Julian Fernandez Ulate

Julian Fernandez Ulate
  • PhD
  • Researcher at University of Costa Rica

About

86
Publications
17,860
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,313
Citations
Current institution
University of Costa Rica
Current position
  • Researcher

Publications

Publications (86)
Article
Snakebite is a high-priority neglected tropical disease, and a strategic goal based on four pillars has been recommended to reduce mortality and morbidity. One is empowering rural communities through citizen science, education, and engagement. In this study, an integrative approach was used to expand our knowledge of Micrurus nigrocinctus status an...
Article
Full-text available
Background The venom of Bothrops lanceolatus, a viperid species endemic to the Lesser Antillean Island of Martinique, induces thrombosis in a number of patients. Previous clinical observations indicate that thrombotic events are more common in patients bitten by juvenile specimens. There is a need to develop an experimental model of this effect in...
Article
Full-text available
Ananteris is a scorpion genus that inhabits dry and seasonal areas of South and Central America. It is located in a distinctive morpho-group of Buthids, the ‘Ananteris group’, which also includes species distributed in the Old World. Because of the lack of information on venom composition, the study of Ananteris species could have biological and me...
Preprint
Full-text available
Background The venom of Bothrops lanceolatus, a viperid species endemic to the Lesser Antillean Island of Martinique, induces a unique clinical manifestation, i.e., thrombosis. Previous clinical observations indicate that thromboses are more common in patients bitten by juvenile specimens. There is a need to develop an experimental model of this ef...
Article
Full-text available
Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show tha...
Article
Full-text available
Myonecrosis is a frequent clinical manifestation of envenomings by Viperidae snakes, mainly caused by the toxic actions of secreted phospholipase A2 (sPLA2) enzymes and sPLA2-like homologs on skeletal muscle fibers. A hallmark of the necrotic process induced by these myotoxins is the rapid appearance of hypercontracted muscle fibers, attributed to...
Preprint
Full-text available
Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk...
Article
Full-text available
Snake envenoming is a major but neglected human disease in tropical and subtropical regions. Among venomous snakes in the Americas, coral snakes of the genus Micrurus are particularly dangerous because they cause a peripheral neuroparalysis that can persist for many days or, in severe cases, progress to death. Ventilatory support and the use of sna...
Article
Full-text available
Many snake venom toxins cause local tissue damage in prey and victims, which constitutes an important pathology that is challenging to treat with existing antivenoms. One of the notorious toxins that causes such effects is myotoxin II present in the venom of the Central and Northern South American viper, Bothrops asper. This Lys49 PLA2 homologue is...
Article
Myotoxin-II, a phospholipase A2 (PLA2)-like protein found in Bothrops asper venom, causes rapid necrosis of muscle fibers in spite of lacking enzymatic activity. This toxic action maps to its C-terminal region, within a segment known as “115–129” (consensus numbering) that displays a combination of cationic and hydrophobic amino acids, capable of d...
Article
Full-text available
Coralsnakes belong to the family Elapidae and possess venoms which are lethal to humans and can be grouped based on the predominance of either three finger toxins (3FTxs) or phospholipases A2 (PLA2s). A proteomic and toxicological analysis of the venom of the coralsnake Micrurus yatesi was performed. This species, distributed in southeastern Costa...
Article
Full-text available
Viperid snake venoms contain a unique family of cytotoxic proteins, the Lys49 PLA2 homologs, which are devoid of enzymatic activity but disrupt the integrity of cell membranes. They are known to induce skeletal muscle damage and are therefore named ‘myotoxins’. Single intact and skinned (devoid of membranes and cytoplasm but with intact sarcomeric...
Article
We report the first proteomics analyses of the venoms of two poorly studied snakes, the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to South Pacific Costa Rica and western Panamá. These venom proteomes share...
Article
A B S T R A C T Phospholipases A2 (PLA2s) and PLA2-like proteins are significant components of snake venoms. Some of these proteins act as potent toxins causing muscle necrosis, which may lead to amputation in severe envenomings. Fundamental aspects of the mechanism of action of these toxins are still not completely known. Myotoxin- I is a catalyti...
Article
Based on its mandibular gland secretion, the earless monitor lizard, Lanthanotus borneensis, has been considered a venomous animal like other members of the Toxicofera group, including Heloderma. In the present study, the gland structure and teeth of L. borneensis were examined by micro-tomography (μCT) and scanning electron microscopy (SEM), respe...
Article
Full-text available
Snakebite envenoming is a major neglected tropical disease that affects millions of people every year. The only effective treatment against snakebite envenoming consists of unspecified cocktails of polyclonal antibodies purified from the plasma of immunized production animals. Currently, little data exists on the molecular interactions between veno...
Article
Full-text available
Snake species within the Bothrops complex (sensu lato) are of medical relevance in Latin America, but knowledge on their venom characteristics is limited, or even unavailable, for some taxa. Perú harbors 17 species of pit vipers, within the genera Bothrops, Bothriechis, Bothrocophias, Porthidium, Crotalus, and Lachesis. This study compared the veno...
Article
Venoms of the viperid genus Bothrocophias, restricted to Colombia and Ecuador, are poorly known. Only a proteomic analysis of B. campbelli venom has been described. In this work we present a proteomic study of B. myersi venom, its biological activities, and describe the clinical characteristics of a patient bitten by this species. B. myersi venom m...
Article
Rear-fanged colubrid snakes include hundreds of species globally that possess a Duvernoy's venom gland and often one-several enlarged rear maxillary teeth. We investigated the venom proteome of the Central American Lyre Snake (Trimorphodon quadruplex), a moderate-sized rear-fanged colubrid snake and the southernmost Trimorphodon, using a bottom-up...
Article
Full-text available
The World Health Organization recently listed snakebite envenoming as a Neglected Tropical Disease, proposing strategies to significantly reduce the global burden of this complex pathology by 2030. In this context, effective adjuvant treatments to complement conventional antivenom therapy based on inhibitory molecules for specific venom toxins have...
Article
Almost all animal venoms contain secretory phospholipases A2 (PLA2s), 14 kDa disulfide-rich enzymes that hydrolyze membrane phospholipids at the sn-2 position, releasing lysophospholipids and fatty acids. These proteins, depending on their sequence, show a wide variety of biochemical, toxic and pharmacological effects and deserve to be studied for...
Article
Bothrops diporus, previously considered a subspecies of the B. neuwiedi complex, is a medically relevant viperid in Northeastern Argentina. The venom of this species causes local tissue damage characterized by myonecrosis, hemorrhage, blistering, and edema. In the present study, two basic phospholipases A2 (PLA2-I and PLA2-II) were isolated from th...
Article
Abstract Venoms from Micrurus (New World coral snakes) display potent peripheral neurotoxicity which may cause death by respiratory paralysis, yet many are poorly or not characterized. The major venom components of coral snakes are three-finger toxins (3FTxs) and phospholipases A2, whose proportions vary among species. As a trend, venoms of Micruru...
Article
A proteomic and toxicological study of the venom from one specimen of Micrurus ruatanus, a critically endangered coral snake species endemic to Roatan Island, Honduras, was carried out. Immunorecognition and neutralization of venom lethality by an anticoral antivenom was also evaluated. Forty peaks were collected from RP-HPLC fractionation of the v...
Poster
Full-text available
Snakebite envenoming is a neglected tropical disease 1 which affects millions of people worldwide. In Central America and the northern South America, B. asper is responsible for 50-80% of snakebites and 60-90% of snakebite related deaths. To address this problem, phage display was used to discover antibodies against myotoxin-II from B. asper, a Lys...
Article
The genus Porthidium includes nine pitviper species inhabiting Mexico, Central America, and northern South America. Porthidium porrasi is a species endemic to the Southwest of Costa Rica, for which no information on its venom was available. In this study, the proteomic composition and functional activities of P. porrasi venom are described. The mos...
Article
A need exists to develop specific and clinically useful inhibitors of toxic enzymes present in snake venoms, responsible for severe tissue damage and life-threatening effects occurring in thousands of people suffering envenomations globally. LY315920 (Varespladib, S-5920, A-001), a low molecular weight drug developed to inhibit several human secret...
Article
Full-text available
Phospholipases A2 are a major component of snake venoms. Some of them cause severe muscle necrosis through an unknown mechanism. Phospholipid hydrolysis is a possible explanation of their toxic action, but catalytic and toxic properties of PLA2s are not directly connected. In addition, viperid venoms contain PLA2-like proteins, which are very toxic...
Article
The first toxin isolated from the venomous pit viper Porthidium ophryomegas is a basic pentameric phospholipase A2 (PophPLA2). Elucidation of its amino acid sequence showed that it belongs to the group IIA of secreted PLA2s, with the presence of all 14 conserved cysteine positions. The toxin displayed catalytic activity, in agreement with the prese...
Article
Snakebite envenoming by viperid species, and by some elapids, is characterized by a complex pattern of tissue damage at the anatomical site of venom injection. In severe cases, tissue destruction may be so extensive as to lead to permanent sequelae, with serious pathophysiological, social and psychological consequences. Significant advances have be...
Article
Bothrops cotiara is a pitviper found in Southeastern Brazil and, scarcely, in the Misiones province of Argentina. In contrast to considerable information available on the venom of the Brazilian snake population, that of Misiones has received little attention. While exploring the chromatographic venom profile of Argentinean B. cotiara, a major prote...
Article
A unique feature of the venom of Micrurus fulvius (Eastern coral snake) is its ability to induce severe intravascular hemolysis in particular species, such as dogs or mice. This effect was previously shown to be induced by distinct phospholipase A2 (PLA2) isoforms which cause direct hemolysis in vitro, an uncommon finding for such enzymes. The func...
Preprint
Full-text available
Phospholipases A 2 (PLA 2 s) are a major component of snake venoms. Some of them cause severe muscle necrosis through a still unknown mechanism. Phospholipid hydrolysis is a possible explanation of their toxic action, but catalytic and toxic properties of PLA 2 s are not directly connected. In addition, viperid venoms contain PLA 2 -like proteins,...
Poster
Full-text available
Snakebite envenoming remains a major public health issue in Latin America and other rural tropical regions of the world, causing mortality and morbidity to hundreds of thousands. Particularly in Central America, the species Micrurus nigrocinctus is the most abundant and clinically relevant coral snake from the Elapidae family. The venom of M. nigro...
Article
The application of proteomic tools to the study of snake venoms has led to an impressive growth in the knowledge about their composition (venomics), immunogenicity (antivenomics), and toxicity (toxicovenomics). About one-third of all venomic studies have focused on elapid species, especially those of the Old World. The New World elapids, represente...
Article
Snake venoms are composed mainly of a mixture of proteins and peptides. Notably, all snake venom toxins have been assigned to a small number of protein families. Proteomic studies on snake venoms have recently identified the presence of Kazal-type inhibitor-like proteins in the neotropical arboreal snakes Bothriechis schlegelii and Bothriechis supr...
Conference Paper
Full-text available
While almost all other therapeutic proteins are produced by methods of fermentation and recombinant DNA technology, antivenoms are lagging behind using traditional animal immunization protocols for production of antisera. The undertaking of introducing antivenoms into the modern era of biopharmaceuticals is, however, greatly challenged by the high...
Article
Protein composition, toxicity, and neutralization of the venoms of Micrurus alleni and Micrurus mosquitensis, two sympatric monadal coral snakes found in humid environments of the Caribbean region of Costa Rica, were studied. Proteomic profiling revealed that these venoms display highly divergent compositions: the former dominated by three-finger t...
Poster
Full-text available
Background: Antisera against snakebite are still produced by animal immunization procedures and are therefore associated with high immunogenicity for human recipients, deferring physicians from using antisera due to safety concerns [1]. The monocled cobra (Naja kaouthia) is the most feared elapid in Southeast Asia due to its potent neurotoxic venom...
Poster
Full-text available
As the only class of biopharmaceuticals, antivenoms are not produced by methods of fermentation and recombinant DNA technology, but instead by animal immunization protocols. Animal-derived antisera are associated with high immunogenicity for human recipients, and antivenom therapy therefore carries risks of anaphylactic shock and serum sickness. De...
Article
The venom proteome of the monocled cobra, Naja kaouthia, from Thailand, was characterized by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses, yielding 38 different proteins that were either identified or assigned to families. Estimation of relative protein abundances revealed that venom is dominated by three-finger toxins (77.5%; including 24.3% cyto...
Article
Unlabelled: The venom proteome of the black mamba, Dendroaspis polylepis, from Eastern Africa, was, for the first time, characterized. Forty- different proteins and one nucleoside were identified or assigned to protein families. The most abundant proteins were Kunitz-type proteinase inhibitors, which include the unique mamba venom components 'dend...
Article
Bothriechis nigroviridis is an arboreal Neotropical pitviper found in Costa Rica and Panamá. A previous proteomic profiling of its venom revealed the presence of proteins with homology to the A and B subunits of crotoxin/Mojave toxin, a heterodimeric phospholipase A2 (PLA2) complex only described in rattlesnake venoms (genera Crotalus and Sistrurus...
Article
Four disintegrins were isolated from the venoms of the Central American viperid snakes Atropoides mexicanus (atropoimin), Bothrops asper (bothrasperin), Cerrophidion sasai (sasaimin), and Crotalus simus (simusmin). Purifications were performed by reverse-phase HPLC. The four disintegrins have biochemical characteristics, i.e. molecular mass and loc...
Article
Full-text available
Two subtypes of phospholipases A2 (PLA2s) with the ability to induce myonecrosis, 'Asp49' and 'Lys49' myotoxins, often coexist in viperid snake venoms. Since the latter lack catalytic activity, two different mechanisms are involved in their myotoxicity. A synergism between Asp49 and Lys49 myotoxins from Bothrops asper was previously observed in vit...
Article
Notexin (Ntx) is a group I phospholipase A2 (PLA2) protein, main component of the Australian snake Notechis scutatus scutatus venom. It is both a presynaptic neurotoxin and a myotoxin. In this work, for the first time, a method for the production and folding of recombinant Ntx was developed. Ntx was produced with wild type sequence (rNtx), with an...
Article
Bothriechis is considered a monophyletic, basal genus of arboreal Neotropical pitvipers distributed across Middle America. The four species found in Costa Rica (B. lateralis, B. schlegeli, B. nigroviridis, B. supraciliaris) differ in their venom proteomic profiles, suggesting that different Bothriechis taxa have evolved diverse trophic strategies....
Article
Bothrops snakes are the major cause of ophidian envenomings in Latin America. Their venom contains myotoxins that cause prominent muscle damage which might lead to permanent disability. These toxins include myotoxins Mt-I and Mt-II, which share the PLA2 fold, but Mt-II is devoid of enzymatic activity because the essential active site Asp49 is repla...
Article
Full-text available
Lys49-PLA(2) myotoxins, an important component of various viperid snake venoms, are a class of PLA(2)-homolog proteins deprived of catalytic activity. Similar to enzymatically active PLA(2) (Asp49) and to other classes of myotoxins, they cause severe myonecrosis. Moreover, these toxins are used as tools to study skeletal muscle repair and regenerat...
Data
LDH release in ex vivo mice muscles. Tibialis anterior muscles were uncovered by skin dissection, removed and placed in 1 ml of physiological solution containing 50 µg/ml of venom. LDH enzymatic activity was determined in the supernatants of B. asper (triangles) and C. durissus terrificus (squares) treated muscles for the indicated time points. Cir...
Article
Full-text available
Skeletal muscle necrosis is a common manifestation of viperid snakebite envenomations. Venoms from snakes of the genus Bothrops, such as that of B. asper, induce muscle tissue damage at the site of venom injection, provoking severe local pathology which often results in permanent sequelae. In contrast, the venom of the South American rattlesnake Cr...
Article
The venom proteomes of populations of the highly venomous taipan snake, Oxyuranus scutellatus, from Australia and Papua New Guinea (PNG), were characterized by reverse-phase HPLC fractionation, followed by analysis of chromatographic fractions by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tand...
Article
The proteome of the venom of Micrurus nigrocinctus (Central American coral snake) was analyzed by a "venomics" approach. Nearly 50 venom peaks were resolved by RP-HPLC, revealing a complex protein composition. Comparative analyses of venoms from individual specimens revealed that such complexity is an intrinsic feature of this species, rather than...
Article
Full-text available
Viperid snakes of the genus Atropoides are distributed in Mexico and Central America and, owing to their size and venom yield, are capable of provoking severe envenomings in humans. This study evaluated, using an 'antivenomics' approach, the ability of a polyspecific (polyvalent) antivenom manufactured in Costa Rica to recognize the proteins of Atr...
Article
We report the proteomic characterization and biological activities of the venom of the black-speckled palm pitviper, Bothriechis nigroviridis, a neotropical arboreal pitviper from Costa Rica. In marked contrast to other Bothriechis species investigated, the venom of B. nigroviridis does not possess detectable Zn(2+)-dependent metalloproteinases, an...
Article
Phospholipases A(2) (PLA(2)) are major components of snake venoms, exerting a variety of relevant toxic actions such as neurotoxicity and myotoxicity, among others. Since the majority of toxic PLA(2)s are basic proteins, acidic isoforms and their possible roles in venoms are less understood. In this study, an acidic enzyme (BaspPLA(2)-II) was isola...
Article
The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and coll...
Article
Full-text available
We report the comparative proteomic characterization of the venoms of two related neotropical arboreal pitvipers from Costa Rica of the genus Bothriechis, B. lateralis (side-striped palm pit viper) and B. schlegelii (eyelash pit viper). The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction b...

Network

Cited By