Julia Brugger

Julia Brugger
  • Senckenberg Biodiversity and Climate Research Centre

About

15
Publications
5,248
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
290
Citations
Introduction
Current institution

Publications

Publications (15)
Article
Full-text available
Eocene hyperthermal events reflect profound perturbations of the global carbon cycle. Most of our knowledge about their onset, timing, and rates originates from marine records. Hence, the pacing and magnitude of hyperthermal continental warming remains largely unaccounted for due to a lack of high-resolution climate records. Here we use terrestrial...
Article
Full-text available
Accurate reconstruction of seasonal atmospheric patterns of the past is essential for reliable prediction of how climate will evolve due to anthropogenic CO2 forcing. The Eocene ‘hot house’ climate, as the warmest epoch during the Cenozoic, is considered as a potential analogue for ‘high-CO2’ future climate scenarios. In this context, the reconstru...
Article
Full-text available
Reconstructing global mean surface temperature (GMST) is one of the key contributions that paleoclimate science can make in addressing societally relevant questions and is required to determine equilibrium climate sensitivity (ECS). GMST has been derived from the temperature of the deep ocean (Td), with previous work suggesting a simple Td‐GMST sca...
Article
Full-text available
The dry continental interior of Asia has remained arid throughout most of its geological history, yet the future of this unique ecosystem remains unclear. Here we use palynological and isotopic records to track vegetation and moisture throughout the warm early Eocene (57 to 44 million years ago) as an analogue for extreme atmospheric CO2 scenarios....
Preprint
Full-text available
Reconstructing past changes in global mean surface temperature (GMST) is one of the key contributions that palaeoclimate science can make in addressing societally relevant questions and is required to determine equilibrium climate sensitivity (ECS). Previous work has suggested that the temperature of the deep ocean (Td) can be used to determine GMS...
Article
Full-text available
The emergence of forests on Earth (~385 million years ago, Ma)1 has been linked to an order-of-magnitude decline in atmospheric CO2 levels and global climatic cooling by altering continental weathering processes, but observational constraints on atmospheric CO2 before the rise of forests carry large, often unbound, uncertainties. Here, we calibrate...
Article
The extinction of the dinosaurs and around three-quarters of all living species was almost certainly caused by a large asteroid impact 66 million years ago. Seismic data acquired across the impact site in Mexico have provided spectacular images of the approximately 200-kilometre-wide Chicxulub impact structure. In this Review, we show how studying...
Thesis
Full-text available
The evolution of life on Earth has been driven by disturbances of different types and magnitudes over the 4.6 million years of Earth’s history (Raup, 1994, Alroy, 2008). One example for such disturbances are mass extinctions which are characterized by an exceptional increase in the extinction rate affecting a great number of taxa in a short interva...
Article
Full-text available
There is increasing evidence linking the mass-extinction event at the Cretaceous-Paleogene boundary to an asteroid impact near Chicxulub, Mexico. Here we use model simulations to explore the combined effect of sulfate aerosols, carbon dioxide and dust from the impact on the oceans and the marine biosphere in the immediate aftermath of the impact. W...
Article
Full-text available
During the Devonian (419 to 359 million years ago), life on Earth witnessed decisive evolutionary breakthroughs, most prominently the colonization of land by vascular plants and vertebrates. However, it was also a period of major marine extinctions coinciding with marked changes in climate. The cause of these changes remains unknown, and it is ther...
Article
Full-text available
During the Devonian period (419 to 359 million years ago), life on Earth witnessed decisive evolutionary break-throughs, most prominently the colonisation of land by vascular plants and vertebrates. At the same time, it is also a period of major marine extinction events coinciding with marked changes in climate. There is limited knowledge about the...
Article
Sixty-six million years ago, the end-Cretaceous mass extinction ended the reign of the dinosaurs. Flood basalt eruptions and an asteroid impact are widely discussed causes, yet their contributions remain debated. Modeling the environmental changes after the Chicxulub impact can shed light on this question. Existing studies, however, focused on the...

Network

Cited By