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Abstract Methionine is an essential amino acid involved

in critical metabolic process, and regulation of methionine

flux through metabolism is important to supply this amino

acid for cell needs. Elevation in plasma methionine com-

monly occurs due to mutations in methionine-metabolizing

enzymes, such as methionine adenosyltransferase. Hyper-

methioninemic patients exhibit clinical manifestations,

including neuronal and liver disorders involving inflam-

mation and tissue injury, which pathophysiology is not

completely established. Here, we hypothesize that alter-

ations in macrophage inflammatory response may con-

tribute to deleterious effects of hypermethioninemia. To

this end, macrophage primary cultures were exposed to

methionine (1 mM) and/or its metabolite methionine sul-

foxide (0.5 mM), and M1/proinflammatory or M2/anti-in-

flammatory macrophage polarization was evaluated. In

addition, inflammation-related pathways including oxida-

tive stress parameters, as superoxide dismutase (SOD),

catalase (CAT), glutathione peroxidase (GPx) activities;

reactive oxygen species (ROS) production, and purinergic

signaling, as ATP/ADP/AMPase activities, were investi-

gated. Methionine and/or methionine sulfoxide induced

M1/classical macrophage activation, which is related to

proinflammatory responses characterized by increased

iNOS activity and TNF-a release. Further experiments

showed that treatments promoted alterations on redox state

of macrophages by differentially modulated SOD and CAT

activities and ROS levels. Finally, methionine and/or

methionine sulfoxide treatment also altered the extracel-

lular nucleotide metabolism, promoting an increase of

ATPase/ADPase activities in macrophages. In conclusion,

these findings contribute to better understand the partici-

pation of proinflammatory responses in cell injury observed

in hypermethioninemic patients.
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Introduction

Hypermethioninemia is an inborn error of amino acid

metabolism commonly related to methionine adenosyl-

transferase (MAT) deficiency [1, 2]. As a result of altered

methionine metabolism, a persistent increase of this amino

acid and its metabolite methionine sulfoxide is found in

blood and tissues of patients [2], leading to oxidative stress

and tissue damage with inflammatory response associated

[2, 3]. Hypermethioninemic patients exhibit clinical man-

ifestations, including cognitive impairment, cerebral
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edema, and demyelination, as well as liver disorders

involving inflammation and tissue injury, which patho-

physiology is not completely established [2, 4, 5].

Macrophages are key components of innate immune

response, acting in almost all aspects of inflammatory pro-

cesses, through its abundance, distribution, mobility, and

responsiveness [6]. Additionally, these cells are character-

ized by amarked heterogeneity and its activation spectrum is

modulated by microenvironment [7]. M1/classical macro-

phage activation (proinflammatory phenotype) is charac-

terized by proinflammatory cytokine production, release of

cytotoxic mediators as reactive oxygen and nitrogen species

(ROS/RNS), increased phagocytic and microbicidal activi-

ties, and ability to initiate an adaptive immune response. In

contrast, M2/alternative macrophage activation (anti-in-

flammatory phenotype) is characterized by an anti-inflam-

matory activity, remodeling function, wound healing, and

tissue repair, which indicate the resolution of inflammatory

response [7–12].

Macrophages are activated in response to danger signals,

such as microbial products, cytokines, chemokines, and

mediators, released by damaged cells, such as nucleotides

[13, 14]. Indeed, ATP and adenosine are emerging as

important mediators of inflammatory and immune respon-

ses via purinergic receptor activation [15, 16]. ATP acts as

a proinflammatory molecule by stimulating the recruitment

of immune cells to damage tissue and by inducing the

release of IL-1b, IL-6, and TNF-a [15, 17, 18]. In contrast,

adenosine, the breakdown product of ATP hydrolysis, has

opposite effects, acting as an anti-inflammatory and

immunosuppressive molecule. For example, this nucle-

oside has been known to affect TNF-a secretion and

increases IL-10 production in macrophages [19, 20].

Purinergic receptor activation is controlled by ectonu-

cleotidases, including members of the ectonucleoside

triphosphate diphosphohydrolase (E-NTPDase) family and

the ecto-50-nucleotidase/CD73 (ecto-50-NT/CD73), which
efficiently hydrolyze extracellular nucleotides to respective

nucleosides in the extracellular space [21, 22].

Although inflammatory complications have been

observed in hypermethioninemic patients, little is known

about the mechanisms involved in the pathophysiology of

this disorder. Here, we hypothesize that methionine and/or

methionine sulfoxide induce a proinflammatory/M1 mac-

rophage polarization, which in turn may contribute to

deleterious effects of hypermethioninemia. Therefore, we

investigated the in vitro effect of methionine and/or

methionine sulfoxide on mouse macrophage phenotype and

evaluated some inflammatory parameters associated as

oxidative stress and ectonucleotidase activity. The poten-

tial contribution of methionine and/or methionine sulfox-

ide-activated macrophages in the pathophysiology of

hypermethioninemia is further discussed.

Materials and methods

Chemicals

Roswell Park Memorial Institute (RPMI1640) medium and

fetal bovine serum (FBS) were obtained from Gibco (Gibco

BRL, Carlsbad, CA, USA). Nucleotides (ATP, ADP,

AMP), methionine and methionine sulfoxide were pur-

chased from Sigma Chemical (St. Louis, MO, USA).

Cytokine kits were provided by R&D Systems (Min-

neapolis, MN, USA). All other chemicals and solvents used

were of analytical or pharmaceutical grade.

Animals

Swiss male mice (8 weeks-old) were maintained under a

standard dark–light cycle (lights on between 7:00 a.m. and

7:00 p.m.) at room-controlled temperature (22 ± 2 �C).
Mice had free access to standard laboratory chow and

water. All procedures used in the present study followed

the ‘‘Principles of Laboratory Animal Care’’ of the

National Institute of Health and were approved by the

Ethical Committee of UFPel (protocol number 9221).

Macrophage cultures and differential macrophage

phenotype activation

Macrophages were collected by lavage of peritoneal cavity

with 5 mL of sterile RPMI1640/FBS-free culture medium.

Cells were washed twice with sterile PBS, suspended in

RPMI1640/FBS-free medium, transferred to 6 or 48 mul-

tiwell plates, and allowed to attach for 30 min in cell

incubator (37 �C and 5 % CO2 atmosphere). Unattached

cells were washed out with RPMI1640/FBS-free medium.

Attached cells, mainly peritoneal macrophages, were used

for the experiments thereafter. To evaluate differential

macrophage phenotype activation, obtained macrophages

were treated for 18 h with methionine (1 mM) and/or

methionine sulfoxide (0.5 mM) in complete medium

(RPMI1640/10%FBS). Macrophages stimulated with

lipopolysaccharides (LPS) (10 ng/mL) or IL-4 (10 ng/mL)

were applied as positive controls of M1/classically or M2/

alternative macrophage activation, respectively [8]. Mac-

rophages exposed to RPMI1640/10%FBS were applied as

control. Macrophage culture purity was evaluated by

images captured using a digital camera connected to an

inverted microscope (Olympus IX71, Japan).

Cell viability assay

Macrophages were seeded (1 9 106 cells/well) in 96

multiwell plates, and cells were exposed to methionine
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and/or methionine sulfoxide as described above. Following

18 h of treatment, cell viability was assessed by 3(4,5-

dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay.

This method is based on the ability of viable cells to reduce

MTT and form a blue formazan product. MTT solution was

added to culture medium at a final concentration of 0.5 mg/

mL. After 90 min of incubation, medium was removed and

plates were shaken with DMSO. Optical density of each

well was measured at 492 nm. Results were expressed as

percentage of control (untreated cells).

Cell proliferation assay

Macrophage cultures were prepared and treated as descri-

bed above. Following 18 h of treatment, cells were washed

and fixed in trichloroacetic acid (TCA) 50 % for 45 min at

4 �C. Then, TCA was removed, cells were washed 5 times

with distilled water, and 0.4 % sulforhodamine B (SRB)

solution in 1 % acetic acid was added. Following 30 min

incubation to stain proteins, SRB was removed and cells

were washed 5 times with 1 % acetic acid for complete

removal of uncomplexed protein dye. Finally, SRB was

eluded in Tris solution (10 mM). Optical density of each

well was measured at 530 nm. Results were expressed as

percentage of control (untreated cells).

Nitrite and arginase assays

Nitrite concentrations were measured using the Griess

reaction [23]. In brief, 200 lL of tested cell medium were

incubated with 100 lL of 1 % sulfanilamide and 100 lL
of 0.3 % N-1-naphthylethylenediamine dihydrochloride at

room temperature for 5 min. Nitrite was quantified by

spectrophotometry at 540 nm using sodium nitrite as

standard. Results were expressed as lM per mg of

protein.

Arginase activity in cell lysates was measured based on

the conversion of L-arginine to L-ornithine and urea

according to the technique described by Corraliza et al.

[24] with minor modifications. Briefly, cells were lysed for

30 min with 40 lL of 0.1 % Triton X-100. Thirty micro-

liters of 25 mM Tris–HCl (pH 7.4) and 10 lL of 10 mM

MnCl2 were added and the enzyme was heat-activated for

10 min at 56 �C. Similar amounts of samples (40 lL) and
0.5 M L-arginine (pH 9.7) were mixed and incubated for

1 h at 37 �C. The reaction was stopped by adding 400 lL
of H2SO4 (96 %), H3PO4 (85 %), H2O (1/3/7, v/v/v). The

urea concentration was measured at 540 nm after the

addition of 8 lL of 6 % a-isonitrosopropiophenone, fol-
lowed by heating at 95 �C for 30 min. Values were com-

pared with a standard curve of urea concentration, and they

were expressed as nmol urea per min per mg protein.

Cytokine release determination

TNF-a and IL-10 secreted by macrophage cultures were

quantified in the conditioned media of these cells by

enzyme-linked immunosorbent assay (ELISA), according

to the manufacturer’s instructions (R&D Systems). Mouse

recombinant TNF-a or IL-10 was used as a standard.

Results were expressed as ng of cytokine per mL.

Determination of SOD, CAT, and GPx activities

and ROS production

Catalase (CAT) activity was assayed according to Aebi

[25] based on the decomposition of H2O2 monitored at

240 nm at room temperature. CAT activity was reported as

percentage of control (untreated cells).

Superoxide dismutase (SOD) activity was measured by

the method described by Misra and Fridovich [26]. This

method is based on the inhibition of superoxide-dependent

adrenaline auto-oxidation in a spectrophotometer adjusted

at 480 nm. SOD activity was reported as percentage of

control (untreated cells).

Glutathione peroxidase (GPx) activity was measured

according to the method described byWendel [27], using tert-

butyl hydroperoxide as substrate. NADPH disappearance was

monitored at 340 nm in a medium containing 2 mM glu-

tathione, 0.15 U/mL glutathione reductase, 0.4 mM azide,

0.5 mM tert-butyl hydroperoxide, and 0.1 mMNADPH. GPx

activitywas reported as percentage of control (untreated cells).

Intracellular generation of ROS was determined by

DCFH-DA (20,70-dichlorodihydrofluorescein diacetate)

assay. DCF-DA reacts with reactive oxygen species emit-

ting fluorescence. Macrophages were incubated with 1 lM
DCFH-DA in serum-free medium for 30 min. Then, cells

were washed with PBS and fluorescence was determined in

multiwell plate reader (485/520 nm). ROS production was

reported as percentage of control (untreated cells).

Ectonucleotidase assay

ATPase, ADPase, and AMPase activities were evaluated in

48 well plates containing macrophages that were washed

three times with phosphate-free incubation medium in the

absence of nucleotides. The enzymatic reaction was started

by the addition of 200 lL of incubation medium containing

2 mM CaCl2 (2 mM MgCl2 for AMPase assay), 120 mM

NaCl, 5 mM KCl, 10 mM glucose, 20 mM HEPES (pH

7.4), and 2 mM ATP, ADP, or AMP as substrates. Fol-

lowing 10 min incubation at 37 �C, the reaction was

stopped by transferring an aliquot of the incubation med-

ium to a pre-chilled tube containing TCA (final concen-

tration 5 % w/v). The release of inorganic phosphate (Pi)

was measured by the malachite green method [28], using
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KH2PO4 as a Pi standard. Controls to determine non-en-

zymatic Pi release were performed by incubating the cells

in the absence of the substrate, or the substrate in the

absence of the cells. All samples were run in triplicate. The

protein concentration was measured by coomassie blue

method using bovine serum albumin as standard [29].

Specific activity was expressed as nmol Pi released per min

per mg of protein.

Statistical analysis

Data were expressed as mean ± SD and were subjected to

one-way analysis of variance (ANOVA) followed by

Tukey post hoc test (for multiple comparisons). Differ-

ences between mean values were considered significant

when P B 0.05.

Results

Methionine and/or methionine sulfoxide alter

macrophage cell shape and induce M1/classical

macrophage polarization

Cell shape, biochemical profile, and cytokine changes have

been associated to different functional states of M1/clas-

sical and M2/alternative macrophage polarization

[7, 30–32]. To explore whether methionine and/or

methionine sulfoxide treatment may play a role in macro-

phage phenotypic polarization, cells were cultured on

multiwell plates and they were exposed to 1 mM

methionine and/or 0.5 mM methionine sulfoxide, which

represent the concentrations found in human blood with

persistent hypermethioninemia [2, 33–36]. Macrophages

exposed to LPS or IL-4 were applied as positive controls to

M1/classical and M2/alternative macrophage polarization,

respectively. Following 18 h of stimulation, macrophage

polarization was evaluated by analysis of cell morphology,

iNOS and arginase activities, and TNF-a and IL-10 cyto-

kine release. As shown in Fig. 1, exposition of macro-

phages to methionine, methionine sulfoxide, or its

combination (mix) promoted significant morphological

alterations, making cells to flatten into a round, pancake-

like shape (Fig. 1a). In addition, no significant changes in

cell viability or proliferation were observed in macro-

phages exposed to treatments, as determined by MTT and

SRB assays (Fig. 1b, c). Finally, methionine, methionine

sulfoxide, or mix promoted an increase of 1.95, 2.2, and

1.82 times of iNOS activity, respectively (Fig. 2a) and 4.7,

3.7, and 2.6 times of TNF-a, respectively (Fig. 2c) when

compared to controls, whereas arginase (Fig. 2b) and IL-10

secretion (Fig. 2d) were not significantly altered at same

condition. Taken together, these data suggest that

methionine and/or methionine sulfoxide treatment induces

M1/classical macrophage polarization.

Methionine and/or methionine sulfoxide modulate

antioxidant enzyme activity and ROS production

in macrophage cultures

To better understand the potential of methionine and/or

methionine sulfoxide to modulated M1/classical macro-

phage polarization, we examined the metabolism of reac-

tive oxygen species in cultured macrophages, which has

been implicated in proinflammatory signaling [6, 37–40].

Macrophages were exposed to methionine and/or

methionine sulfoxide for 18 h as described above, and

SOD, CAT, and GPx activities and ROS production were

determined as described in ‘‘Materials and methods’’ sec-

tion. As shown in Fig. 3, treatment with methionine pro-

moted *89 % increase of SOD activity, while methionine

sulfoxide alone or in combination with methionine reduced

*70 % of its activity (Fig. 3a). In addition, CAT activity

was inhibited 50, 20, and 45 % by methionine, methionine

sulfoxide, or both in combination, respectively (Fig. 3b).

On the other hand, GPx activity was not modified by

treatments (Fig. 3c). Finally, all treatments reduced

*35 % ROS production by macrophages (Fig. 3d). These

results show that methionine and methionine sulfoxide

differentially modulated the activity of antioxidant enzyme

system and ROS production, which may favor a proin-

flammatory state.

Methionine and/or methionine sulfoxide alter

extracellular nucleotide metabolism in macrophage

cultures

Given that purinergic signaling play an important role in

immune/inflammatory responses and that polarized mac-

rophages are likely to be subjected to extracellular

nucleotide modulation in in vivo microenvironment

[41, 42], methionine and/or methionine sulfoxide effect on

ectonucleotidase activities was evaluated (Fig. 4). Macro-

phages were cultured and exposed to methionine and/or

methionine sulfoxide for 18 h and ATP, ADP, and AMP

hydrolysis were determined. Macrophage stimulation with

methionine sulfoxide alone or in combination with

methionine promoted *57 and 60 % increase of ATP and

ADP hydrolysis, respectively, when compared to control

(Fig. 4a, b). On the other hand, AMP hydrolysis was not

changed (Fig. 4c). This enzyme profile suggests that

methionine sulfoxide and its combination with methionine

modulates the activity of NTPDase1, which is the main

ectonucleotidase expressed by macrophages and that, by

hydrolyzing ATP and ADP, it regulates the purinergic

receptor activation in activated macrophages [42].
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Discussion

The present work demonstrates a novel role of

methionine and its metabolite methionine sulfoxide as

modulators of macrophage phenotype and inflammatory

process. First, we evaluated the effect of methionine

and/or methionine sulfoxide on macrophage polariza-

tion. We observed that both molecules induced

M1/classical macrophage activation, which is related to

proinflammatory responses characterized by increased

iNOS activity and TNF-a release. We further demon-

strated that the treatment promoted alterations on redox

state of macrophage cultures by differentially modu-

lated SOD and CAT activities and ROS production.

Finally, methionine and/or methionine sulfoxide treat-

ment also altered the extracellular nucleotide

Fig. 1 Representative images

of macrophages exposed to

methionine and/or methionine

sulfoxide (a). Cell viability (b).
Cell proliferation (c). Cell
cultures were exposed to

methionine (1 mM) and/or

methionine sulfoxide (0.5 mM)

and after 18 h of treatment

phase-contrast

microphotographs were taken

using an Olympus inverted

microscope (arrows indicate

morphologic changes in

macrophages following

treatment; 920 magnification);

cell viability and proliferation

were determined by MTT and

SRB, respectively. Values

represent mean ± SD of at least

three independent experiments.

Data were analyzed by ANOVA

followed by post hoc

comparisons (Tukey–Kramer

test)
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metabolism, promoting an increase of ATP and ADP

hydrolysis in macrophages. Such modifications may

contribute to proinflammatory responses.

Methionine is an essential amino acid involved in crit-

ical metabolic process, including protein synthesis, sulfur

metabolism, methylation, redox regulation, and signal

Fig. 2 Characterization of macrophage phenotype following

methionine and/or methionine sulfoxide treatment. Macrophages

were exposed to methionine (Met), methionine sulfoxide (MetO), or

both (Mix) for 18 h and cell polarization was evaluated as follows:

a iNOS and b arginase activities: iNOS was estimated by the NO2-

(nitrite) accumulation in the supernatant of cultured cells, and

arginase activity was evaluated by measuring the formation of urea

from arginine. c TNFa. d IL-10 cytokines were measured from

supernatants of macrophage cultures by ELISA. Values represent

mean ± SD of at least three independent experiments. Data were

analyzed by ANOVA followed by post hoc comparisons (Tukey–

Kramer test). *Significantly different from control cells (P\ 0.05)

Fig. 3 Analysis of oxidative stress parameters in methionine and/or

methionine sulfoxide-treated macrophages. Macrophages were

exposed to methionine (Met), methionine sulfoxide (MetO), or both

(Mix) as described above, and the activity of a superoxide dismutase

(SOD). b Catalase (Cat). c GPx. ROS production (d) were evaluated

as described in materials and methods. Values represent mean ± SD

of at least three independent experiments. Data were analyzed by

ANOVA followed by post hoc comparisons (Tukey–Kramer test).

*Significantly different from control cells (P\ 0.05)
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transduction [2]. However, mammals are not able to syn-

thesize this amino acid, whose only sources are diet and

recycling [2, 43]. Therefore, the regulation of methionine

flux through the metabolism is important to supply this

amino acid for cell needs. Elevation in plasma methionine

commonly occurs due to mutations in genes encoding

methionine-metabolizing enzymes, such as MAT

[2, 5, 34, 44]. In this work, we hypothesize that methionine

and/or methionine sulfoxide induce a proinflammatory/M1

macrophage polarization which may contribute to patho-

physiology of hypermethioninemia. To this end, macro-

phage cultures were exposed to methionine and its

metabolite methionine sulfoxide and macrophage polar-

ization and inflammation-related pathways, as oxidative

stress and purinergic signaling, were evaluated. The treat-

ment with methionine and/or methionine sulfoxide polar-

ized macrophages to a M1/classical phenotype, which

exhibit proinflammatory actions and in general, is associ-

ated to tissue injury and inflammation. Indeed, recently

methionine was reported to affect immune status by

improving innate immune response through inflammation

[45]. In addition, these results are in accordance to symp-

toms exhibited by hypermethioninemic patients, and

changes in macrophage activation may explain the diseases

associated to high methionine and methionine sulfoxide

levels as liver disorders [2, 5, 46], neurological abnor-

malities, and brain demyelization [2, 47, 48].

Regarding the enzymatic antioxidant system, methion-

ine and/or methionine sulfoxide treatment differentially

modulated SOD activity in macrophages. Methionine-in-

duced SOD activity increases, while methionine sulfoxide

alone or in combination with methionine had the opposite

effect. Moreover, CAT activity was decreased by all

treatments, while GPx activity remained unchanged.

Although we cannot determine precisely the mechanisms

by which the methionine and/or methionine sulfoxide

modulated the activity of these enzymes, studies from lit-

erature point the differential expression and activity regu-

lation of these enzymes. Indeed, there is a balance between

SOD activity and H2O2-metabolizing enzymes, CAT and

GPx [49]. SOD-increased activity is associated to a posi-

tive modulation of GPx as a compensatory mechanism to

degrade H2O2 [49]. However, a compensatory CAT

activity increase is frequently not found [50] and, in some

situations, it is decreased [51]. In this regard, evidence

suggest that, in contrast to the other antioxidant enzymes,

CAT is not a redox-sensitive enzyme, but a regulator of

cell processes, as inflammation for example [52]. The

differential regulation of antioxidant enzymes may explain,

at least in part, the opposite effects promoted by

methionine in SOD and CAT activities of macrophages and

the persistent CAT inhibition under methionine and/or

methionine sulfoxide treatment. Interestingly, as SOD and

CAT activity decreased, ROS levels were also found to

decrease in all groups. Costa and collaborators [46]

demonstrated a decrease of ROS levels in liver cells after

methionine and/or methionine sulfoxide treatment which

was associated to methionine-free radical activity scav-

enger [46]. Additionally, the production of S-adenosylme-

thionine (SAM) after treatment of macrophages with

methionine may also contribute to decrease ROS levels.

SAM is a product formed from methionine and ATP, which

is described to suppress oxidative stress in pathological

conditions [53–55]. Even though we can not explain the

exact mechanism, other hypothesis for this result is that

somehow macrophages are trying to control inflammatory

environment, through ROS scavenger strategies.

Fig. 4 Evaluation of ectonucleotidase activity in methionine and/or

methionine sulfoxide-treated macrophages. Macrophages were

exposed to methionine (Met), methionine sulfoxide (MetO), or both

(Mix) as described above, and the hydrolysis of a ATP, b ADP, and

c AMP were evaluated by malachite green method. Values represent

mean ± SD of at least three independent experiments. Data were

analyzed by ANOVA followed by post hoc comparisons (Tukey–

Kramer test). *Significantly different from control cells (P\ 0.05)
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Mounting evidence links the activation of extracellular

nucleotide signaling and immune/inflammatory response

[15]. ATP acts as a danger signal during inflammation and,

in combination with LPS, trigger the IL-1b release in

macrophages [56]. In addition, changes in the expression of

ectonucleotidases during phenotypic differentiation allow

the macrophages to adjust their functions during the

inflammatory set [42]. Here, we observed that methionine

sulfoxide alone or in combination with methionine

increased the ATPase/ADPase activities in macrophages,

while AMPase activity was not altered by the treatment.

The enzyme activity profile is consistent with NTPDase1

expression, which has been described as the main

NTPDase present in macrophages [42]. Since the ATP

exocytosis is required for macrophage activation via P2Y11

sensitization [57] but, on the other hand, high ATP con-

centration may induce cell death via P2X7 activation; we

suggest that the increase of ATPase/ADPase activities is a

compensatory mechanism to maintain macrophage activa-

tion and also to protect it from cell death. Indeed,

NTPDase1 plays a key role in the control of P2X7-de-

pendent macrophage responses [42]. In addition, ectonu-

cleotidase activity of macrophages may be modulated by

oxidative/nitrosative stress followed methionine and

methionine sulfoxide treatment, as the ectonucleotidase

activity can be altered by free radicals [58].

In summary, our results demonstrate that methionine

and/or methionine sulfoxide induce M1/classical macro-

phage polarization. The proinflammatory macrophage

phenotype involved the increase of iNOS activity and

TNF-a release. In line with this, alterations in stress

oxidative and purinergic signaling parameters are in

according to proinflammatory environment of macrophages

exposed to methionine and methionine sulfoxide. Although

further studies are necessary to examine the mechanisms

involved in macrophage polarization induced by methion-

ine and methionine sulfoxide in an in vivo hypermethion-

inemia models, the data reported here reinforce the

hypothesis that these molecules induce a proinflammatory

response that could play an important role in cell injury

observed in patients. Therefore, since the current therapy

for hypermethioninemia is based on methionine intake

restriction, novel therapeutic strategies taking into account

the participation of inflammatory process in the patho-

physiology of hypermethioninemia may be employed to

offer alternatives to patients.
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