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Abstract

Enzyme function prediction is an important problem in post-genomic
bioinformatics, needed for reconstruction of metabolic networks of organ-
isms. Currently there are two general methods for solving the problem:
annotation transfer from a similar annotated protein, and machine learn-
ing approaches that treat the problem as classification against a fixed
taxonomy, such as Gene Ontology or the EC hierarchy. These methods
are suitable in cases where the function of the new protein is indeed pre-
viously characterized and included in the taxonomy. However, given a
new function that is not previously described, these approaches are not
of significant assistance to the human expert. The goal of this paper is to
bring forward structured output learning approaches for the case where
the exactly correct function of the enzyme to be annotated may not be
contained in the training set. Our approach hinges on fine-grained rep-
resentation of the enzyme function via the so called reaction kernels that
allow interpolation and extrapolation in the output (reaction) space. A
kernel-based structured output prediction model is used to predict enzy-
matic reactions from sequence motifs. We bring forward several choices
for constructing reaction kernels and experiment with them in the remote
homology case where the functions in the test set have not been seen in
the training phase.

1 Introduction
Enzymes are the workhorses of living cells, producing energy and building blocks
for cell growth as well as participating in maintaining and regulation of the
metabolic states of the cells. Reliable assignment of enzyme function, that is,
the biochemical reactions catalyzed by the enzymes, is a prerequisite of high-
quality metabolic reconstruction [14, 10], pathway analysis [13] and metabolic
flux estimation [16].

In literature, the enzyme function prediction problem comes in two general
formulations: annotation transfer or classification by machine learning. In the
first approach, given an unannotated protein, a similar annotated protein with
experimentally verified function is searched for in databases, and the annotation
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is transferred to the new protein. In the second approach, a model is trained
to classify the new protein into one of the predefined functional classes such as
four-level hierarchical EC classification of enzymatic functions.

The success of the above approaches depends on the set of previously char-
acterized and catalogued enzymatic functions. If the new protein belongs to
the existing function classes, annotation transfer or classification learning may
work. If the new protein, however, posseses a function that is not pre-existing,
correct function cannot be predicted even in principle.

Given the diversity of the tree of life, it is likely that completely new functions
are encountered as sequencing and annotation efforts widen. Tools, which can
give accurate predictions of what the new functions might be, could expedite
these efforts. In this paper, we develop a structured output prediction approach
that, to our knowledge is the first enzyme function prediction tool to possess
the capability of prediction previously unseen functions. The key component
of our method is the representation of enzyme function in fine-grained fashion
with the so called reaction kernels, that allow interpolation and extrapolation
in the space of enzymatic function.

The organization of the paper is the following. In section 2 we briefly de-
scribe main existing approaches in enzyme function prediction. In section 3, we
review structured output prediction approaches, in particular Kernel Density
Estimation and Maximum Margin Regression which are applied in the subse-
quent sections. In section 4, we describe representations for structured output
prediction of enzyme function. We put forward two reaction kernel variants
that allow us to interpolate and extrapolate in the space of enzymatic reactions.
Section 5 describes experiments validating our approach. Section 6 discusses the
relative merits of the current and competing methods, and outlines directions
for future work.

2 Enzyme Function Prediction
Protein function prediction is recognized as one of the key problems in bioinfor-
matics, and hence there is a large number of approaches to tackle this problem.
Most enzyme function prediction methods are instantiations of the more general
protein function prediction problem. Here we give a brief overview of protein
function prediction approaches. For more information, we refer the interested
reader to the recent survey of [15].

2.1 Annotation Transfer Approaches
The most widely used function prediction approach is still annotation transfer
based on sequence similarity: given an unannotated protein, using a sequence
comparison tool such as BLAST, search for an annotated sequence homolog
with an experimentally verified function, and transfer the annotation to the
new protein. This approach has well-known pitfalls: sequence similarity does
not equate to homology, function is typically determined by a small group of
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residues whose contribution in the overall similarity may fail to be detected, and
the danger of the propagation of the annotation errors.

Sequence motifs or signatures are used to overcome shortcomings of overall
sequence similarity. As the protein function is typically dependent on a small
region of the sequence (e.g. for enzymes the residues forming the active center),
a significant amount of research has been conducted to derive sequence motifs
that are predictive of the function [15]. In this paper, we apply the Global
Trace Graph [9] features that can be interpreted as predicted conserved residues.
The GTG features are derived from a global alignment of all known protein
sequences. In this alignment, GTG features correspond to residues that align
consistently within a group of proteins.

Information about the 3D structure is known to be a powerful aid in function
prediction, due to the fact that it is ultimately the three-dimensional structure
that determines the protein function. Structural similarity of two proteins may
indicate common evolutionary origin even in the absence of significant sequence
similarity. Numerous structural alignment methods (e.g. [11]) have been de-
veloped to make use of the 3D structures. Structural motifs are an analogous
concept to sequence motifs: a local constellation of residues in the active center
of an enzyme may be higly predictive of the function. In this paper, we do not
apply 3D information, but leave this as future work.

2.2 Machine Learning Approaches
Machine learning methods are potentially useful in cases where the new protein
does not possess significant sequence (or structure) similarity to existing pro-
teins. Given large enough data, machine learning methods are able to distill
non-trivial associations between the input features and the function.

In the machine learning setting, enzyme function prediction has been gener-
ally defined as a classification problem. The works by Lanckriet et al. [12] and
Borgwardt et al. [4] use kernel methods to predict the main categories in MIPS
and EC taxonomies, respectively.

Other works aim to predict the membership in the whole taxonomy. These
include the work by Clare and King [5] who use decision trees to predict the
membership in the MIPS taxonomy. Barutcuoglu et al. [2] combine Bayesian
networks with a hierarchy of support vector machines to predict Gene Ontology
classification. Blockeel et al. [3] use multilabel decision tree approaches to
functional class classification according to the MIPS FunCat taxonomy.

Structured output approaches (see below) for hierarchical multilabel classifi-
cation (c.f. [17]) have been applied to enzyme function prediction by Astikainen
et al. [1] and Sokolov and Ben-hur [19]. In this paper, we take the hierarchical
classification against the EC hierarchy [1] as one of the comparison methods to
the reaction kernel approach.
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3 Structured Output Learning
Our objective is to learn a function that, given (a feature representation of) a
sequence, can predict (a feature representation of) an enzymatic reaction.

Learning algorithms that are designed for structured prediction tasks like
the above, are many. We concentrate on kernel methods, that let us utilize
high-dimensional feature spaces without computing the feature maps explicitly.
Structured SVM [22], Max-Margin-Markov networks [21, 17], Kernel Density
Estimation (KDE) and Maximum-Margin Regression (MMR) [20] are learning
methods falling into this category.

We consider a training set of (sequence,reaction)-pairs Dm = {(xi, yi)|xi ∈
X , yi ∈ Y}mi=1 drawn from an unknown joint distribution P(X ,Y).

For sequences and reactions, respectively, we assume feature mappings φ: X 7→
FX and ψ: Y 7→ FY , mapping the input and output objects into associated in-
ner product spaces FX and FY . The kernels KX(x, x′) = 〈φ(x), φ(x′)〉 and
KY (y, y

′) = 〈ψ(y), ψ(y′)〉 defined by the feature maps are called the input and
output kernel, respectively. Above 〈·〉 denotes the inner product. Subsequently,
we discuss particular choices for the feature mappings and the kernels suitable
for the enzyme function prediction task.

3.1 Joint Kernels
In structured prediction models based on kernels, the associations between the
inputs and outputs are typically represented by a joint kernel, defined by some
feature map joint for inputs and outputs. In this paper, we use a joint feature
map

ϕ(x, y): X × Y 7→ FX⊗Y ,
where ϕ(x, y) = φ(x) ⊗ ψ(y) is the tensor product of input and output fea-
ture maps, thus consisting of all pairwise products φj(x)ψk(y) between input
and output features. This choice gives us the joint kernel representation as
elementwise product of the input and output kernels

KXY (x, y;x
′, y′) = KX(x, x′)KY (y, y

′).

The tensor product kernel is suitable in situations where there is no prior align-
ment information of input and output features available, but the learning ma-
chine is expected to learn the alignments. This is the case in our enzyme function
prediction setup.

3.2 Learning Task
Most structured prediction models [21, 22, 20, 17] take the form of a linear score
function

Fw(x, y) = 〈w,ϕ(x, y)〉 = 〈w, φ(x)⊗ ψ(y)〉
in the joint feature space. The model’s prediction ŷ(x) corresponds to highest
scoring output y:

ŷ(x) = argmaxyFw(x, y).
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For the model learning we use two computational methods. The first method
is Kernel Density Estimation (KDE) which uses the joint kernel density function

Fw(x, y) =
∑
i

KXY (x, y;xi, yi) (1)

for scoring. This is the simplest model we use for prediction, since there is
no weighting vector w for the training examples and all the datapoints are thus
equally important.

The second method, Max-Margin Regression (MMR) [20] aims to separate
the training data ϕ(xi, yi) from the origin of the joint feature space with max-
imum margin, thus it can be seen analogous to the one-class SVM [18]. The
primal form of the MMR optimization problem can be written as

min
1

2
||w||2 + C

∑
i

ξi

s.t. 〈w,ϕ(xi, yi)〉 ≥ 1− ξi
ξi ≥ 0, i = 1, . . . ,m.

The dual form of the MMR problem can be expressed as

max

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjKX(xi, xj)KY (yi, yj)

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m. (2)

MMR, due to its simple form, can be optimized very efficiently which makes,
for example, the optimization of kernel parameters a feasible task on medium
sized datasets (103-104 examples), which is not true for most competing ap-
proaches [21, 22, 17].

Furthermore, as the output representation is kernelized, it is possible to learn
in very complex output spaces, as we will demonstrate subsequently.

3.3 Preimage Problem
In all structured output prediction approaches, the prediction of the model needs
to be extracted by solving the preimage problem

ŷ(x) = argmaxy∈YFw(x, y).

Depending on the output space, solving the preimage exactly can be computa-
tionally challenging or intractable.

Using kernelized outputs, as in the case of dual MMR (2), the preimage
takes an even more challenging form

ŷ(x) = argmaxy∈Y
∑
i

αiKX(x, xi)KY (y, yi),
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for which efficient algorithms are hard to come by. However, a difference between
MMR and most structured output prediction methods is that there is no need
to solve the preimage problem as part of the training, only during prediction.
Thus, the computational complexity of the preimage is not as a crucial issue.

In the experiments reported in this paper, we use a brute-force preimage
algorithm: we enumerate the set of outputs contained in our whole dataset
(training and test examples included) Yn = {y|(x, y) ∈ Dn}. This approach will
give us an approximate solution to the preimage problem, that is, the globally
best scoring prediction may lie outside the set Yn. This approach is sufficient
for first evaluation of the proposed prediction methods. We note that the set
of putative reactions Y could be much larger, e.g. all chemical reactions among
metabolites below certain size.

4 Kernels for Chemical Reactions
In this section, we consider how to build kernels for chemical reactions, using
molecule graph kernels as the building blocks.

Let us first introduce some notation used in this section. We denote a basic
set of reactions R, where a reaction ρ(S(ρ), P (ρ)) ∈ R is given by a set sub-
strates S(ρ) ⊂ M and products P (ρ) ⊂ M1. The set of reactants is simply
the union of substrates and products R(ρ) = S(ρ) ∪ P (ρ). A feature vector
describing a reaction ρ is denoted by ψ(ρ) and the feature vector describing a
molecule M is denoted by φ(M).

For illustration, consider a chemical reaction ρ = ({S1}, {P1, P2}) converting
a substrate molecule S1 into two product molecules P1 and P2, thus defined by
the reaction equation

ρ: S1 ⇒ P1 + P2.

Consider now a second reaction ρ′ = ({S′1, S′2}, {P ′1, P ′2}), converting substrates
S′1, S

′
2 into products P ′1 + P ′2, and back, expressed as

ρ′: S′1 + S′2 ⇔ P ′1 + P ′2

How can we measure the similarity of these reactions via kernels? The
approach in this paper is to consider pairwise similarities of the constituent
molecules and compute an aggregate on them. While there are many ways how
this could be done in principle, two important considerations arise from the
(bio)chemical reality:

• Similarity of reaction events vs. reactants. We should make a dis-
tinction between the similarity of the reaction events versus the similarity
of the reactant molecules. For example, enzymes belonging to the amino-
transferase group are similar to each other in that they transfer a certain
functional group (the amino group) from a reactant molecule to another.
However, the reactant molecules need not be similar.

1To fully represent chemical reaction equations, we would also need to consider the stoi-
chiometric coefficients for each reactant; However, we ignore this modelling aspect here
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Conversely, there are many different transformations which can be per-
formed on the same molecule. For example, pyruvate, an important hub
metabolite in the central metabolism of all living cells, participates in
many reactions. The transformations applied by the reactions may be
very different from each other, although they work on the same substrate
molecule pyruvate.

Thus, depending on the application, our kernel should be designed to
measure one of these similarity notions, or measure both of them in some
proportion.

• Directionality of Reactions. The reactions may be defined as uni-
directional or bidirectional. As the direction of a reaction depends on
thermodynamical conditions, this may or may not be a relevant issue. For
example, most enzymatic reactions are bidirectional in principle, but the
conditions inside a living cell force unidirectionality.

When the directionality of reactions is of importance, each bidirectional
reaction can be divided into forward and backward reactions. In our ex-
ample, we would obtain

ρ′fwd: S
′
1 + S′2 ⇒ P ′1 + P ′2,

and
ρ′bwd: P

′
1 + P ′2 ⇒ S′1 + S′2.

In this case we would like our kernel to be sensitive to the direction so that
forward and backward directions of the same reaction can be discriminated
in the feature space.

However, when reaction direction is of no importance, the forward and
backward directions of a bidirectional reaction should be treated the same
by our kernel.

Below, we will describe a molecule graph kernel matrix KM which consti-
tutes the basic component of the two alternative reaction kernels described next.
For both reaction kernels we also show the underlying feature map which will
suffice to show that both of the reaction kernels below are valid Mercer kernels
if the underlying molecule kernel is a valid Mercer kernel.

Both of the reaction kernels described below are very fast to compute, given
that the molecule kernel KM is pre-computed: the time complexity of the re-
action kernel computation is then linear in the number of the elements in the
kernel matrix.

4.1 Kernels for Molecule Graphs
As the molecule kernel KM underlying the reaction kernels we use a subgraph
kernel restricted to small subgraphs (10 nodes or less). The kernel computes the
product graph of the two molecule graphs and counts its connected subgraphs.
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The kernel constructed in this way may in general not be a valid Mercer ker-
nel. However, on our dataset, the kernel matrix was observed to be positive
semidefinite.

Enumerating the subgraphs up to the maximum subgraph size d takes O(md)
time, where m is the number of edges in the product graph. Thus the kernel
is quite time-consuming to compute. In practice, we were able to compute
the common connected subgraphs of 1767 KEGG LIGAND [7] molecules up to
subgraph size 10 in a week with approximately 50 Pentium 4 class computers.
Considering the computational resources available nowadays in research labs,
and the time available to solve a typical problem involving molecular data, the
computational complexity hardly presents a prohibitive constraint.

We note that it would also be possible to use a more quickly computable
graph kernel based on common walks [6], that is, sequences of labeled atoms and
bonds, which can be thought to approximate common subgraphs (each common
subgraph induces a set of common walks). However, we leave exploring this
direction as future work.

4.2 Sum-of-Reactants kernel
A simple kernel, called the Sum-of-Reactants (SoR) kernel, is obtained by defin-
ing

KSoR(ρ, ρ
′) = m(ρ)TKMm(ρ′),

where the vector m(ρ) consists of indicators mj(ρ) = 1{Mj∈Rρ} for the presence
or absence of a molecule Mj in the set of reactants of ρ. The corresponding
feature vector is simply the sum of feature vectors of molecule graphs in Rρ:

ψ(ρ) =
∑
M∈Rρ

φ(M)

Intuitively, the kernel measures the similarity of reactions in terms of how
similar the molecules manipulated by the reactions are on average, rather than
the similarity of reaction events. The reaction representation and the kernel can
be considered bidirectional as the different roles of reactant molecules are not
considered.

4.3 Reactant-Matching kernels
In the SoR kernel there is an underlying all-against-all matching between the
substrate sets (Sρ, S′ρ), product sets (Pρ, P ′ρ) and between the cross-pairs (Sρ, P ′ρ)
and (Pρ, S

′
ρ). This measure implicitly contains spurious matches of two kinds:

1. Given two unidirectional reactions, matching substrates of one reaction
with the products of another (e.g. Fig 1, top right) is not justified. How-
ever, it may be perfectly sensible to match the first substrate of one re-
action to the second substrate of another as the order of declaring the
reactants one one side of the reaction is merely a convention (e.g. Fig 1,
top left).
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Figure 1: Examples of matchings induced by the SoR kernel. Top left and top
right pictures represent a valid and a spurious matching for a unidirectional re-
action, respectively. Bottom left and bottom right pictures represent a spurious
and a valid matching for a bidirectional reaction, respectively.

2. Matching one substrate s1 ∈ Sρ against a substrate s′ ∈ S′ρ and another
s2 ∈ Sρ against a product p′ ∈ Pρ has no biological justification (Fig 1,
bottom left). However, for bidirectional reactions, matching all substrates
of one reaction against the products of another is perfectly sensible as it
corresponds to flipping the nominal direction of one of the reactions (Fig
1, bottom right).

We can filter out the above spurious matches by defining a feature map via
the tensor product

ψ(ρ) =
∑
M∈Sρ

φ(M)⊗
∑
M∈Pρ

φ(M),

which gives us the Reactant-Matching (RM) kernel

K(ρ, ρ′) = K(Sρ, Sρ′)K(Pρ, Pρ′),

where we use the shorthand

K(S, S′) =
∑
M∈S

∑
M ′∈S′

KM(M,M ′).

The above kernel is obviously unidirectional as it matches the reactions in
the forward direction. To obtain a bidirectional kernel we compute the backward
direction by taking the cross terms

K(ρ, ρ′) =
1

2
(K(Sρ, Sρ′)K(Pρ, Pρ′) +K(Sρ, Pρ′)K(Pρ, Sρ′))

We note that the bidirectional kernel still filters out the above mentioned spu-
rious matches, in the second term the other reaction is just flipped around.
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5 Experiments

5.1 Data
The dataset is a sample(sequence, reaction) pairs from the KEGG LIGAND
database [7]. As the input (sequence) representation, we use Global Trace Graph
(GTG, [9]) features that can be interpreted as predicted conserved amino acids.

We have two separate datasets: the parameter validation set of 1481 enzymes
and testing set of 8112 enzymes, which do not have overlapping EC numbers.
Parameter validation set is yet divided into two folds, training set of 930 and test
set of 551 enzymes. Testing dataset is divided into five folds with average of 1622
enzymes. Members of the folds are chosen such that each of the different EC
number exist only in one of the folds, so the training sets have no enzymes with
the test set EC number appear. This is to simulate setting where a previously
unseen functions are to be predicted.

Both the input (GTG) kernel and the output (reaction) kernels are fed to a
polynomial kernel Kpoly(x, z) = (K(x, z) + 1)d and normalized. The restricted
size subgraph kernel is used as the molecule kernel underlying all the reaction
kernel variants.

5.2 Compared Methods
We compare the following methods:

• NN(BLAST): This is the baseline annotation transfer method: given a
test sequence, find the nearest sequence neighbor in the training set and
transfer the annotation to the new protein. Sequence similarity is taken
from pre-computed Blast scores from the Pairs-DB server [8].

• NN(GTG): This is the annotation transfer methods using the GTG data.
Given a test sequence, find the training sequence with the most common
GTG features with the test sequence, and transfer the annotation.

• MMR(GTG,Hierarchical): The hierarchical structured output prediction
from [1]. The method predicts the membership of the new protein in the
EC hierarchy; generally the prediction is a root-to-leaf path in the EC
hierarchy.

• MMR(GTG,RM): MMRwith GTG as input kernel and Reactant-Matching
as output kernel.

• KDE(GTG,RM): KDE with GTG as input kernel and Reactant-Matching
as output kernel.

We have beforehand made an experiment where we compared the function
prediction accuracy with both of the reaction kernels using degree-6 polynomial
kernel over the inputs and degree-20 polynomial kernel over the outputs. F1
score for RM was 27.9% and for SoR it was 25.9%. Since the RM outperformed
SoR, we use the RM as output kernel in all the following experiments.
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Figure 2: The EC digit F1 score plotted as the function of the degrees of the in-
put and output kernels. The best results are obtained with degree 2 polynomial
over the inputs and degree 8 or higher over the outputs.

5.3 Measure of Success
To measure accuracy of prediction, for each test instance (x, y), we first compute
the set of top-scoring functions Ŷ(x) = {yi ∈ Yn|F (α, x, yi) ≥ F (α, x, y′),∀y′ ∈
Yn}, that is the reactions that the prediction model considers the (equally) best.
This set is considered as the prediction of the model.

For each function y′ ∈ Ŷ(x), we check how many consecutive digits starting
from the left of the EC number associated with y′ coincide with digits of the EC
number associated with the reference function y. Each such correctly predicted
EC digits counts as a true positive, rest of the EC digits counts as a false
positive. For example, if the reference function y is 3.1.1.1 and prediction set
Ŷ(x) contains two members 3.1.2.1 and 3.1.1.10, there are five true positives
(marked bold) and three false positives out of 8 EC digits. The EC digit F1 is
then the F1 score taken over all EC digit predictions in the test set.

5.4 Results
5.4.1 Effect of Polynomial Kernel Degree

In the first experiment we illustrate the behaviour of the structured output
learning of MMR in very high-dimensional joint feature space. We use the
GTG kernel (predicted conserved residues) as the base input kernel and the
RM kernel as the base output kernel.

In this experiments we use two sets: one for training and second for testing.
Figure 2 shows a heat map of the EC digit F1 score. The F1 score improves when
the degree either the input, the output or both input and output polynomial
kernels increases. The optimum reaches a plateau at input degrees 1-4 and
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Figure 3: The cumulative distribution of correctly predicted EC digits in the test
set (bottom chart). Each member of the top ranking preditions Ŷ(x) contributes
one item in the distribution.

output degrees 8-16 indicating robustness with respect to changes in parameter
values.

Applying a high-degree polynomial to the base kernel makes the resulting
output kernel more sparse, which suggests that the reactant matching kernel
alone is too smooth for optimum performance. We note that optimizing the
input and output kernels independently can be useful in other structured pre-
diction settings as well.

5.4.2 Prediction Under Remote Homology

In the final experiment, we demonstrate the generalization ability of the struc-
tured output prediction methods. We measure how many EC digit are correctly
predicted in testing over a five fold set of enzyme families where the four digit
EC numbers are not overlapping between folds. Thus the training set contains
no enzyme that has exactly the same EC number, but families that have three
matching EC digits typically appear in the training.

In this setup is should be clear that the nearest neighbor classifier or the
hierarchical classifier cannot ever predict four-digit EC number correctly, as the
methods have not seen any examples of that particular family. The reaction
kernel approach, however, does not suffer from this limitation: as all possible
reactions can be represented in the output space, it is in principle possible to
predict the correct function.

Figure 3 shows the results of this experiment. Here, we used a degree 8
polynomial kernel over the RM kernel and degree 2 polynomial kernel over the
inputs. In the bottom chart is the cumulative chart depicting the number of
enzyme families that have at least certain number of correctly predicted EC
digits.

It can be seen that the methods relying on the GTG features (NN(GTG),
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KDE(GTG,RM) and both MMR methods) are more effective in predicting more
than one EC digits correcly. The KDE reaction kernel and MMR hierarchical
approach is slightly better in predicting two or more EC digits correctly than
the competing approaches. Finally, we note that the reaction kernel approach is
the only method that, at times, can get the whole EC number correct. In other
words, the set of top-ranking reactions Ŷ(x) contain reactions that possess the
exactly correct EC number.

6 Discussion and future work
The present experiments show the potential of structured output prediction
using reaction kernels: given a novel, previously unseen enzymatic function,
the reaction kernel approach is significantly more accurate than the annotation
transfer approach and also compares with a hierarchical classifier trained with
structured output learning.

Also we note that the reaction kernel approach is an enabling technique: it
is possible, albeit not easy, to predict the new function exactly correctly. Inter-
estingly best results are obtained with a highly complex output representation:
a high-degree polynomial kernel over reactant matching kernel.

As the result show, using the reaction kernel methods for enzyme function
prediction is encouraging way to go, even if the prediction accuracy is still very
low for all of the methods used. There are many areas where the methods
can be improved. First, we only used predicted conserved residues (GTG) as
inputs. Although they work well, augmenting them with other types of data,
e.g. structural information should be helpful. Second, the presented reaction
kernels certain can be improved and completely different kinds of encodings of
enzyme function can be imagined.

Third, a better preimage algorithm will be needed for efficient prediction,
brute-force enumeration of reactions will not be feasible for huge collection of
putative reactions needed for truly novel function prediction. Also, as simpler
output representations may provide more efficient preimage algorithms, it would
be tempting to simplify the representations. However, in our view this should
not be done at the expense of predictive accuracy.
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