
Julian RodemannLudwig-Maximilians-University of Munich | LMU · Institut für Statistik
Julian Rodemann
Master of Science
About
14
Publications
245
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1
Citation
Introduction
Skills and Expertise
Publications
Publications (14)
Spaces with locally varying scale of measurement, like multidimensional structures with differently scaled dimensions, are pretty common in statistics and machine learning. Nevertheless, it is still understood as an open question how to exploit the entire information encoded in them properly. We address this problem by considering an order based on...
Semi-supervised learning by self-training heavily relies on pseudo-label selection (PLS). This selection often depends on the initial model fit on labeled data. Early overfitting might thus be propagated to the final model by selecting instances with overconfident but erroneous predictions, often referred to as confirmation bias. This paper introdu...
The concept of safe Bayesian inference with learning rates has recently sparked a lot of research, e.g. in the context of generalized linear models. It is occasionally also referred to as generalized Bayesian inference – a fact that should let IP advocates sit up straight and take notice, as this term is commonly used to describe Bayesian updating...
Imprecise Probabilities (IP) allow for the representation of incomplete information. In the context of Bayesian statistics, this is achieved by generalized Bayesian inference, where a set of priors is used instead of a single prior [ 1 , Chapter 7.4]. The latter has been shown to be particularly useful in the case of prior-data conflict, where evid...
Spaces with locally varying scale of measurement, like multidimensional structures with differently scaled dimensions, are pretty common in statistics and machine learning. Nevertheless, it is still understood as an open question how to exploit the entire information encoded in them properly. We address this problem by considering an order based on...
Self-training is a simple yet effective method within semi-supervised learning. The idea is to iteratively enhance training data by adding pseudo-labeled data. Its generalization performance heavily depends on the selection of these pseudo-labeled data (PLS). In this paper, we aim at rendering PLS more robust towards the involved modeling assumptio...
Semi-supervised learning by self-training heavily relies on pseudo-label selection (PLS). The selection often depends on the initial model fit on labeled data. Early overfitting might thus be propagated to the final model by selecting instances with overconfident but erroneous predictions, often referred to as confirmation bias. This paper introduc...
Drawing conclusions from set-valued data calls for a trade-off between caution and precision. In this paper, we propose a way to construct a hierarchical family of subsets within set-valued categorical observations. Each subset corresponds to a level of cautiousness, the smallest one as a singleton representing the most optimistic choice. To achiev...
Bayesian optimization (BO) with Gaussian processes (GP) as surrogate models is widely used to optimize analytically unknown and expensive-to-evaluate functions. In this paper, we propose Prior-mean-RObust Bayesian Optimization (PROBO) that outperforms classical BO on specific problems. First, we study the effect of the Gaussian processes’ prior spe...
Bayesian optimization (BO) with Gaussian processes (GP) as surrogate models is widely used to optimize analytically unknown and expensive-to-evaluate functions. In this paper, we propose Prior-mean-RObust Bayesian Optimization (PROBO) that outperforms classical BO on specific problems. First, we study the effect of the Gaussian processes' prior spe...