Julia Schmale

Julia Schmale
École Polytechnique Fédérale de Lausanne | EPFL · Environmental Engineering Institute

Professor
Assistant Professor at EPFL

About

162
Publications
33,052
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,837
Citations
Introduction

Publications

Publications (162)
Article
Full-text available
In this study, we present and analyze the first continuous time series of relevant aerosol precursor vapors from the central Arctic (north of 80° N) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. These precursor vapors include sulfuric acid (SA), methanesulfonic acid (MSA), and iodic acid (IA)...
Preprint
Full-text available
Natural aerosol components such as particulate methanesulfonic acid (MSAp) play an important role in the Arctic climate. However, numerical models struggle to reproduce MSAp concentrations and seasonality. Here we present an alternative data-driven methodology for modeling MSAp at four High Arctic stations (Alert, Gruvebadet, Pituffik/Thule, and Ut...
Preprint
Full-text available
In the central Arctic, warm and moist air intrusions (WAMIs) are increasingly prevalent during winter and spring, significantly impacting the near-surface energy budget. This study investigates WAMI-induced transport and wet deposition of black carbon (BC) and its subsequent influence on snow properties and melting. Using a modeling approach combin...
Preprint
Full-text available
Vertical in situ measurements of aerosols and trace gases were conducted in Fairbanks, Alaska, during winter 2022 as part of the Alaskan Layered Pollution and Chemical Analysis campaign (ALPACA). Using a tethered balloon, the study explores the dispersion of pollutants in the continental high latitude stable boundary layer (SBL). Analysis of 24 fli...
Article
Full-text available
Sea spray emission is the largest mass flux of aerosols to the atmosphere with important impact on atmospheric radiative transfer. However, large uncertainties still exit in constraining this mass flux and its climate forcing, in particular in the Arctic, where sea ice and relatively low wind speed in summer constitute a significantly different reg...
Preprint
Full-text available
Electrochemical gas sensors (EGSs) have been used to measure the surface distributions and vertical profiles of trace gases in the wintertime Arctic Boundary Layer during the Alaskan Layered Pollution and Chemical Analysis (ALPACA) field experiment in Fairbanks, Alaska in January–February 2022. The MICRO sensors for MEasurements of GASes (MICROMEGA...
Article
Full-text available
Aerosols and clouds are key components of the marine atmosphere, impacting the Earth’s radiative budget with a net cooling effect over the industrial era that counterbalances greenhouse gas warming, yet with an uncertain amplitude. Here we report recent advances in our understanding of how open ocean aerosol sources are modulated by ocean biogeoche...
Article
Full-text available
Natural aerosols are an important, yet understudied, part of the Arctic climate system. Natural marine biogenic aerosol components (e.g., methanesulfonic acid, MSA) are becoming increasingly important due to changing environmental conditions. In this study, we combine in situ aerosol observations with atmospheric transport modeling and meteorologic...
Preprint
Full-text available
Aerosols play a critical role in the Arctic’s radiative balance, influencing solar radiation and cloud formation based on their physicochemical properties (e.g., size, abundance, and chemical composition). Limited observations in the central Arctic leave gaps in understanding aerosol dynamics year-round, affecting model predictions of climate-relev...
Preprint
Full-text available
Lagrangian tracer simulations are deployed to investigate processes influencing vertical and horizontal dispersion of anthropogenic pollution in Fairbanks, Alaska, during the ALPACA-2022 field campaign. Simulations of carbon monoxide (CO), sulphur dioxide (SO2) and nitrogen oxides (NOx), including surface and elevated emissions, are highest at the...
Article
Full-text available
The Arctic is sensitive to cloud radiative forcing. Due to the limited number of aerosols present throughout much of the year, cloud formation is susceptible to the presence of cloud condensation nuclei and ice nucleating particles (INPs). Primary biological aerosol particles (PBAP) contribute to INPs and can impact cloud phase, lifetime, and radia...
Article
Full-text available
Sea spray aerosols (SSA) greatly affect the climate system by scattering solar radiation and acting as seeds for cloud droplet formation. The ecosystems in the Arctic Ocean are rapidly changing due to global warming, and the effects these changes have on the generation of SSA, and thereby clouds and fog formation in this region, are unknown. During...
Article
Full-text available
In this study, data from 17 ground‐based, continental Arctic observatories are used to evaluate the performance of the European Centre for Medium‐Range Weather Forecasts Reanalysis version 5 (ERA5) reanalysis model. Three aspects are evaluated: (i) the overall reproducibility of variables at all stations for all seasons at one‐hour time resolution;...
Article
Full-text available
Isoprene is a key trace component of the atmosphere emitted by vegetation and other organisms. It is highly reactive and can impact atmospheric composition and climate by affecting the greenhouse gases ozone and methane and secondary organic aerosol formation. Marine fluxes are poorly constrained due to the paucity of long-term measurements; this i...
Preprint
Full-text available
Natural aerosols are an important, yet understudied, part of the Arctic climate system. Natural marine biogenic aerosol components (e.g., methanesulfonic acid, MSA) are becoming increasingly important due to changing environmental conditions. In this study, we combine in situ aerosol observations with atmospheric transport modeling and meteorologic...
Article
Full-text available
The Alaskan Layered Pollution And Chemical Analysis (ALPACA) field experiment was a collaborative study designed to improve understanding of pollution sources and chemical processes during winter (cold climate and low-photochemical activity), to investigate indoor pollution, and to study dispersion of pollution as affected by frequent temperature i...
Article
Full-text available
The Modular Multiplatform Compatible Air Measurement System (MoMuCAMS) is a newly developed in situ aerosol and trace gas measurement platform for lower-atmospheric vertical profiling. MoMuCAMS has been primarily designed to be attached to a Helikite, a rugged tethered balloon type that is suitable for operations in cold and windy conditions. The s...
Preprint
Full-text available
In this study, we present and analyze the first continuous timeseries of relevant aerosol precursor vapors from the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. These precursor vapors include sulfuric acid (SA), methanesulfonic acid (MSA), and iodic acid (IA). We use FLEXPART...
Article
Full-text available
Arctic clouds are sensitive to atmospheric particles since these are sometimes in such low concentrations that clouds cannot always form under supersaturated water vapor conditions. This is especially true in the late summer, when aerosol concentrations are generally very low in the high Arctic. The environment changes rapidly around freeze‐up as t...
Article
Full-text available
Polar oceans and sea ice cover 15% of the Earth’s ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean–Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the conte...
Article
Full-text available
The Arctic environment is transforming rapidly due to climate change. Aerosols’ abundance and physicochemical characteristics play a crucial, yet uncertain, role in these changes due to their influence on the surface energy budget through direct interaction with solar radiation and indirectly via cloud formation. Importantly, Arctic aerosol propert...
Article
Full-text available
The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean feat...
Article
Full-text available
The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typic...
Article
Full-text available
The amount of snow on Arctic sea ice impacts the ice mass budget. Wind redistribution of snow into open water in leads is hypothesized to cause significant wintertime snow loss. However, there are no direct measurements of snow loss into Arctic leads. We measured the snow lost in four leads in the Central Arctic in winter 2020. We find, contrary to...
Article
Full-text available
Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated i...
Preprint
Full-text available
The Modular Multiplatform Compatible Air Measurement System (MoMuCAMS) is a newly developed in situ aerosol and trace gas measurement payload for lower atmospheric vertical profiling in extreme environments. MoMuCAMS is a multiplatform compatible system, primarily designed to be attached to a helikite, a rugged tethered balloon type that is suitabl...
Article
Full-text available
Polar environments are among the fastest changing regions on the planet. It is a crucial time to make significant improvements in our understanding of how ocean and ice biogeochemical processes are linked with the atmosphere. This is especially true over Antarctica and the Southern Ocean where observations are severely limited and the environment i...
Article
Full-text available
Chlorine radicals are strong atmospheric oxidants known to play an important role in the depletion of surface ozone and the degradation of methane in the Arctic troposphere. Initial oxidation processes of chlorine produce chlorine oxides, and it has been speculated that the final oxidation steps lead to the formation of chloric (HClO3) and perchlor...
Article
Full-text available
In the Arctic, the aerosol budget plays a particular role in determining the behaviour of clouds, which are important for the surface energy balance and thus for the region’s climate. A key question is the extent to which cloud condensation nuclei in the high Arctic summertime boundary layer are controlled by local emission and formation processes...
Preprint
Full-text available
The amount of snow on Arctic sea ice impacts the ice mass budget. Wind redistribution of snow into open water in leads is hypothesized to cause significant wintertime snow loss. However, there are no direct measurements of snow loss into Arctic leads. We measured the snow lost in four leads in the Central Arctic in winter 2020. We find, contrary to...
Article
Full-text available
Dry deposition to the surface is one of the main removal pathways of tropospheric ozone (O 3). We quantified for the first time the impact of O 3 deposition to the Arctic sea ice on the planetary boundary layer (PBL) O 3 concentration and budget using year-round flux and concentration observations from the Multidisciplinary drifting Observatory for...
Article
Full-text available
The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct obse...
Article
Full-text available
Despite the key role of the Arctic in the global Earth system, year-round in-situ atmospheric composition observations within the Arctic are sparse and mostly rely on measurements at ground-based coastal stations. Measurements of a suite of in-situ trace gases were performed in the central Arctic during the Multidisciplinary drifting Observatory fo...
Preprint
Full-text available
In the Arctic, the aerosol budget plays a particular role in determining the behaviour of clouds, which are important for the surface energy balance and thus for the region’s climate. A key question is the extent to which cloud condensation nuclei in the high Arctic summertime boundary layer are controlled by local emission and formation processes...
Article
Full-text available
A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reduct...
Article
Full-text available
Predictions of cloud droplet activation in the late summertime (September) central Arctic Ocean are made using κ- Köhler theory with novel observations of the aerosol chemical composition from a high-resolution time-of-flight chemical ionization mass spectrometer with a filter inlet for gases and aerosols (FIGAERO-CIMS) and an aerosol mass spectrom...
Article
Full-text available
Unlike bromine, the effect of iodine chemistry on the Arctic surface ozone budget is poorly constrained. We present ship-based measurements of halogen oxides in the high Arctic boundary layer from the sunlit period of March to October 2020 and show that iodine enhances springtime tropospheric ozone depletion. We find that chemical reactions between...
Article
Full-text available
Frequency and intensity of warm and moist air-mass intrusions into the Arctic have increased over the past decades and have been related to sea ice melt. During our year-long expedition in the remote central Arctic Ocean, a record-breaking increase in temperature, moisture and downwelling-longwave radiation was observed in mid-April 2020, during an...
Preprint
Full-text available
The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance, and hence the climate response, in the region; yet direct ob...
Chapter
This chapter describes aerosol properties and processes in polar and high-latitude regions. Aerosol effects at high latitudes are important because of their potential role in the strongly amplified rate of climate change in the Arctic in particular. The chapter begins with a description of some of the unique climatic features of high-latitude regio...
Article
Full-text available
The Arctic environment has changed profoundly in recent decades. Aerosol particles are involved in numerous feedback mechanisms in the Arctic, e.g., aerosol-cloud/radiation interactions, which have important climatic implications. To understand changes in different Arctic aerosol types and number concentrations, we have performed a trend analysis o...
Article
Full-text available
Parts of the Antarctic are experiencing dramatic ecosystem change due to rapid and record warming, which may weaken biogeographic boundaries and dispersal barriers, increasing the risks of biological invasions. In this study, we collected air samples from 100 locations around the Southern Ocean to analyze bacterial biodiversity in the circumpolar a...
Article
Full-text available
Aerosol particles acting as cloud condensation nuclei (CCN) or ice-nucleating particles (INPs) play a major role in the formation and glaciation of clouds. Thereby they exert a strong impact on the radiation budget of the Earth. Data on abundance and properties of both types of particles are sparse, especially for remote areas of the world, such as...
Article
Full-text available
Over a five-month time window between March and July 2020, scientists deployed two small uncrewed aircraft systems (sUAS) to the central Arctic Ocean as part of legs three and four of the MOSAiC expedition. These sUAS were flown to measure the thermodynamic and kinematic state of the lower atmosphere, including collecting information on temperature...
Article
Full-text available
Atmospheric observations in remote locations offer a possibility of exploring trace gas and particle concentrations in pristine environments. However, data from remote areas are often contaminated by pollution from local sources. Detecting this contamination is thus a central and frequently encountered issue. Consequently, many different methods ex...
Article
Full-text available
The Arctic is warming faster than anywhere else on Earth, prompting glacial melt, permafrost thaw, and sea ice decline. These severe consequences induce feedbacks that contribute to amplified warming, affecting weather and climate globally. Aerosols and clouds play a critical role in regulating radiation reaching the Arctic surface. However, the ma...
Article
Full-text available
Detailed knowledge of the physical and chemical properties and sources of particles that form clouds is especially important in pristine areas like the Arctic, where particle concentrations are often low and observations are sparse. Here, we present in situ cloud and aerosol measurements from the central Arctic Ocean in August–September 2018 combin...
Article
Full-text available
While carbon dioxide is the main cause for global warming, modeling short-lived climate forcers (SLCFs) such as methane, ozone, and particles in the Arctic allows us to simulate near-term climate and health impacts for a sensitive, pristine region that is warming at 3 times the global rate. Atmospheric modeling is critical for understanding the lon...
Article
Full-text available
The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice‐nucleating particles (INPs) is needed. Generally, the concentrations of INPs are found to be very low in remote marine locations allowing cloud water to persist in a supercooled...
Article
Full-text available
Even though the Arctic is remote, aerosol properties observed there are strongly influenced by anthropogenic emissions from outside the Arctic. This is particularly true for the so-called Arctic haze season (January through April). In summer (June through September), when atmospheric transport patterns change, and precipitation is more frequent, lo...
Article
Full-text available
Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and bio...
Article
Full-text available
The Arctic is warming two to three times faster than the global average, and the role of aerosols is not well constrained. Aerosol number concentrations can be very low in remote environments, rendering local cloud radiative properties highly sensitive to available aerosol. The composition and sources of the climate-relevant aerosols, affecting Arc...
Preprint
Full-text available
Atmospheric observations in remote locations offer a possibility to explore trace gas and particle concentrations in pristine environments. However, data from remote areas are often contaminated by pollution from local sources. Detecting this pollution is thus a central and frequently encountered issue. Consequently, many different methods exist to...
Article
Full-text available
With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of...
Article
Full-text available
With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of...