Jürgen Groll

Jürgen Groll
University of Wuerzburg | JMU · Department for Functional Materials in Medicine and Dentistry

Prof. Dr. rer. nat.

About

335
Publications
96,136
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,624
Citations
Introduction
Research interests: Applied polymer chemistry, nanobiotechnology, biomaterial design and characterization, biocompatibility, biomimetic scaffolds, tissue mimickry
Additional affiliations
August 2010 - present
University of Wuerzburg
Position
  • Chair
February 2005 - December 2008
SusTech GmbH & Co KG
Position
  • Senior Researcher
Description
  • Nanotechnology and functional coatings
September 2004 - July 2010
Rheinisch-Westfälische Technische Hochschule Aachen
Position
  • Group Leader
Education
November 2000 - August 2004
RWTH Aachen University
Field of study
  • biofunctional coatings
October 1995 - October 2000
Ulm University
Field of study
  • chemistry

Publications

Publications (335)
Article
Full-text available
Hydrogels are fascinating materials with high water content and low surface friction that can be tailored for numerous applications. However, their practical application is often hampered by an intrinsic mechanical weakness. Strategies for mechanically strong hydrogels have been developed, with double network (DN) hydrogels reaching remarkable comp...
Article
Full-text available
Horseradish peroxidase (HRP) can be used for the enzymatic cross-linking of thiol-functionalized polymers under mild conditions to form hydrogels and nanogels without the need for added H(2) O(2) . Cells can be embedded in the hydrogels and proteins can be entrapped and released from the nanogels. These gels are fully degradable under mild and cyto...
Article
Full-text available
Advanced biomaterials and scaffolds for tissue engineering place high demands on materials and exceed the passive biocompatibility requirements previously considered acceptable for biomedical implants. Together with degradability, the activation of specific cell–material interactions and a three-dimensional environment that mimics the extracellular...
Article
Full-text available
Porous coordination polymers, in particular flexible porous coordination polymer networks that change their network structure on guest adsorption, have enormous potential in applications involving selective storage, separation and sensing. Despite the expected significant differences in their adsorption properties, porous coordination polymer nanoc...
Article
Full-text available
Current methods of microvessel fabrication mostly rely on self‐assembly in tiny volumes, prefabricated designs of microchannels, or demand complicated multi‐step procedures based on sacrificial templating to achieve specific geometrical features. Such application‐oriented geometries subsequently require a design‐specific and functional perfusion sy...
Article
As central part of the innate immune response, immune cells fight against invaders through various mechanisms, such as the release of extracellular traps (ETs). While this mechanism is mainly known for neutrophils in biomaterial contact, the release of macrophage extracellular traps (METs) in response to biomaterials has not yet been reported. An i...
Article
A novel dual setting brushite-gelatin cement was achieved by genip ininitiated cross-linking of gelatin during cement setting. Although the combination of an inorganic and organic phase resulted in a decrease of the compressive strength from about 10 MPa without polymeric phase to 3–6–MPa for gelatin modified composites, an increase in elastic prop...
Article
The development of hydrogels suitable for biofabrication is essential to enable advanced approaches for tissue engineering and regenerative medicine. Applications in both hard and soft tissues require tailor-made bioinks to guide cellular behavior in a 3D matrix. In this study we aimed to enhance the stability and adjust the degradation behavior of...
Article
Conventional additive-manufacturing technologies rely on the vertical stacking of layers, whereas each layer provides the structural integrity for the upcoming one. This inherently gives rise to limitations in freedom of design especially when structures containing large voids or truly 3D pathways for printed filaments are aspired. An especially in...
Article
Full-text available
The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their naïve ph...
Article
Full-text available
The distribution and density of ligands have a determinant role in cell adhesion on planar substrates. At the same time, planar surfaces are nonphysiological for most cells, and cell behavior on planar and topographical surfaces is significantly different, with fibrous structures being the most natural environment for cells. Despite phenomenologica...
Article
Full-text available
In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lack...
Article
Mucin, a high molecular mass hydrophilic glycoprotein, is the main component of mucus that coats every wet epithelium in animals. It is thus intrinsically biocompatible, and with its protein backbone and the o-glycosidic bound oligosaccharides, it contains a plethora of functional groups which can be used for further chemical modifications. In this...
Preprint
Full-text available
With the continuous growth of extrusion bioprinting techniques, ink formulations based on rheology modifiers are becoming increasingly popular, as they enable 3D printing of non-printable biologically-favored materials. However, benchmarking and characterization of such systems are inherently complicated due to the variety of rheology modifiers and...
Article
Alginates are the most commonly used bioink in biofabrication, but their rheological profiles makes it very challenging to perform real 3D printing. In this study, an advanced hybrid hydrogel ink was developed, a mixture of thermogelling diblock copolymer, alginate and clay i.e. Laponite XLG. The reversible thermogelling and shear thinning properti...
Article
Full-text available
3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell-hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) is frequently observed. Therefore, this study presents a bioin...
Article
Full-text available
Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable c...
Article
Full-text available
Post-fabrication formation of a proper vasculature remains an unresolved challenge in bioprinting. Established strategies focus on the supply of the fabricated structure with nutrients and oxygen and either rely on the mere formation of a channel system using fugitive inks or additionally use mature endothelial cells and/or peri-endothelial cells s...
Article
Full-text available
Biofabrication exploits additive manufacturing techniques for creating 3D structures with a precise geometry that aim to mimic a physiological cellular environment and to develop the growth of native tissues. The most recent approaches of 3D biofabrication integrate multiple technologies into a single biofabrication platform combining different mat...
Article
Full-text available
This study aimed to develop printable calcium magnesium phosphate pastes that harden by immersion in ammonium phosphate solution post-printing. Besides the main mineral compound, biocompatible ceramic, magnesium oxide and hydroxypropylmethylcellulose (HPMC) were the crucial components. Two pastes with different powder to liquid ratios of 1.35 g/mL...
Article
Full-text available
Porous scaffolds are widely used in biomedical applications where pore size and morphology influence a range of biological processes, including mass transfer of solutes, cellular interactions and organization, immune responses, and tissue vascularization, as well as drug delivery from biomaterials. Ice templating, one of the most widely utilized te...
Article
Full-text available
Supplement‐free induction of cellular differentiation and polarization solely through the topography of materials is an auspicious strategy but has so far significantly lagged behind the efficiency and intensity of media‐supplementation‐based protocols. Consistent with the idea that 3D structural motifs in the extracellular matrix possess immunomod...
Article
Full-text available
The study aims to highlight the importance of the process parameter choice during directional solidification of polymer solutions, as they have a significant influence on the pore structure and orientation. Biopolymer solutions (alginate and chitosan) are directionally frozen while systematically varying parameters such as the external temperature...
Article
Full-text available
Adrenocortical carcinoma (ACC) is a malignant tumor originating from the adrenal gland cortex with a heterogeneous but overall dismal prognosis in advanced stages. For more than 50 years, mitotane has remained a cornerstone for the treatment of ACC as adjuvant and palliative therapy. It has a very poor aqueous solubility of 0.1 mg/l and high partit...
Article
Full-text available
The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD + AML. This study introduces a new perspective and...
Article
Full-text available
As one kind of “smart” material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately...
Article
Full-text available
Fabrication of microchannels using 3D printing of sugars as fugitive material is explored in different fields, including microfluidics. However, establishing reproducible methods for the controlled production of sugar structures with sub-100 μm dimensions remains a challenge. This study pioneers the processing of sugars by melt electrowriting (MEW)...
Article
Full-text available
Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engi...
Article
Endowing materials and scaffolds with immunomodulatory properties has evolved into a very active field of research. However, combining such effects with multifunctionality regarding cell adhesion and manipulation is still challenging due to the intricate nature of cell–substrate interactions that require fine-tuning of scaffold properties. Here, we...
Preprint
Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently see...
Preprint
Post-fabrication formation of a proper vasculature remains an unresolved challenge in bioprinting. Established strategies focus on the supply of the fabricated structure with nutrients and oxygen and either rely on the mere formation of a channel system using fugitive inks, or additionally use mature endothelial cells and/or peri-endothelial cells...
Article
Full-text available
Interactions between proteins and carbohydrates with larger biomacromolecules, e.g., lectins, are usually examined using self-assembled monolayers on target gold surfaces as a simplified model measuring setup. However, most of those measuring setups are either limited to a single substrate or do not allow for control over ligand distance and spacin...
Article
Aligned porous non‐sintered and sintered a‐tricalcium phosphate (a‐TCP) scaffolds are prepared by ice‐templating and converted into the low‐temperature calcium phosphates calcium‐deficient hydroxyapatite (CDHA), brushite and monetite. This is achieved by hydrothermal treatment or incubation in phosphoric acid solution and has a high clinical potent...
Preprint
As one kind of smart material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. Here, we reported on a novel thermosensitive hydrogel which can be 3D printed using extrusion based printing. Gel strength was found around 3kPa storage modulus with pronounced shear thinning and rapid recovery after s...
Preprint
In this study, an advanced hybrid ink was developed, based on a thermogelling block copolymer, alginate and clay. The reversible thermogelling and shear thinning properties polymer acts at the same time as a fugitive material on the macromolecular level and facilitates the cell-laden extrusion based bioprinting. <br
Article
Full-text available
Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilita...
Article
Full-text available
Aspergillus fumigatus is the opportunistic fungus responsible for a variety of serious and often lethal diseases of immunocompromised patients, such as invasive aspergillosis, aspergilloma, and allergic bronchopulmonary aspergillosis. Therapeutic options for such fungal infections are limited due to the high toxicity of currently available drugs. H...
Article
Full-text available
The mechanisms underlying the cellular response to extracellular matrices (ECMs) that consist of multiple adhesive ligands are still poorly understood. Here, we address this topic by monitoring specific cellular responses to two different extracellular adhesion molecules – the main integrin ligand fibronectin and galectin-8, a lectin that binds β-g...
Article
Full-text available
Chronic respiratory diseases are among the leading causes of death worldwide, but only symptomatic therapies are available for terminal illness. This in part reflects a lack of biomimetic in vitro models that can imitate the complex environment and physiology of the lung. Here, a copolymeric membrane consisting of poly(ε‐)caprolactone and gelatin w...
Article
Full-text available
Enhancing the colloidal stability of silver nanoparticles (AgNPs) is crucial to maintain their unique properties allowing broad application of these NPs. Stabilization of AgNPs is usually achieved by surface modification with thiol containing polymers showing limitations owing to the nucleophilic and oxidative character, whereas chemical inert thio...
Article
Full-text available
Biointerface engineering is a wide‐spread strategy to improve the healing process and subsequent tissue integration of biomaterials. Especially the integration of specific peptides is one promising strategy to promote the regenerative capacity of implants and 3D scaffolds. In vivo, these tailored interfaces are, however, first confronted with the i...
Article
Full-text available
A hydrogel system based on oxidized alginate covalently crosslinked with gelatin (ADA-GEL) has been utilized for different biofabrication approaches to design constructs, in which cell growth, proliferation and migration have been observed. However, cell–bioink interactions are not completely understood and the potential effects of free aldehyde gr...
Article
Fabricating a porous scaffold with high surface area has been a major strategy in the tissue engineering field. Among the many fabrication methods, electrospinning has become one of the cornerstone techniques due to its enabling the fabrication of highly porous fibrous scaffolds that are of natural or synthetic origin. Apart from the basic requirem...
Preprint
div>Supplement-free induction of cellular differentiation and polarization solely through the topography of materials is an auspicious strategy but has so far significantly lacked behind the efficiency and intensity of media-supplementation based protocols. For immune cells, low intensity effects were achieved on rhodent cells using standard techno...
Article
Bulk hydrogels traditionally used for tissue engineering and drug delivery have numerous limitations, such as restricted injectability and a nanoscale porosity that reduces cell invasion and mass transport. An evolving approach to address these limitations is the fabrication of hydrogel microparticles (i.e., "microgels") that can be assembled into...
Article
Full-text available
In this study, the hydraulic reactivity and cement formation of baghdadite (Ca3ZrSi2O9) was investigated. The material was synthesized by sintering of a mixture of CaCO3, SiO2 and ZrO2 and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown...
Article
Full-text available
The present study aims to extend the material platform for anisotropically structured calcium phosphates to low‐temperature phases such as calcium deficient hydroxyapatite (CDHA) or the secondary phosphates monetite and brushite. This is achieved by the phase‐conversion of highly porous α‐tricalcium phosphate (α‐TCP) scaffolds fabricated by ice‐tem...
Article
Full-text available
Evolution has endowed the lung with exceptional design providing a large surface area for gas exchange area (ca. 100 m2) in a relatively small tissue volume (ca. 6 L). This is possible due to a complex tissue architecture that has resulted in one of the most challenging organs to be recreated in the lab. The need for realistic and robust in vitro l...
Article
Full-text available
As a promising biofabrication technology, extrusion-based bioprinting has gained significant attention in the last decade and major advances have been made in the development of bioinks. However, suitable synthetic and stimuli-responsive bioinks are underrepresented in this context. In this work, we described a hybrid system of nanoclay Laponite XL...
Article
Full-text available
Front Cover: In article number 2000265 by Paul D. Dalton, Hans‐Werner Schmidt, and co‐workers, (AB)n copolymers composed of hydrophilic poly(ethylene glycol)‐based segments and bisurea segments, acting as physical crosslinks, are tailored for different melt‐processing technologies. Defi ned 3D constructs can be made from extrusion‐based printing an...
Article
Full-text available
Several manufacturing technologies beneficially involve processing from the melt, including extrusion-based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)n segmented copolymers are tailored for melt-processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(et...
Article
Full-text available
Melt electrospun fibers, in general, have larger diameters than normally achieved with solution electrospinning. This study uses a modified nozzle to direct‐write melt electrospun medical‐grade poly(ε‐caprolactone) onto a collector resulting in fibers with the smallest average diameter being 275 ± 86 nm under certain processing conditions. Within a...
Article
Full-text available
Several manufacturing technologies beneficially involve processing from the melt, including extrusion‐based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)n segmented copolymers are tailored for melt‐processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(et...