
Jürgen KnauerWestern Sydney University · Hawkesbury Institute for the Environment
Jürgen Knauer
Dr. rer. nat.
About
61
Publications
33,222
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,899
Citations
Introduction
Additional affiliations
October 2012 - September 2014
Publications
Publications (61)
Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy...
We present the R package bigleaf (version 0.6.5), an open source toolset for the derivation of meteorological, aerodynamic, and physiological ecosystem properties from eddy covariance (EC) flux observations and concurrent meteorological measurements. A ‘big-leaf’ framework, in which vegetation is represented as a single, uniform layer, is employed...
Mesophyll conductance (gm) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large‐scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functional types (PFTs) are expected t...
Mesophyll conductance ( g m ) limits photosynthesis by restricting CO 2 diffusion between the substomatal cavities and chloroplasts. Although it is known that g m is determined by both leaf anatomical and biochemical traits, their relative contribution across plant functional types (PFTs) is still unclear.
We compiled a dataset of g m measurements...
Gross primary productivity (GPP) is the key determinant of land carbon uptake, but its representation in terrestrial biosphere models (TBMs) does not reflect our latest physiological understanding. We implemented three empirically well supported but often omitted mechanisms into the TBM CABLE-POP: photosynthetic temperature acclimation, explicit me...
Climate change will impact gross primary productivity (GPP), net primary productivity (NPP), and carbon storage in wooded ecosystems. The extent of change will be influenced by thermal acclimation of photosynthesis—the ability of plants to adjust net photosynthetic rates in response to growth temperatures—yet regional differences in acclimation eff...
Bushfire fuel hazard is determined by the type, amount, density and three‐dimensional distribution of plant biomass and litter. The fuel hazard represents a biological control on fire danger and may change in the future with plant growth patterns. Rising atmospheric CO 2 concentration (C a ) stimulates plant productivity (‘fertilisation effect’) bu...
Abstract Significant land greening since the 1980s has been detected through satellite observation, forest inventory, and Earth system modeling. However, whether and to what extent global land greening enhances ecosystem carbon stock remains uncertain. Here, using 40 global models, we first detected a positive correlation between the terrestrial ec...
The frequency of heatwaves, droughts and their co‐occurrence vary greatly in simulations of different climate models. Since these extremes are expected to become more frequent with climate change, it is important to understand how vegetation models respond to different climatologies in heatwave and drought occurrence. In previous work, six climate...
As the focus of climate policy shifts from pledges to implementation, there is a growing need to track progress on climate change mitigation at the country level, particularly for the land-use sector. Despite new tools and models providing unprecedented monitoring opportunities, striking differences remain in estimations of anthropogenic land-use C...
Bushfire fuel hazard is determined by fuel hazard that represents the type, amount, density, and three-dimensional distribution of plant biomass and litter. The fuel hazard represents a biological control on fire danger and may change in future with plant growth patterns. Rising atmospheric CO2 concentration (Ca) tends to increase plant productivit...
The Amazon is the largest continuous tropical forest in the world and plays a key role in the global carbon cycle. Human-induced disturbances and climate change have impacted the Amazon carbon balance. Here we conduct a comprehensive analysis of state-of-the-art estimates of the contemporary land carbon fluxes in the Amazon. Over the whole Amazon r...
Terrestrial carbon (C) sequestration is limited by nitrogen (N), a constraint that could intensify under CO2 fertilisation and future global change. The terrestrial C sink is estimated to currently sequester approximately a third of annual anthropogenic CO2 emissions based on an ensemble of terrestrial biosphere models, which have been evaluated in...
Quantification of land surface-atmosphere fluxes of carbon dioxide (CO2) fluxes and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 f...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesise data sets...
With the focus of climate policy shifting from pledges to implementation, there is an increasing need to track progress on climate change mitigation at country level, especially for the land-use sector. Despite new tools and models offering unprecedented monitoring opportunities, striking differences remain in estimations of anthropogenic land-use...
The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2 and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil,...
In this study, we employ a regional inverse modelling approach to estimate monthly carbon fluxes over the Australian continent for 2015–2019 using the assimilation of the total column-averaged mole fractions of carbon dioxide from the Orbiting Carbon Observatory-2 (OCO-2, version 9) satellite. Subsequently, we study the carbon cycle variations and...
p>Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets...
In 2020, the Australian and New Zealand flux research and monitoring network,
OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through
two decades of ecosystem studies on global change biology. OzFlux is a network not
only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data t...
In this study, we employ a regional inverse modelling approach to estimate monthly carbon fluxes over the Australian continent for 2015–2019 using the assimilation of the total column-averaged mole fractions of carbon dioxide from the Orbiting Carbon Observatory-2 (OCO-2, version 9). Subsequently, we study the carbon cycle variations and relate thei...
In this study, we present the assimilation of data from the Orbiting Carbon Observatory-2 (OCO-2) (land nadir and glint data, version 9) to estimate the Australian carbon surface fluxes for the year 2015. To perform this estimation, we used both a regional-scale atmospheric transport–dispersion model and a four-dimensional variational assimilation...
Fire activity in Australia is strongly affected by high inter-annual climate variability and extremes. Through changes in the climate, anthropogenic climate change has the potential to alter fire dynamics. Here we compile satellite (19 and 32 years) and ground-based (90 years) burned area datasets, climate and weather observations, and simulated fu...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets...
The leaf economics spectrum1,2 and the global spectrum of plant forms and functions³ revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species². Ecosystem functions depend on environmental conditions and the traits of species that comprise...
Gross Primary Productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67‐75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt). We examined the relationship between GPP and air temperature (...
Nutrient availability, especially of nitrogen (N) and phosphorus (P), is of major importance for every organism and at a larger scale for ecosystem functioning and productivity. Changes in nutrient availability and potential stoichiometric imbalance due to anthropogenic nitrogen deposition might lead to nutrient deficiency or alter ecosystem functi...
In this study, we present the assimilation of data from the Orbiting Carbon Observatory-2 (OCO-2) to estimate the Australian CO2 surface fluxes for the year 2015. We used a regional-scale atmospheric transport-dispersion model and a four-dimensional variational assimilation scheme. Our results suggest that Australia was a carbon sink of −0.3 ± 0.09...
This paper reviews information about field observations of vegetation productivity in Australia’s rangeland systems and identifies the need to establish a national initiative to collect net primary productivity (NPP) and biomass data for rangeland pastures. Productivity data are needed for vegetation and carbon model parameterisation, calibration a...
In Europe, three widespread extreme summer drought and heat (DH) events have occurred in 2003, 2010 and 2018. These events were comparable in magnitude but varied in their geographical distribution and biomes affected. In this study, we perform a comparative analysis of the impact of the DH events on ecosystem CO 2 fluxes over Europe based on an en...
Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substant...
In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation mod...
The CO2 transfer conductance within plant leaves (mesophyll conductance, gm) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm, which comprises...
We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the boreal zone. The parameter posterior distributions were generated by the adaptive population importance sampler (APIS); then the optimal values were estimated by a simple stochastic optimisation al...
We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the Boreal zone. The parameter posterior distributions were generated by adaptive population importance sampler and the optimal values by a simple stochastic optimisation algorithm. The observations us...
Plant transpiration (T), biologically controlled movement of water from soil to atmosphere, currently lacks sufficient estimates in space and time to characterize global ecohydrology. Here we describe the Transpiration Estimation Algorithm (TEA), which uses both the signals of gross primary productivity and evapotranspiration (ET) to estimate tempo...
With the eddy covariance (EC) technique, net fluxes of carbon dioxide
(CO2) and other trace gases as well as water and energy fluxes can be
measured at the ecosystem level. These flux measurements are a main source
for understanding biosphere–atmosphere interactions and feedbacks through
cross-site analysis, model–data integration, and upscaling. T...
The dynamic global vegetation model LPJmL4 is a process-based
model that simulates climate and land use change impacts on the terrestrial
biosphere, agricultural production, and the water and carbon cycle. Different
versions of the model have been developed and applied to evaluate the role of
natural and managed ecosystems in the Earth system and t...
This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates – internally consistently – the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LP...
With the eddy-covariance (EC) technique, net fluxes of carbon dioxide (CO2) and other greenhouse gases as well as water and energy fluxes can be measured at the ecosystem level. These flux measurements are a main source for understanding biosphere-atmosphere interactions and feedbacks by cross-site analysis, model-data integration, and up-scaling....
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere and is commonly expressed by the decoupling factor. The degree of coupling assumed by models varies considerably and has previously been...
This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates – internally consistently – the growth and productivity of both natural and agricultural vegetation in direct coupling with water and carbon fluxes. These features render LPJmL4 suitable for as...
The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land-use change impacts on the terrestrial biosphere, the water and carbon cycle and on agricultural production. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and...
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water‐use efficiency (WUE), is a useful indicator of vegetation function.
WUE can...
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere, and is commonly expressed by the decoupling factor. The level of decoupling assumed by models varies considerably and has previously bee...
Analysing Eddy-Covariance measurements involves extensive processing, which puts technical labour to researchers. There is a need to overcome difficulties in data processing associated with deploying, adapting and using existing software and online tools. We tackled that need by developing the REddyProc package in the open source cross-platform lan...
Ecosystem water-use efficiency (WUE) is an important metric linking the global land carbon and water cycles. Eddy covariance-based estimates of WUE in temperate/boreal forests have recently been found to show a strong and unexpected increase over the 1992–2010 period, which has been attributed to the effects of rising atmospheric CO2 concentrations...
Stomatal conductance (gs) is a key variable in Earth system models as it regulates the transfer of carbon and water between the terrestrial biosphere and the lower atmosphere. Various approaches have been developed that aim for a simple representation of stomatal regulation applicable at the global scale. These models differ, amongst others, in the...
We investigated the effect of water potential on seed germination of native species occurring in the Brigalow Belt - a semi-arid bioregion of Queensland and New South Wales, Australia. Seeds were germinated in PEG 6000 solution at nine osmotic potentials including equivalents of soil water conditions at saturation, field capacity, and permanent wil...
We investigated the effect of water potential on seed germination of native species occurring in the Brigalow Belt – a semi-arid bioregion of Queensland and New South Wales, Australia. Seeds were germinated in PEG 6000 solution at nine osmotic potentials including equivalents of soil water conditions at saturation, field capacity, and permanent wil...