade-off, or the degree to which low constituent indicator
values can average out, or compensate for, higher constituent values. High trade-off values
occur when equally averaging all of the constituent indicators (a frequently utilized technique
in the development of composite vulnerability indices) and can lead to implicitly optimistic
assessments of vulnerability, potentially overlooking areas that are vulnerable because their
high constituent indicator values have been averaged out (traded-off or compensated for) by
lower values of other constituent indicators for those areas. This is a similar concept to making
a type II error in hypothesis testing—rejecting a null hypothesis that is true. Alternately,
choosing very low levels of trade-off, where low constituent indicator values cannot average
out (trade-off or compensate for) higher values of other constituent indicators for an area, can
lead to fairly pessimistic vulnerability assessments, perhaps highlighting areas as vulnerable
that may not, in fact, be vulnerable.1 This is similar concept to making a type I error in
hypothesis testing—not rejecting a null hypothesis that is false.

The degree of trade-off used in constructing composite vulnerability indices is closely
related to decision risk in making resource allocations in response to these assessments of
vulnerability (Jiang and Eastman 2000). By controlling for trade-off, the WOWA aggregation
process enables the assessment of the full range of vulnerability (from optimistic to pessimis-
tic). These concepts are developed in Section 2.

We evaluate the WOWA composite index aggregation approach using six constituent
indicators of future flood vulnerability (see Table 1). These indicators were selected as
example proxy measures of both exposure and sensitivity to flooding events by the Institute
for Water Resources (IWR) of the US Army Corps of Engineers (USACE); while this case
study is US-specific, we employ it to illustrate the strengths and weaknesses of the approach
presented in this paper. USACE also provided an initial set of subjective importance weights
for each of the indicators that represent an expert assessment of the degree to which each

1 This holds true when higher values of constituent indicators and the final index values indicate higher levels of
vulnerability; alternative definitions of vulnerability would result in differing interpretations.
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indicator reflected and predicted vulnerability to flooding. The constituent indicators, and the
derived composite vulnerability index, are measured across 204 Hydrologic Unit Code (HUC)
areas in the continental USA. We use this case study to evaluate both (a) the effects of different
trade-off levels with the WOWA approach and (b) the sensitivity of the composite vulnera-
bility indices to changes in the expert assessments of importance weights using a Monte Carlo
simulation approach. The methodology and lessons learned in this study can provide guidance
to researchers seeking to conduct future index-based measurements of vulnerability across any
spatial area, temporal scope, or scale.

2 The use of indicators in vulnerability assessments

Vulnerability assessments to climate change are frequently conducted using constituent indi-
cators—quantitative measures that are used to represent the many factors associated with
climate change impacts (Easterling and Kates 1995; Tzilivakis et al. 2015; de Bremond and
Engle 2014). The indicators used in these assessments often represent three dimensions of
vulnerability: exposure, sensitivity, and adaptive capacity (Barr et al. 2010; Yuan et al. 2015;
Juhola and Kruse 2015). Sets of these indicators may be aggregated to create a composite

Table 1 The six indicators used for this analysis

Indicator Description Reference

Annual CVof unregulated
streamflow (cumulative)

The coefficient of variation (CV) of
unregulated streamflow is an indicator
of annual streamflow variability. It is
computed as the ratio of the standard
deviation of unregulated annual
streamflow (oQs) to the unregulated
mean annual streamflow (QS)′.
(Hurd et al., 1999). Measure of variability
in region’s hydrology; standard deviation
of regional annual internal water flow
divided by the mean annual internal
water flow in each region
(Lane et al. 1999). (cumulative)

Hurd et al. (1999)

% Change in streamflow
divided by % change
in precipitation

The proportional change in streamflow
(Q) divided by the proportional change
in precipitation (P) for 1291 gauged
watersheds across the continental US

Sankarasubramanian and
Vogel (2001)

Flood recurrence reduction
factor (cumulative)

Change in the flood frequency resulting
from nonstationarity (method 1).
(cumulative)

Provided by Richard M.
Vogel, Tufts. Unpublished
database based on
CMIP-3 dataFlood magnification factor

(cumulative)
Ratio of the magnitude of the 100-year

flood under future conditions to the
current 100-year flood magnitude.
(cumulative)

Flood magnification factor
(local)

Ratio of the magnitude of the 100-year
flood under future conditions to the
current 100-year flood magnitude. (local)

Acres of urban area within
500-year floodplain

Area in the 500-year flood plain for
each HUC

Indicator was developed for
this study (ICLUS)
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index, a single comparable measure of vulnerability, in order to contrast varying degrees of
vulnerability across all units of analysis (Clark et al. 1998; Cutter et al. 2003, Ratick et al.
2009). An ideal composite vulnerability index is impartial, intuitive to comprehend, and
comparable across space and time (Rygel et al. 2006).

Composite vulnerability indices have been used in many contexts to perform climate
vulnerability assessments. Recent global-scope indices range dramatically in terms of sector
and spatial scale—for example, Vörösmarty et al. (2010) examine threats to fresh water
supplies due to projected climate change using a global, grid-based approach, while Barr
et al. (2010) and Juhola and Kruse (2015) examine the overall vulnerability of countries to
climate change across different sectors. At a continental-scale, Tzilivakis et al. (2015) dem-
onstrate the use of composite indices to assess the vulnerability of three ecosystem services—
water, soil, and biodiversity—across 27 member states of the European Union. At the scale of
individual countries, Monterroso et al. (2014) developed a methodology to assess the vulner-
ability of the agricultural sector in Mexico to climate change, using municipalities as the unit of
analysis. Similarly, Sharma et al. (2015) recently developed a composite index to assess the
vulnerability of forests in India to climate change.

There are a number of approaches to selecting the indicators used in a composite vulner-
ability index; however, for the purpose of this paper, we only highlight the most commonly
used (see Füssel 2010 for a more detailed review of different approaches). One approach is to
select relevant indicators based on a theoretical conceptual framework (Hahn et al. 2009; Kelly
and Neil Adger 2000; O’Brien et al. 2004). Another approach is to gather a large set of
indicators based on theory and practice and subsequently reduce the number to a core set that
are relevant, comprehensive, and non-overlapping in the aspects of vulnerability that they
measure through the use of methods such as factor analysis or correlation analysis (Clark et al.
1998; Cutter and Finch 2008; Ratick et al. 2009; Cutter et al. 2003; Adger et al. 2004). In this
paper, we implement a hybrid approach in which measures of statistical overlap among
indicators helped inform expert decision makers working from theoretical conceptual frame-
works. Once indicator selection is performed, indicators are combined into a single index
through a process called aggregation.

2.1 Aggregation and trade-off

There has been a growing interest in methods of data reduction and aggregation in recent years
(Adger et al. 2004; Rygel et al. 2006; Ratick et al. 2009; Ratick and Osleeb 2011; Machado
2011). This can be partially attributed to the rapid growth of the information technology
industry and the dissemination of vast quantities of data and information to end users, which
can become so extensive that the supply of data or information can exceed the capacity to
process it (Lin and Morefield 2011). Consequently, decision makers may accidentally ignore
important data, focus on non-useful data, or become highly selective about which data to
include in an analysis (Hwang and Lin 1999). When data reduction or aggregation methods are
used effectively, the dimensionality of the data is reduced, information overload is mitigated,
and decision makers are provided with the best and most useful information for the task at
hand (Lin and Morefield 2011). While aggregation reduces the dimensions of the data and
facilitates interpreting the results, care must be taken to ensure that important information is not
obfuscated through the aggregation or data reduction technique selected.

The mathematical procedure used for aggregation has important implications for the
interpretation of the final vulnerability assessment results. For example, averaging all
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indicators equally or applying different weights to each one can all produce different vulner-
ability index results, which in turn requires different interpretations (Adger et al. 2004; Ratick
et al. 2009; Ratick and Osleeb 2011). While dozens of approaches are possible, there are at
least six that are frequently encountered in the index-construction literature (see Table 2 and
Machado 2011 for a summary). These are clustering-based approaches (i.e., statistical cluster
analysis), Pareto frontier methods (i.e., Data Envelopment Analysis), the Weighted Linear
Combination (WLC), spatially explicit aggregation techniques (i.e., multiplicative overlays),
simple algebraic manipulations, and Ordered Weighted Averages (OWA). Of these, by far the
most commonly used approach is the Weighted Linear Combination—having been employed
across a wide range of sectors, countries, and scales (c.f. Clark et al. 1998; Hurd et al. 1999;
Cutter et al. 2000; Wu et al. 2002; Cutter et al. 2003; Finch et al. 2010; López-Marrero and
Yarnal 2010; Rinner et al. 2010; Cutter and Finch 2008). Here, we contrast the Weighted
Linear Combination to the Weighted Ordered Weighted Average aggregation procedure to
better illustrate advantages and drawbacks of each approach, using the context of the US case
study to illustrate these in an applied case study.

2.1.1 The Weighted Linear Combination (WLC)

In the WLC, weights are assigned to each indicator and their weighted sum is calculated for
each unit of analysis. The WLC weights are intended to reflect their relative importance, but

Table 2 Frequently encountered aggregation methods for vulnerability index construction

Aggregation approach Short summary Sources

PCA Statistically groups indicators into
factors based on variance

Clark et al. (1998); Cutter et al. (2000); Cutter
et al. (2003); Rygel et al. (2006); Finch et al.
(2010); Wood et al. (2010)

Frontier (DEA, Pareto) Methods that identify the most
vulnerable cases for any
indicator and rank other
cases relative to them

Clark et al. (1998); Rygel et al. (2006)

Weighted Linear
Combination

Indicators are weighted, and the
weighted sum is taken. The
most frequently found type is
equal-weights WLC

Auerbach (1981); Clark et al. (1998); Hurd
et al. (1999); Cutter et al. (2000); Moss et al.
(2002); Wu et al. (2002); Cutter et al. (2003);
O’Brien et al. (2004); Brooks et al. (2005);
Alessa et al. (2008); Esther and Huggel
(2008); Ariza et al. (2010); Finch et al.
(2010); NOAA (2010); Perch-Nielsen
(2010); SDI (2010); Wood et al. (2010)

Spatially explicit
aggregation

Two maps are overlaid, and areas
that share the same physical
location are aggregated through
a multiplicative mathematical
operation

Cutter et al. (2000); Wu et al. (2002); O’Brien
et al. (2004); Esther and Huggel (2008);
Rinner et al. (2010)

Algebraic methods
(multiplication,
subtraction)

Indicators are subtracted or
multiplied with no further
manipulation

Moss et al. (2002); López-Marrero and Yarnal
(2010)

Ordered Weighted
Average

Assigns weights based on the
rank order of indicators at a
given site

Jiang and Eastman (2000); Malczewski et al.
(2003); Rinner et al. (2010)
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the WLC is often used with equal weights for each constituent indicator. An example of the
generic form for the construction of the weighted average is given in Eqs. (1) and (2) below
(adapted from Ratick and Osleeb 2011):

I j ¼
X
i∈A

V iMi j ∀ j∈J ð1Þ

Subject to:

X
i∈A

V i ¼ 1 ð2Þ

where
Ij= the composite WLC vulnerability index for HUC j
Vi=a weight that reflects the relative importance (usually determined subjectively) of the

constituent indicator (i) in the assessment of vulnerability
Mij= the physical measure of constituent indicator (i) in HUC j
A= the set of constituent indicators
J= the set of HUCs
The WLC has a number of benefits, including the ability to clearly identify the contribution

of each indicator to the final score, its relative simplicity, and its wide use and acceptance in
academic and policy literature. However, in cases where a single or many low indicator values
offset or average out high indicator values, the WLC approach may not correctly identify at-
risk areas or under-represent their true vulnerability. This concern, referred to as trade-off or
compensation, can prove particularly challenging in vulnerability index construction where an
implicitly optimistic assessment (type II errors, false negatives) may result in missed mitigation
opportunities.

2.1.2 The (Weighted) Ordered Weighted Average (WOWA)

The OWA technique was first formally described by Yager (1988) and provides the equations
upon which the method employed in this paper (theWeighted Ordered Weighted Average) was
built. The OWA has found numerous applications in a wide variety of domains, including
computer science and machine intelligence, business decision-making, and environmental
protection (e.g., Yager and Kacprzyk 1997; Yager et al. 2011) as well as addressing decision
problems with spatial dimensions using geographic information systems (GIS). The
OWA functionality was built into the GIS-Idrisi software in the late 1990s (Eastman
1997) and implemented in the web-enabled CommonGIS system shortly thereafter
(Rinner and Malczewski 2002). In application, the OWA helps mitigate the trade-off
concern of the WLC by assigning weights based on the rank order of indicators in a
given HUC (see Rinner et al. 2010; Yager 1988; Malczewski et al. 2003; Jiang and
Eastman 2000). An OWA is obtained by first ordering (ranking) the indicator values
in each HUC from largest to smallest. Next, order weights are applied to the attributes
of each unit of analysis based on their position in this order—i.e., in our case,
indicators with larger values after standardization would be weighted more heavily
than those with lower values. These order weights allow the decision-maker to choose
the degree of trade-off of low values for high values when aggregating the indicators
to form the composite index.
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In our implementation of the OWA, the degree to which trade-off is allowed to occur is
measured by an ORness value (a derivative from the measures of ORness and ANDness in
fuzzy sets [Yager 1988]). ORness ranges from 0 to 1, with 0.5 representing full trade-off.
When ORness is equal to 0.5, the OWAyields the same results as the WLC. An ORness value
of 0 has all the weight being applied to the constituent indicator with the smallest value in
every HUC; an ORness value of 1 has all the weight being applied to the indicator with the
largest value in each HUC. Limiting the range of ORness to between 0.5 to 1.0 can be
interpreted as a range of measures from optimistic (allowing smaller values to compensate for
larger values; ORness closer to 0.5) to pessimistic (not allowing smaller values to compensate
for larger values; ORness closer to 1.0) assessments and related decision-making strategies
(Malczewski et al. 2003).

Once an ORness value is selected, a nonlinear constrained optimization model is applied
(Eqs. (3) and (4)) to find the OWA weights that maximize Shannon’s entropy measure
(maximize dispersion) subject to the constraint that the weights adhere to the chosen OWA
ORness level (Malczewski et al. 2003):

Maximize Dispersion ¼ −1�
X�

Wk ið Þ � ln Wk ið Þ
� � ð3Þ

Subject to:

ORness ¼ 1−
1

n−1

� �X�
n−iWk ið Þ ð4Þ

where
Wk(i) =The order weight assigned to order k(i)
The use of the maximum dispersion measure provides a unique set of weights for any

chosen ORness level that are the most equal across the constituent indicators, thereby using as
much information as possible from each of the constituent indicators.

Using these order weights, the OWA composite index (COj) for each HUC j can be
calculated following Eqs. (5) and (6) below. If index (k(i)j) represents the order of constituent
indicator i for HUC j, andWk(i) represents the weight assigned to order k(i), then (adapted from
Ratick and Osleeb 2011):

CO j ¼
X
k ið Þ∈A

Wk ið ÞMk ið Þ j ∀ j∈J ð5Þ

Subject to:

X
k ið Þ

Wk ið Þ ¼ 1 ð6Þ

where
COj=The composite ordered weighted average (OWA) index for HUC j
Wk(i) =The order weight assigned to order k(i)
Mk(i)j=The constituent indicator i (in order position k) for HUC j
A=The set of constituent indicators
J=The set of HUCs within the study area
The derivative of the OWA used in this paper, the WOWA, follows the same basic

procedure as outlined above. However, before indicator ranks are calculated within each
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HUC j, a set of expert weights, or subjective weights representative of the importance of each
constituent indicator, is first applied to each indicator value. This approach is preferable in
some cases as it allows for both importance weighting (as in the WLC) as well as a control for
trade-off (as in the OWA) within a single approach. Equation (9) in Section 3.4 below
describes the incorporation of importance weights into the OWA (a step-by-step example
can be found in Malczewski et al. 2003).

3 Methodology

Building on the approach outlined in Malczewski et al. (2003), our methodology for
creating composite indices of the vulnerability of HUCs to floods under future
scenarios of climate change consisted of the following steps. First, a set of six
constituent vulnerability indicators was selected from a larger list by an expert panel
made up of USACE scientists, decision makers, and consultants. Second, USACE
engineers, scientists, and decision makers provided a subjective importance weight,
representing their assessment of the degree to which the indicator reflected and
predicted vulnerability to flooding. Third, the values for each indicator were standard-
ized to facilitate the aggregation process, and the indicator values were aggregated for
each Hydrological Unit Code (HUC-4) using the WOWA technique. Fourth, once the
initial analysis was complete, a Monte Carlo sensitivity analysis was implemented by
varying the importance weights to assess their influence on the results.

3.1 Data and study area

To estimate future climate change impacts, the constituent indicator data were
projected into two future epochs: epoch 1 (2040–2060) and epoch 2 (2080–2100).
Data sources included the EPA’s Integrated Climate and Land Use Scenarios (ICLUS)
for IPCC’s A1B emissions scenario (Solomon et al. 2007), FEMA 500-year flood
zones (Federal Emergency Management Agency, FEMA 2010), and the Coupled
Model Intercomparison Project (CMIP3). Projections for many indicators were calcu-
lated based on anticipated changes in climate and climate variability using projections
of precipitation and temperature changes from the output of 22 general circulation
models (GCMs). Using these projections, two scenarios were selected: a wet and dry
scenario, in which the 90th and 10th percentile of precipitation (and related measures)
were used, respectively.

3.2 Indicator selection and importance weighting

Initially, a collection of 205 indicators relevant to flood risk were compiled from an
exhaustive literature review. Over a series of meetings, this initial set of indicators
was reduced by USACE engineers, scientists, decision makers, and consultants, who
determined their relevance for quantifying exposure and sensitivity to future floods.
Ultimately, a subset of six indicators was chosen, based on relevance, data availability,
and through the use of correlation and factor analysis to reduce redundancy in the
chosen constituent indicators in their measures of similar phenomena. Each of the six
constituent indicators is summarized in Table 1.
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USACE engineers and scientists2 then assigned weights to each indicator based on their
relative importance to measuring vulnerability to future flooding. A weight of 1 was assigned
to the least important constituent indicator, and a weight greater than or equal to 1 was
assigned to the other indicators based on their relative importance by comparison. For
example, if a constituent indicator is considered twice as important as the least important
indicator, it would have been assigned a weight of 2. If an indicator was 50 % more important,
it would have been assigned a weight of 1.5. The weights were then normalized to sum to 1.

Expert-based importance weights are subjective and may be influenced by a number of
factors. These include the experience and degree of familiarity of the participants in the
weighting activity, the goals that those participants had for the analysis, and their nuanced
understanding of what comprises vulnerability. Recognizing this, the influence of the impor-
tance weights on the final results was examined using Monte Carlo simulation.

3.3 Data standardization

In order to compare the values of indicators (i.e., temperature; rainfall) measured in different
units, a data standardization process must be employed. In our case, indicators that had
negative values were first adjusted in preparation for standardization by adding the absolute
value of its minimum over all HUCs (Eq. (7)):

M j ¼ I j þ min I j; j∈J
� �		 		 ð7Þ

where
Mj is the modified constituent indicator value at HUC j,
Ij is the constituent indicator value for HUC j, and
J is the set of all HUCs in the analysis.
Next, constituent indicators for which increasing values imply decreasing vulnerability

were adjusted to account for this directionality by subtracting the constituent indicators values
from the maximum value that the constituent indicator achieves over all scenarios and time
periods (equation 8):

Dj ¼ Max M j; j∈J
� �

−M j ð8Þ

where:
Dj is the direction-adjusted constituent indicator value for HUC j,
Mj is the modified indicator value (with no negative values) produced from Eq. (7), or Ij if

that indicator did not have any negative values.
Table 3 describes some extant standardization approaches, each with strengths and weak-

nesses. We chose to standardize each constituent indicator to be no larger than 1 by dividing
each constituent indicator’s value in each HUC by its maximum value over all the HUCs after
Eqs. (7) and (8) are applied, in the scenarios and time periods analyzed.

2 USACE engineers and scientists are frequently involved in the decision-making process, but the parameters
chosen were later made to be interactive for other groups of decision makers via a software platform.
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3.4 WOWA Aggregation

The standardized constituent indicators were multiplied by their importance weights, yielding
a weighted value. These importance weighted constituent indicator values were then aggre-
gated for each HUC using the OWA procedure described in Section 2.1.2, Eqs. (5) and (6). We
chose to test an ORness level of 0.5 (which gives each rank order the same weight, the
equivalent of a Weighted Linear Combination) and is representative of an optimistic vulner-
ability assessment, as well as an ORness level of 0.7, representing a more pessimistic
assessment. The ORness of 0.7 resulted in approximately 75 % of the weight being given to
the largest 50 % of the indicators, due to the use of the maximum dispersion optimization
described in Section 2.1.2, Eqs. (3) and (4).

Because constituent indicators were pre-weighted by their corresponding importance
weights and then weighted again using the OWAweights, they need to be re-scaled to obtain
a composite vulnerability index ranging from 0 to 1. This was accomplished for each scenario
and time period using the rescaling formula in Eq. (9) (Jiang and Eastman 2000):

CO j ¼
X

i

W k ið Þ jV iMi jX
Wk ið Þ jV i

0
@

1
A ð9Þ

where
COj is the composite WOWA vulnerability score for flooding in HUC j,
Wk(i)j is the order weight assigned to order k(i) for HUC j,
Vj is the importance weight for constituent indicator i, and
Mij is the value of constituent indicator i for HUC j.
Equation (9) results in a single value representing the composite vulnerability index value

(COj) for each HUC j obtained using the importance weights and the OWA weights. It is
applied to each HUC in each time interval within each scenario.

Table 3 Frequently encountered standardization approaches for vulnerability index construction

Data standardization approach Short summary Sources

Quantile/percentile Data are grouped into quantiles, then scaled
from 0 to 1 based on the quantile in which
they fall. Percentiles represent the
continuous equivalent to this approach

Hurd et al. (1999); Alessa et al.
(2008); Perch-Nielsen (2010);
Vörösmarty (2010)

Human Development Index MAX j− kð Þ
MAX j− MIN jð Þ

Sharma and Patwardhan (2008)

Division by Max (Theoretical
Max can be substituted)

k
MAX j

Cutter et al. (2000); Wu et al.
(2002); SDI (2010)

Z-scores The number of standard deviations of the
indicator value above the mean

Wood et al. (2010)

As a proportion of an
external indicator

Dataset normalized by an external dataset
(e.g., monetary values in terms of
1990 dollars)

Auerbach (1981); Moss et al.
(2002); Cutter et al. (2003);
Brooks et al. (2005)

Thresholding Either survey design or post-hoc thresholds
are determined to separate datasets into
comparable sets (e.g., expert decision on
what threshold for heat indicates high
vulnerability)

Aceves-Quesada et al. (2007);
López-Marrero and Yarnal
(2010); NOAA (2010)
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3.5 Sensitivity analysis

A Monte Carlo sensitivity analysis (Ratick and Schwarz 2009; Koller 2000) was conducted to
determine the influence of the importance weights on the composite vulnerability indices for
the HUCs, following a three-step procedure. First, the importance weights for each of the six
indicators are randomly generated from a uniform distribution between 0 and 1, and normal-
ized to sum to 1. Second, these weights are input into Eq. (9), using the OWAweights for an
ORness value of 0.7, generating realizations of the composite vulnerability index for each of
the 204 HUCs under these randomly generated importance weights. Third, this is repeated
1000 times to provide 1000 possible composite vulnerability index values for each HUC. The
resultant average rank of each HUC in the average realizations is then compared to our
findings in the original analysis. In this case, the average rank is used to contrast (a) the most
likely WOWA outcome given no expert judgment to (b) our WOWA results given expert
weightings—future research could examine the possibility of extreme changes to the WOWA
results by examining other elements of the distribution (i.e., the likelihood of extreme
vulnerabilities).

4 Results

4.1 WOWA Aggregation

The results of the case study are intended to demonstrate the types of information for decision-
making that can result from the use of this composite index approach to vulnerability
assessments, not as a validated measure of potential vulnerability in any of the HUCs. The

Fig. 1 Resultant WOWA scores for each HUC under the dry scenario, epoch 1, ORness of 0.7
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resultant composite vulnerability index measures the projected vulnerability of each HUC
when compared on these aggregated measures relative to the other HUCs. It does not provide a
measure of the absolute vulnerability of each HUC to future floods. Using an example ORness
of 0.7 together with the importance weights provided by USACE on the selected indicators,

Fig. 2 Resultant WOWA scores for each HUC under the dry scenario, epoch 2, ORness of 0.7

Fig. 3 Resultant WOWA scores for each HUC under the wet scenario, epoch 1, ORness 0.7
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the resultant WOWA composite vulnerability index values (see Figs. 1, 2, 3, and 4) ranged
from 0.20 to 0.89, with the most vulnerable cases being found (as expected) under the wet
scenarios.

In this analysis, the two HUCs that had the highest average WOWA score across all time
periods are shown in Fig. 5, broken down by their constituent indicator’s contribution after
weighting. As Fig. 5 shows, both areas show higher vulnerability under the wet scenario than
the dry scenario during both future epochs. However, in HUC 1507, the dry scenario reduces
vulnerability less than it does in HUC 1810, largely due to the much larger exposed urban area
in HUC 1507.

The results for these two HUCs when the analysis was performed using an ORness of 0.5
(equivalent to an equal-weights WLC) can be seen in Fig. 6. As expected, the total WOWA

Fig. 4 Resultant WOWA scores for each HUC under the wet scenario, epoch 2, ORness 0.7

Fig 5 The indicator contributions for the two highest ranked HUCs (ORness = 0.7)
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scores for both HUC 1507 and HUC 1810 (represented by the total height of each bar) are
lower than with an ORness of 0.7. This is because larger values are no longer given larger
weights in the rank-ordering of the OWA (all ranks are assigned equal weights when
ORness = 0.5). This difference can be observed by comparing the flood frequency and urban
area indicator contributions for HUC 1507 under both ORness options. Using the wet
scenarios as an example, when ORness = 0.7 (Fig. 5), the majority of measured vulnerability
is a result of the large urban area and flood frequency indicator values. Conversely, when
ORness = 0.5 (Fig. 6), urban area and flood frequency contribute relatively less to the total
index, as their values are no longer increased to account for trade-off.

4.2 Sensitivity

To analyze the results of the Monte Carlo sensitivity test of the importance weights, we first
compared each HUC’s relative ranking based on its composite vulnerability index value under
the given importance weights to that HUC’s average rank over all 1000 realizations. We then
compared how often a HUC that is in the top 10 % of the most vulnerable HUCs during any
epoch and scenario in our initial analysis remains in the top 10 % during the majority of the
Monte Carlo random realizations.

The results of the sensitivity analysis can be seen in Figs. 7 and 8. As these figures illustrate,
the randomization of importance weights had a relatively small impact on the resultant rank of
the majority of HUCs. The r2 fit between the observed and Monte Carlo realizations results
ranged from 0.92 to 0.95. In all scenarios, the strongest agreements are seen in very-low
vulnerability HUCs (i.e., those ranked closer to 204) and in vulnerable HUCs (i.e., those
ranked closer to 1). This pattern is strongest in the relatively higher vulnerability HUCs within
the dry scenario.

Table 4 focuses on the sensitivity of the most vulnerable HUCs, examining how frequently
those HUCs identified as being in the top 10 % most vulnerable in the initial results remained
in the top 10 % most vulnerable in the majority of the Monte Carlo random realizations. Using
the wet scenario during the second epoch as an example:

& 36 HUCs were identified as being in the top 10 % of most vulnerable HUCs using both the
USACE weights as well as in the majority of Monte Carlo iterations (true positives);

Fig 6 The indicator contributions for the two highest ranked HUCs (ORness = 0.5)
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& 11 HUCs were identified as being in the top 10 % of most vulnerable HUCs using the
USACE weights, but were not identified as vulnerable in the majority of iterations (false
positives);

& 1 HUC was not identified as being in the top 10 % most vulnerable using the USACE
weights, but was identified as vulnerable in the majority of iterations (false negative);

& 156 HUCs were not identified as vulnerable using either the USACE weights or in the
majority of Monte Carlo iterations (true negatives).

A similar cross-tabulation was not constructed for the dry scenario, as in this cross-scenario
analysis all of the most vulnerable HUCs were in the wet scenario (as expected for flooding
vulnerability). This sensitivity analysis suggests that, in general, the importance weights
selected by USACE engineers had a relatively small effect on the final index. This is supported
by the very high r2 value between the rank each HUC was assigned in our initial analysis and
the average rank produced by the Monte Carlo iterations, though further research examining
the distribution of variation across all iterations could provide deeper insights into this
question.

To illustrate the importance of trade-off, the sensitivity analysis described above was
performed again, this time using an ORness of 0.5, rather than 0.7. Because an ORness
of 0.7 represents a more pessimistic decision-making strategy, it is anticipated that we
should see fewer false negatives than in the case of ORness being equal to 0.5. This is
borne out in the results. Comparing Tables 4 and 5 shows that in the 0.5 case there are
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Fig 7 The relative rank of each HUC utilizing USACE expert weights compared to the average rank of each
HUC over 1000 iterations utilizing random weights (wet scenario)
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a total of 10 false negatives across the two time epochs, while in the 0.7 case there is
only a single false negative (i.e., one case in which a HUC was not identified as being
in the top 10 % most vulnerable by our initial analysis, but would be in the top most
vulnerable HUCs under random weights). This highlights a quality of the WOWA
approach—as ORness increases from 0.5 to 1, subjective importance weights become
less influential on the final index. In the extreme example (ORness = 1), only the
importance weight assigned to the largest indicator in each HUC would influence the
final result.

Table 4 Summary of findings from the sensitivity analysis for the wet scenario (ORness = 0.7)

Epoch 1 wet Randomized weights

Initial results
(USACE
weights)

Identified as vulnerable >50 %
of the Monte Carlo
realizations

Identified as vulnerable <50 %
of the Monte Carlo
realizations

Identified as vulnerable 29 6

Not identified as
vulnerable

0 169

Epoch 2 wet Randomized weights

Initial results
(USACE
weights)

Identified as vulnerable >50 %
of the Monte Carlo
realizations

Identified as vulnerable <50 %
of the Monte Carlo
realizations

Identified as vulnerable 36 11

Not identified as vulnerable 1 156
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Fig. 8 The relative rank of each HUC utilizing USACE expert weights compared to the average rank of each
HUC over 1000 iterations utilizing random weights (dry scenario)
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5 Discussion and conclusions

This paper contributes to the vulnerability assessment literature by presenting and evaluating a
flexible approach to address one of the main challenges of constructing vulnerability indices:
managing the trade-off, or the degree to which low constituent indicator values can average
out, or compensate for, higher values. Our approach expands the ways in which importance
weights and trade-off are incorporated into composite vulnerability indices by incorporating
importance weights and applying ORness values in a WOWA aggregation process. Using this
approach offers the option to implement one of the most commonly used approaches in
building composite vulnerability indices (i.e., WLC if ORness= 0.5), but also provides a more
informed decision-making process because a full range of outcomes (from more optimistic to
pessimistic) of relative vulnerability can be explored by changing the degree of trade-off
through the ORness values. In addition, a Monte Carlo sensitivity analysis can be used, as we
demonstrate, to determine the effect of expert importance weights provided on the final
composite vulnerability index.

However, there are many potential avenues for future research spurred from limitations to
the WOWA methodology. Of primary concern is uncertainty (see below) and related robust-
ness of solutions. Currently, the WOWA index-based approach suffers from at least four
primary sources of uncertainty, all of which merit further research. These include (1) the spatial
scale of analysis and related Modifiable Area Unit Problem (MAUP) concerns; (2) the
importance of possible outliers in the distribution of all possible index values within robustness
tests; (3) the calibration of the ORness parameter, and how to provide guidance to practitioners
on its selection; and (4) the implications of the initial indicator selection and standardization
processes. Many of these concerns are not unique to WOWA, also impacting other index-
based approaches to estimating vulnerability.

Further, there are still fundamental challenges remaining to the interpretation and construc-
tion of all indices—i.e., unpacking the sources of differences between factual realities and
perceptions of vulnerabilities in a world of limited capacity for measurement. However, to
better understand these differences, it is critical that validation data are available—i.e., a

Table 5 Summary of findings from the sensitivity analysis for the wet scenario (ORness = 0.5)

Epoch 1 wet Randomized weights

Initial results
(USACE weights)

Identified as vulnerable >50 %
of the Monte Carlo
realizations

Identified as vulnerable <50 %
of the Monte Carlo
realizations

Identified as
vulnerable

32 3

Not identified as
vulnerable

8 161

Epoch 2 wet Randomized weights

Initial results
(USACE weights)

Identified as vulnerable >50 %
of the Monte Carlo
realizations

Identified as vulnerable <50 %
of the Monte Carlo
realizations

Identified as
vulnerable

38 9

Not identified as
vulnerable

2 155
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historic analysis could examine if a difference between perceived and actual vulnerability after
a disaster event was due to the optimism of decision makers, uncertainties in expert
weightings, input data, the data selection process, or even stakeholder involvement (i.e., did
a stakeholder choose different weights from experts?). These types of analyses are rapidly
becoming more possible as computational capacity and standardized data stores become more
prevalent.

The reduction of large sets of data into useful information for environmental decision-
making is an ongoing methodological challenge. Despite the methodological limitations
mentioned above, we present one approach to address this challenge and have provided a
description of its capabilities as well as its potential advantages over other aggregation
methods such as the WLC. Finally, although our case study focuses in the US, the relative
ease of the WOWA procedure to provide comparable assessments under different ORness
levels allows for such analysis to be easily incorporated into spatial decision support systems.
This advantage facilitates the application of WOWA at other scales such as global vulnerability
studies (subject to data availability), but also makes it particularly well suited for screening
assessments, indicating where more detailed information needs to be developed at a finer
spatial scale.
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