Julia K. Green

Julia K. Green
University of California, Berkeley | UCB · Department of Environmental Science, Policy, and Management

Doctor of Philosophy
Postdoctoral Research Associate, UC Berkeley

About

16
Publications
12,026
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
732
Citations

Publications

Publications (16)
Article
Full-text available
The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here we analyse satellite observations of solar-induced fluores...
Article
Full-text available
Earth system models suggest that soil-moisture variability and trends will induce large carbon releases throughout the twenty-first century.
Article
Full-text available
Earth system models predict that increases in atmospheric and soil dryness will reduce photosynthesis in the Amazon rainforest, with large implications for the global carbon cycle. Using in situ observations, solar-induced fluorescence, and nonlinear machine learning techniques, we show that, in reality, this is not necessarily the case: In many of...
Article
Vegetation is a key component in the global carbon cycle as it stores ~450 GtC as biomass, and removes about a third of anthropogenic CO2 emissions. However, in some regions the rate of plant carbon uptake is beginning to slow, largely because of water stress. Here we develop a new observation‐based methodology to diagnose vegetation water stress a...
Article
Current models may be overestimating the sequestration potential of forests
Article
The 2015/16 El Niño brought severe drought and record-breaking temperatures in the tropics. Here, using satellite-based L-band microwave vegetation optical depth, we mapped changes of above-ground biomass (AGB) during the drought and in subsequent years up to 2019. Over more than 60% of drought-affected intact forests, AGB reduced during the drough...
Article
Full-text available
Both low soil water content (SWC) and high atmospheric dryness (vapor pressure deficit, VPD) can negatively affect terrestrial gross primary production (GPP). The sensitivity of GPP to soil versus atmospheric dryness is difficult to disentangle, however, because of their covariation. Using global eddy-covariance observations, here we show that a de...
Article
Full-text available
Siberia experienced an unprecedented strong and persistent heatwave in winter to spring of 2020. Using bottom-up and top-down approaches, we evaluated seasonal and annual CO2 fluxes of 2020 in the northern hemisphere (north of 30ºN), focusing on Siberia where the pronounced heatwave occurred. We found that over Siberia, CO2 respiration loss in resp...
Article
Full-text available
Amazonian evergreen forests show distinct canopy phenology and photosynthetic seasonality but the climatic triggers are not well understood. This imposes a challenge for modeling leaf phenology and photosynthesis seasonality in land surface models (LSMs) across Amazonian evergreen forest biome. On continental scale, we tested two climatic triggers...
Article
Full-text available
In summer 2018, Europe experienced a record drought, but it remains unknown how the drought affected ecosystem carbon dynamics. Using observations from 34 eddy covariance sites in different biomes across Europe, we studied the sensitivity of gross primary productivity (GPP) to environmental drivers during the summer drought of 2018 versus the refer...
Article
Full-text available
The continental tropics play a leading role in the terrestrial energy, water, and carbon cycles. Land–atmosphere interactions are integral in the regulation of these fluxes across multiple spatial and temporal scales over tropical continents. We review here some of the important characteristics of tropical continental climates and how land–atmosphe...
Article
Full-text available
The terrestrial carbon and water cycles are strongly coupled. As atmospheric carbon dioxide concentration increases, climate and the coupled hydrologic cycle are modified, thus altering the terrestrial water cycle and the availability of soil moisture necessary for plants’ carbon dioxide uptake. Concomitantly, rising surface carbon dioxide concentr...
Article
Full-text available
The continental tropics play a leading role in the terrestrial water and carbon cycles. Land–atmosphere interactions are integral in the regulation of surface energy, water and carbon fluxes across multiple spatial and temporal scales over tropical continents. We review here some of the important characteristics of tropical continental climates and...
Article
Full-text available
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H,...
Article
Full-text available
A new global estimate of surface turbulent fluxes, including latent heat flux (LE), sensible heat flux (H), and gross primary production (GPP) is developed using remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. The approach uses an artificial neural network (ANN) with a Bayesian perspective to learn...

Network

Cited By

Projects

Project (1)
Archived project