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Abstract— An overview on state of the art 

automotive radar usage is presented and the changing 

requirements from detection and ranging towards radar 

based environmental understanding for highly 

automated and autonomous driving deduced. The 

traditional segmentation in driving, manoeuvering 

and parking tasks vanishes at the driver less stage. 

Situation assessment and trajectory/manoeuver 

planning need to operate in a more thorough way. 

Hence, fast situational up-date, motion prediction 

of all kind of dynamic objects, object dimension, 

ego-motion estimation, (self)-localisation and more 

semantic/classification information, which allows 

to put static and dynamic world into 

correlation/context with each other is mandatory. 

All these are new areas for radar signal processing 

and needs revolutionary new solutions.  The article 

outlines the benefits that make radar essential for 

autonomous driving and presents recent approaches in 

radar based environmental perception. 
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I.  I. INTRODUCTION 

Automotive Radar has already reached a market 
penetration that leads to several tens of million units 
used. It has already grown up to a status were it has 
found its way into nearly all car manufacturers 
portfolio in the world. They are used in all platforms 
from passenger cars via van to heavy trucks and travel 
busses down to even smallest sedan car platforms. 
With the introduction of the collision prevention 
assist®, Radar sensors have become even standard 
equipment in passenger cars [1]. The major reason for 
the success story of automotive radar is its physical 
principle that offers unique performance features at 
reasonable costs. Among others there are 
independence from environmental conditions (light, 
weather), directly measured parameters in space and 
Doppler velocity, multiple field of view capability 
and design compatible vehicle integration. Radar 
performs under conditions, where other sensor types 
fail and it is capable to virtually look through vehicles 
(transvision effect) by exploiting reflections between 
the road surface and vehicle floor and hence makes 
the invisible visible. Over the decades, the 
performance requirements increased steadily from 
simple detector and ranging tasks in blind spot 
monitoring or cruise control systems up to smart 
environment perception tasks for present day semi-
autonomous evasion and braking functions [2]. 
However, the utmost push in performance 

requirement is initiated with the trend towards highly 
automated driving and down the road, driver less 
driving. Future automotive radar systems have to 
provide imaging like capabilities and have to interact 
in radar networks, which allow for 360° highly 
comprehensive perception tasks. In former days, 
single sensor concepts were used, while multi sensor 
networks composed of four or more short-,mid-, and 
far range radars are being applied, nowadays [3, 4]. In 
2013, the first stride ahead towards higher automation 
has been made with the fully autonomous Bertha 
drive of a Mercedes-Benz research sedan [3, 4]. One 
design rule was that the vehicle had to appear as a 
serial vehicle, which naturally brought radar into the 
game. The technical lesson learned was, that higher 
degree in automation, where the driver is going to be 
exculpated increasingly from the pure driving task, 
imposes much higher performance to the 
environmental perception task radar has to deliver. 
One important consequence is that radar signal 
processing has to be extended to machine learning, 
image understanding and patter recognition concepts 
to keep radar in the leading edge of remote sensing. 
The paper will provide an overview on state of the art 
automotive radar usage deduces future requirements 
for highly automated driving and will present recent 
advances in radar based environmental perception. 

II. FUNCTIONAL MILESTONES TO DRIVER LESS 

DRIVING 

A comprehensive overview of the evolution of 
driver assistance and active safety systems is given in 
[5]. Over the last decade, DAIMLER, and other car 
manufacturers all over the world have introduced a 
large variety of active safety and driver assistance 
functions [1, 2, 3]. In general, those systems have been 
developed to operate on highways and to some extend 
on rural roads. The functional portfolio of those 
systems covers mainly the following key features, 
Blind spot detection, Cruise control with Stop and go, 
Emergency Braking, 360°-Pre-crash sensing and pre-
triggering for/of airbags. The introduction of semi -
autonomous emergency braking and pre-crash systems 
was only possible by a dramatic improvement in radar 
technology and radar network architecture. The key 
improvements are the introduction of multimodality 
covering long (250m) and short range distances (0.5-
80m) and azimuth angles from ±10° to ± 70° in one 
sensor-package. First steps towards imaging like 
capability have been introduced with digital beam 
forming allowing for SAR concepts combined with 
high resolution algorithm techniques like linear – or 
autoregressive progression (APR) and MUSIC as well 
as architectural changes to achieve improved Doppler 
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resolution [4-6]. Also important are a high angular 
accuracy, a very fast up-date rate of few 10´s of 
milliseconds (ms) and small latency of view ms [7, 
13]. The evolution of driver assistance or active safety 
functions towards higher degree of automation can be 
revealed by considering the evolution of emergency 
braking systems. For example the Mercedes-Benz 
PRE-SAFE® Brake improved from a simple braking 
force enhancement in 2006 to a system that intervenes 
by braking the car automatically and activates the 
maximum braking power around 600ms seconds 
before the unavoidable collision in 2013 [2]. In 2015 
an extension to urban areas with pedestrian 
classification was added [2]. A similar evolution takes 
place in the parking and maneuvering area. Active 
parking assists of the former days, enabled the vehicle 
to search for a suitable parking space, and to park 
automatically at the press of a button, with the driver 
retaining control of the accelerator and brake at all 
times. The present evolution state is the advancement 
to parking pilot, where the driver can remote 
controlled park his car via a smart phone app from 
outside of the vehicle [8]. Even in those state of the art 
functions radar mainly performs according to its 
traditional role, detection and ranging of dynamic 
objects, based on a point representation. One first 
example how pattern recognition and image 
understanding concepts enable new safety functions is 
driving lane prediction. Exploiting the reflections from 
guard rails, gravel and lawn, this information enables 
emergency braking in curves and in snow conditions 
where optical lane information is missing [9, 10, 11]. 
Some basic pedestrian classification for NCAP and 
braking functions is the first step of radar contributing 
semantic information for a system reaction.  

It is quite obvious that the trend in higher 
automation level will continue up to autonomous 
driving on highways as well as in urban areas. At this 
utmost stage, there will be no driver in the loop. As a 
consequence, the autonomous car driving performance 
will be depending on the degree of completeness of 
the essential environmental information the sensor-set 
up is going to provide. Comparable to the human 
being that utilizes many different sensors (ears, eyes 
etc.) highly automated vehicles will use many different 
sensor types. The difference to present fusion concepts 
like “region of interest” is that all sensors will have to 
provide similar information in order to achieve the 
required robustness via a fusion concept like “n 
sensors out of m sensors see the same”, [29]. As a 
consequence, the standard performance portfolio of 
radar has to be dramatically enhanced. The following 
chapter will deduce the challenges for future 
automotive radar. 

III. RADAR REQUIREMENTS  

As shown with the Bertha Drive it could be shown, 
that autonomous driving on both interurban and inner 
city routes is feasible even with a vehicle and sensor-
set-up that is not dramatically different to a standard 
serial vehicle. The goal of this experiment was to show 
that autonomous driving is not limited on highways 
and similar structured environment [3, 4, 12, 13]. On 
its way, the self-driving S-Class had to deal 
autonomously with a number of highly complex urban 

situations, which were either enabled or aided by 
radar.  
In addition to far range operation in driving direction 
for highway and rural road operation, in urban 
scenarios 360° near- and mid-range distance of the 
vehicles environment will become also important. 
This along with a wider azimuthal observation 
horizon in order to cover e.g. crossing scenarios, 
roundabouts or pre-crash situations in driving 
direction as well as side- and rear-crash situations. 
Dramatically shrinking time scales in terms of 
observation- and time to react horizons as well as a 
huge larger number of static and dynamic object- and 
motion types compared to classical ACC and collision 
mitigation functions have to be coped with [14]. On 
top of that, urban areas provide manifold occasions 
for false detections, mirror targets and clutter. This all 
together imposes dramatic challenges to the radar 
signal processing engineer.  
The traditional segmentation in driving, manoeuvring 
and parking tasks vanishes at the driver less stage. 
Situation assessment and trajectory/manoeuver 
planning need to operate in a more thorough way. 
Hence, fast situational up-date, motion prediction of 
all kind of dynamic objects, object dimension, ego-
motion estimation, (self)-localisation and more 
semantic/classification information, which allows to 
put static and dynamic world into correlation/context 
with each other is mandatory. All these are new areas 
for radar signal processing and needs revolutionary 
new solutions. In addition to that interoperability-
interference avoidance/mitigation- of all radars per 
vehicle and with those already in other vehicles has to 
be guaranteed at the same time. This becomes more 
relevant with further increased market penetration and 
numbers of radars per vehicle [15]. The specific 
challenges on radar, deduced from the special traffic 
situations learned during the Bertha drives are 
described in detail in [13, 14]. A brief summary is 
roundabouts, crossings of all kinds, lane-change, 
over-/underride areas, different objects with various 
motion models like cyclists, pedestrians, sedan, truck 
buss etc., pre-crash situations from all directions, cut-
in situations in merged lanes, navigation and 
localisation in large areas, (self-) localisation in small 
parking areas, parking lot identification.  
As described e.g. in [4, 13, 14, 16, 17, 18], the HW-
architectural solution can be achieved for example 
over a two-step strategy. First, enhance the imaging 
performance of each radar sensor. In detail, provide 
higher spatial (range and angle) and Doppler 
resolution. Endow multi Field of View (range and 
azimuth angle) mode capability per sensor. Employ 
appropriate interference counter measures and avoid 
the mixture of CW like (PN-code/CDMA) with 
FMCW based modulation schemes [15, 19, 20]. 
Second, equip the car with multiple radar sensors and 
enable them to operate as a common network- quasi 
as one radar organism. Adjust the radars in that way, 
that the dark areas vanish and the FoV´s overlap most 
to provide redundancy. The output of this radar-radar 
fusion can be considered in the subsequent fusion step 
as provided from a common electronic radar-skin. 
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The fusion of radar sensors with different cycle times 
can be solved e.g. with out of sequence 
tracking/fusion techniques as described in [7]. The 
Bertha configuration is shown in figure 1. The third 
step is purely based on signal processing. Adopt 
machine learning, pattern recognition and mobile 
robot algorithm concepts to radar data. With reference 
to e.g. laser scanner or vision based data, radar 
provides measured data in all dimensions 
accompanied with the Doppler velocity. Resolution 
and accuracy of the data are quasi constant over the 
entire field of view. 

 
Fig. 1. Example of a radar-configuration for driver less driving, [3, 
4] 

This is a huge advantage of radar technology. 
Although radar data will never get a comparable data 
density like those optical sensors (at automotive costs 
and vehicle integration conditions), but settling time 
of filters, convergence of filters and dynamic 
parameters like relative speed will be faster, more 
mature and robust. System availability enhanced. 

IV. RADAR PERCEPTION APPROACHES 

For some of the challenges listed above approaches 
to solve them are described below. 

Dense Point Cloud Generation: This is the most 
important development target. With increased number 
of detections per target (see III), the more likely is a 
successful application of machine learning and pattern 
recognition concepts. Since each detection comes 
along with a Doppler value, smart representation 
techniques can be applied [16, 21-24, 38, 39]. One 
example is shown in Fig. 2. Future object 
representation has to provide much more enhanced 
information. These are object dimension, object 
orientation, motion-prediction and classification 
information. Moreover, distributed targets tend to split 
into many objects, which cause problems in an 
unambiguous representation and tracking. In order to 
meet automotive cost targets, a compromise between 
HW enabled resolution and the use of high resolution 
algorithms has to be found.  

 

Fig. 2. Example of dense point cloud representation of dynamic 
objects [23].  

Radar-Grids: Representation of the static 
environment is a relatively new area of radar signal 
processing. A method originally developed for in-door 
mobile robot trajectory planning are occupancy grids. 
The method was developed to provide a detailed 3D 
representation by using low resolution ultrasonic 
sensors [25]. Manifold modifications have been used 
to serve as problem solver for many different tasks 
during the Bertha-drive and subsequent product 
developments and called radar-grids. Among others 
they can be used for driving lane prediction, free path 
description, parking lot detection, SLAM for parking, 
landmark extraction, sensor-fusion and many more, 
[9-11, 26-31, 39, 46]. Figure 3 shows one example of 
driving lane prediction under snow conditions.  

 

Fig. 3. Radar-Grid map as basis for driving lane prediction [9-11] 

Co-representation of static and dynamic 
environment: As mentioned above, to correlate static 
and dynamic world is mandatory for autonomous 
driving. From radar-grids a free path can be derived 
and semantic information extracted. Correlating 
dynamic objects into a grid based representation 
allows a better understanding of the actual situation. 
Tracking by using local radar-grids is another method 
to correlate dynamic and stationary world. First results 
of both approaches are shown in Fig.4 and Fig.5 and 
described in [32-34, 36, 39].  

Ego-motion estimation: As mentioned above, the 
estimation of the precise ego-vehicle’s motion is a key 
capability for the localization of mobile robots (hence 
highly automated vehicles) to integrate new 
measurements into the radar-grid-map and tracking 
filter where the ego-motion has to be compensated to 
obtain the absolute motion of the tracked object. For 
radar-grids it is of similar importance. In [16, 35-38] 
algorithm concepts have been proposed, that allow to 
determine in a single shot the complete 2D motion 
state of the ego vehicle (longitudinal, lateral velocity 
and yaw rate). The key is a joint spatial- and Doppler-
based Ego-Motion Estimation. It evaluates the relative 
motion between radar sensors with excellent Doppler 
resolution and their received stationary reflections 
(targets). Due to the Doppler information the method 
is very robust against disturbances by moving objects 
and clutter. The motion estimation is also free of bias 
and drift. It provides excellent results for highly 
nonlinear movements. The advantage compared to 
standard vehicle odometry sensors is that especially in 
slippery terrain or during high-dynamic maneuver 
wheel speed sensors contain nonsystematic errors due 
to wheel slip and slide can be compensated. They have 
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systematic errors caused by kinematic imperfections, 
unequal wheel diameters or uncertainties about the 
exact wheelbase. The Doppler approach is insensitive 
to the interaction of the vehicle to the ground.  

Radar-based localization: Radar-Grid-Loc, Reliable-
Radar-Objects-Map, Semantic-Radar-Grid-Map, 
Radar-Landmarks are algorithm concepts used for 
localization and parking tasks, [39-47]. The parking 
manoeuver can be structured in the sub-tasks, self-
localisation and mapping (SLAM), free driving path 
extraction, collision prevention, parking lot 
identification and finally parking itself into the 
parking lot. Localisation and mapping in urban 
environment faces natural long-term variation of the 
surroundings, for example parked cars leave its place 
and dustbins are transitional appearances. Robustness 
is achieved from multiple observation of the same 
location at different times as these may provide 
important information on static and mobile objects. 
For efficient mapping, the environment should be 
explored in parallel. The approach operates through a 
stochastic analysis of previous observations of the area 
of interest. The model uses a grid-based Markov chain 
to instantly model changes. An extension of this model 
by a Levy process allows statements about reliability 
and prediction for each cell of the grid [40]. The 
approach also provides a solution on how multiple 
observations represented by grid maps have to be 
aligned into one mutual frame. The solution is using 
an image processing approach of group-wise grid map 
registration. For registration, a rotational-invariant 
descriptor is proposed in order to provide the 
correspondences of points of interest in radar- based 
occupancy grid maps. As pairwise registration of 
multiple grid maps suffers from bias, a graph-based 
approach for robust registration of multiple grid maps 
is use. This will facilitate highly accurate range sensor 
maps, [40-42]. Classification using neural network or 
deep learning techniques allow the generation of 
semantic-radar-grids. This eases situation analysis and 
parking lot identification, [43, 44]. In [31, 46, 47] a 
novel Rough Cough based approach is pursued to 
extract landmarks using amplitude-based radar-grids 
for localisation in normal driving mode, where 
standard radar-grid map based SLAM approaches 
suffer from required HW resources. The Rough 
Cough algorithm approach enables online image 
recognition and registration. It is applicable to input 
images that can be aligned by an Euclidean 
transformation. Based on an extension of the Hough 
transform it is well-suited for massive parallel 
processing. Thus, the extraction of features for 
landmarks/features can be based on point like features 
as well as distributed areas the radar can detect. Radar 
landmarks are insensitive to different environmental 
changes (dark vs. bright or winter vs. summer 
appearance), which provide robustness and quality of 
service of the system.  
 

Motion-Prediction: Gaining milliseconds reaction 
time and reducing the number of hypotheses is a key 
issue in situation analysis and trajectory planning. If 
any sensor could provide fast information about 

changes in the motion state of dynamic objects in the 
cars vicinity would make trajectory planning much 
easier and robust. With the exploitation of the 
azimuthal Doppler profile as described in [16, 24, 38] 
even within a single shot motion prediction of vehicles 
is possible by adopting the dense point cloud approach 
using either single radars or stereo-radar 
configuration,. This is illustrated in Fig.7. The figure 
shows the identification of a change in the yaw-rate 
much earlier as present day serial tracking filter can 
do. Hence, radar can detect yaw-rate changes earlier as 
a human eye can recognize any vehicle rotation. The 
Doppler distribution can be used as input state in 
tracking filters. The benefit is manifold. Transition 
time of the filter is drastically reduced, non – linear 
motion can be easily tracked and massive object 
information up to classification can be deduced. For 
example, the fact that the wheels’ velocity differ from 
the vehicle’s chassis velocity can be exploited.  

Object classification: A spin-off of azimuthal 
Doppler profile analysis is vehicle classification. In 
[38] a fully automated approach calculates the 
Normalized Doppler Moment, describing the Doppler 
signature of each reflection based on the Doppler 
distributions of wheels. Locations with high values 
reveal the positions of the wheels. Besides the 
classification, the vehicle’s orientation and therefore 
the driving direction can be estimated. Furthermore the 
position of the rear axle is estimated, which is essential 
for a reliable prediction of rotational movements and 
yaw rate estimation. Classification as small or large 
scale vehicle as well as dimension estimation can be 
deduced, see Fig.8.  

Sensor-fusion between laser-scanner and radar 
further improves the semantic information density and 
dimension estimation of objects. Both sensor types are 
con-genial. Laser-scanner provide high resolution 
information about the objects contour, while radar 
provides Doppler information and a dense point cloud 
also of the “inner” part of vehicles due to the 
transvision effect. Thus tracking of extended dynamic 
objects become more reliable and robust [48-51].  

V. OPEN ISSUES 

Although great progress has been already made, the 
following issues remain open and need further 
engagement and innovative solutions.  

• Very-low speed or stand still imaging 
performance. 

• Size reduction while maintaining detection 
performance in order to close dark areas in the 
360° coverage and get sensors easier integrated 
into the vehicle. 

• Ultra- near range detection performance, 
ideally close to nearly zero cm. 

• Higher spatial resolution. 

• Cognition/Adaptability. 

• Use of the 76-81 GHz band for situation 
adaptive tailoring of range resolution and range 
coverage. 

• Interoperability. 



 5

• Height measurement capability. 

• Classification/Semantic capability for a more 
mature situation understanding. 

 

Fig. 4. Co-representation of static and dynamic objects. The 
dynamic object is represented by a dense point cloud into the static 
grid map, [23]. 

 

Fig. 5. Using local radar-grids in combination with a radar-grid to 
combine static and dynamic world in one representation is shown 
after [32].  

 

Fig. 6. Integrated ego-motion data of two radar sensors combined 
(black) and standard vehicle odometry (blue). Targets are mapped 
using radar-ego-motion and their intensity is represented by the 
color [yellow to red]. Start point: Top Left. (Aerial photography by 
GeoBasis-DE/BKG, Google), [35]. 

 

Fig. 7. Upper grahics shows the detection of the  change in the 
yaw-rate with the new motion-prediction appoach. Lower left 
compares the velocity vector of a serial tracking outcome (cube) 
with the new approach (dots). Lower right shows the test situation. 

VI. CONCLUSION 

The lesson learned from the Bertha drive 
experiment is, that present performance of serial 
automotive radar is not sufficient for driver less 
driving tasks. Future development of imaging like 
performance that allows for comprehensive 
understanding of static as well as dynamic 

environment including height information is a decisive 
factor in this concern. 

 

Fig. 8. Accumulated wheel detections over the complete sequence 
in the targets vehicle’s coordinate system (contour - line, axles - 
dashed line), [38].  
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