

Lies, damned lies and stereotypes:
Pragmatic approximations of users

Technical Report Number 482

June 1994

Judy Kay

ISBN 0 86758 919 1

Basser Department of Computer Science
University of Sydney NSW 2006

Lies, damned lies and stereotypes:
pragmatic approximations of users

Judy Kay †
Basser Department of Computer Science

University of Sydney
judy@cs.su.oz.au

Abstract

Stereotypes are a pervasive element of much work in user
modelling. This paper discusses ways that stereotypes
have been used, both in user modelling research and, by
other names, in many other areas.

As a basis for better understanding of stereotypes
for user modelling, the paper develops bases for their uses
in such diversified areas as information filtering, help sys-
tems, advisors and the tailors of information presentation.

It also deals with major issues for deploying
stereotypes: technical issues like the representation and
acquisition of stereotypes and matching individuals to
them and also socio-political issues.

The paper describes projects that have dev eloped
toolkits for the various technical components of the tasks.
These include extensive and diversified approaches to
building the stereotypes, determining which to apply to
individual users and exploiting them in individualising the
user’s interaction with the machine. Also, mindful of the
lies that are inherent in the approximation that a stereo-
type must be, it discusses tools and approaches for attend-
ing to the socio-political concerns.

Introduction

The stereotype is one of the common elements in much
user modelling work. It captures default information
about groups of people. This simple but powerful idea
was introduced by Rich (Rich 1979, 1983, 1989) who
used people’s descriptions of themselves to deduce the
characteristics of books that they would probably enjoy.

Since Rich’s introduction of the notion of a stereo-
type, it has become a basic element in many user mod-
elling systems. In particular, many user modelling shells
support entities that are called stereotypes. Since these
are the systems that are designed to use in a range of user
modelling applications, we would expect them to repre-
sent the major approaches in user modelling.

For example, GUMS, a Generalised User Mod-
elling System, (Finin 1989) supported a sophisticated
stereotype mechanism. This maintained facts and rules in
its stereotypes. It further distinguished between definite

† Currently at Dept of Computer Sciences, University of Wisconsin, Madison

and default parts of a stereotype. The former must apply
to all users in the class. So they act as a definition for that
class (eg programmer stereotype requires that the person
programs). By contrast, the default facts act as initial
beliefs.

Similarly, BGP-MS (Kobsa 1990) supports a
sophisticated stereotype mechanism. The stereotypes can
be constructed with the aid of a graphical tool. This helps
the system builder see the relationships between the vari-
ous stereotypes. The system also checks the consistency
of the structures created. It has a rule language for man-
aging stereotypes.

Also Brajnik’s UMT (Brajnik, Guida and Tasso
1990, Brajnik and Tasso 1992) supports a knowledge base
of stereotypes which are used as default inferences about
the user. Each application has a general stereotype plus
more specialised ones for different classes of users.

Stereotypes are a basic information source in the
um toolkit (Kay 1990) where they are used for initial
default information to model the user when nothing better
is available.

Stereotypes are a critical part of Orwant’s Doppel-
ganger (Orwant 1993) where he extends it with the notion
of communities which are groups of users with many
commonalities. A user may be classified as belonging to
several communities and where the user’s model has no
explicit information about some aspect, its value is calcu-
lated across the communities the user belongs to.

It is rather remarkable that these user modelling
shells have very little common. They take differing views
of the tasks of user modelling and employ different repre-
sentational approaches. Stereotypes constitute a strong
point of commonality.

Given the apparent importance of stereotypes, it is
useful to refine our understanding of what they are, what
they are not and their relationship to other elements of
user modelling. This paper does this, first by characteris-
ing the intuitive appeal of stereotypes, then by tightening
the definitions and analysing different classes of stereo-
types. From these, it is possible to identify important
issues, both technical and non-technical for the effective
deployment of stereotypes.

The power of stereoypes in filtering

To make this discussion more concrete, it is cast in terms
of one set of approaches to a range of applications, like
the filtering tasks that are of growing importance. In
these, stereotypes can provide a powerful basis for agents
that help people find what they want from large bases of
on-line information, entertainment and the shades of info-
tainment that lie between these. The following scenarios
will be used in the remainder of the paper.
Scenario 1

The user can select a movie from a database
of thousands. They request the names of a
dozen movies that are likely to appeal to
them. Clicking on one, they can have a plot
summary and other details and brief film
clips. From this, the user selects a movie to
see.

Stereotypes can aid here with reasoning of the form: Peo-
ple who enjoyed movie X will enjoy movie Y; People who
hated movie W won’t enjoy movie Z; or I like the same
sorts of movies as the user, Smith, does.
Scenario 2

The user wants to learn the programming lan-
guage C. They already know Pascal and Pro-
log quite well and know a minimal amount
about using the Unix operating system. They
have access to a WWW (World Wide Web)
hypertext document about C and want to
learn enough to write a C program that
implements some graph algorithms.

Although this user could simply explore the hypertext
document, it should be more effective if the presentation
is customised so that it builds upon their substantial cur-
rent knowledge of relevant programming constructs. This
customisation could use stereotypes of the form a user
who knows Pascal can learn {C concepts} - a set of C
concepts - from a terse comparative description.

Scenario 3
An Italian is in Minneapolis for a year and
would like to keep in touch with major Italian
news items as well as the usual mix of local,
US and international news. They are plan-
ning a trip to Turkey. They are not very inter-
ested in sport.

Some examples of helpful stereotypes are: Italians over-
seas are interested in news about Italy and exchange
rates; People living in Minneapolis will want to know a
good deal about local Minneapolis news as well as about
general US and major international events; People unin-
terested in sport do not want to see any but the major
sports items.

Just this type of reasoning is the mainstay of the

user modelling in architecture we have devised for large
scale filtering systems (Kay and Kummerfeld 1994,
1994a). This is illustrated in Figure 1.

Our goal is to select objects from the store shown
in the upper right. This is a distributed collection of many
types of objects. For our scenarios, they include: movies;
news items and associated film clips; multi-media teach-
ing systems for C including text, graphical simulations of
code and objects that can evaluate student exercise solu-
tions.

This object store will generally be external to the
individual user’s environment. It will be under the control
of various agents outside the filtering system. An impor-
tant link between these outside agents and the filtering is
the publication of information about new objects. This
process means that object descriptors are stored in a
Directory Server, as shown at the lower right.

The filtering system is shown in the lower part of
the figure. It takes the object descriptions and user mod-
els and allows the selected object-descriptors through to
the user’s local environment where they are once again
stored in a directory server.

Within the user’s local environment, the filtering
process is repeated, this time using the local user model.
This would tend to be more detailed than the remote one
and it may contain more sensitive information. In addi-
tion, more expensive filtering methods can be applied
here.

Once the objects have passed their last filtering,
they are passed to OR, the object requestor. This initiates
a message based acquisition of the actual objects identi-
fied as needed by the filtering process. These are kept in
the Local Object Store.

The final presentation to the user is via a user inter-
face that acquires the objects via its server. It customises
the presentation with the aid of the user model.

In this model, stereotypes play an important role.
This is especially so for the remote filtering process.
They can enhance the time-efficiency of filtering if the
same filters can be applied for many users. For simplicity,
the figure shows just one remote filtering process. In
practice, there is generally a sequence of filters that oper-
ate for each user. Where there are large numbers of users
as well as many objects to be filtered, the appropriately
ordered filtering by stereotypes will be critical to effective
performance.

Different types of stereotypes

As noted earlier, the user modelling community has made
considerable use of ‘stereotypes’ and yet, the things that
have gone by this name differ considerably. This section
explores the special character of stereotypes and distin-
guishes them from other knowledge-based reasoning that

Server

filter Directory filter Directory

UM PUM

UI
Remote
Object
Store

OR

Local Object Store

local remote

publication

request

delivery

Figure 1: Architecture for a filtering system.

is also important for user modelling. From there, it iden-
tifies different classes of stereotypes, some of which have
been heavily used to date as well as promising but little
explored ones.

User modelling systems that use stereotypes main-
tain a stock of them in a stereotype database. These are
the basis for stereotypical reasoning.

Typical knowledge-based reasoning has the effect
shown as inference 1 in Display 1. If its antecedent is
true, it infers the conclusions. These must be retracted if
it becomes false. Also, there may be some uncertainty
associated with the inference.

In stereotypic reasoning, the antecedent is the
function of triggers that activates the stereotype (infer-
ence 2 in Display 1). The triggers are usually attributes
that are readily available. Typically, they include user
attributes that define the stereotype. For example, a
stereotype for a movie buff would include a trigger

indicating that this person has seen many movies.
Once a stereotype is active, we infer the conclu-

sions associated with it (inference 3a in the display).
Note, however, that we typically would not expect all the
conclusions to apply for every user. It is an essential char-
acteristic of stereotypes that the conclusions are defaults
and it is expected that at least some of them will be over-
ridden when other, more reliable, information becomes
available about the user. Indeed, they could all be over-
ridden for some users. That is part of the statistical nature
of stereotypes: for some users they are inaccurate but their
power is that they are useful for many users.

We should also expect some of the attributes in the
trigger can be inferred when the stereotype is active: we
call these the essential triggers (Inference 3b). For exam-
ple, a stereotype for a ‘programmer’ may have various
triggers including ‘being employed as a programmer’,
‘having completed studies as a Computer Science major’

antecedent −> conclusions true
(with certainty/probability A) (1)

fn(triggersX) −> activate stereotypeX (2)

stereotypeX active −> conclusionsX true (3a)
stereotypeX active −> essential − triggersX true (3b)

Display 1: Elements of stereotype reasoning

or ‘having written substantial programs’. Either of the
first two of these might trigger this stereotype and its con-
clusions as well as the third trigger. Since the third trig-
ger is an essential attribute of a ‘programmer’ it is also
one of its conclusions. These are Finin’s (Finin 1989)
definite parts of the stereotype. This means that essential
triggers could be regarded as playing a role on the
antecedent or conclusion side of the inference, depending
upon whether their values are known.

The remaining element of using stereotypes is
reviewing their activation. This may happen either when
too few of the triggers are true or when an essential trig-
ger is found to be false. It may be that the system had
poor information when it assessed triggersX for this user.
Or, the user may change stereotypes. For example, a user
who was a ‘beginner’ may become an ‘intermediate’ level
user. Both are common in user modelling. When it is
found that an active stereotype is not to be applied, its
conclusions are retracted.

This makes stereotypes a form of knowledge-based
reasoning where:

• trigger sets often include essential triggers and if
their stereotype becomes active when their value is
unknown, they are inferred to be true.
• any essential trigger becoming false deactivates
the stereotype;
• the conclusion set of a stereotype is a set of
default assumptions.

These characteristics are inherent in the statistical nature
of stereotypes. They are supposed to represent attributes
that apply for many users in a class. This is important for
the development of tools for stereotypic reasoning.
Firstly, it is to be expected that definition of stereotypes
will be heavily dependent upon ad-hoc and statistical
approaches. Most of their power will not come from
strong domain theories. Only the essential triggers are
consistently likely to come from domain knowledge.

When is a stereotype not a stereotype?

This section examines the classes of stereotypic reasoning
that apply for our filtering task as well as reasoning in this
domain that is of a different character. It is written in
terms of the task of the movies filtering task. Figure 2

illustrates the discussion.
First, we note that our goal is tightly bound to the

database of movies. We want to select from it just those
movies that the user will enjoy and we want to filter out
all others.

Our user modelling goal can be stated as establishing the
values of a set of user model components, each being the
user’s actual or inferred rating of a movie. We call these
domain-object (DO) components because they are
directly linked to the objects in the domain. These are the
actual objects that will be stored in the Object Store (and
their descriptions will be in the Directory) of Figure 1.

They are shown as the circle at the upper left of
Figure 2. The lines leading into the DO circle are the
direct sources of reasoning from other parts of the model.
The other lines conclude about components that are not
part of our goal set but they can affect them indirectly, in
two stages of inference.

One approach to achieving our goal is to build a
set of user model components that represent attributes of
movies that the user likes. I call these domain-attributes
(DA) because they model the user’s attitude to attributes
of the objects of this domain. Note that these are the
attributes stored in the published descriptions of the
objects.

For the movies domain, these include the genre,
subject matter, actors, director, awards and other material
that is commonly available about movies. The filter can
get this information from the directory server.

Because they are established by outside agents,
DA components are beyond the control of the user mod-
elling system and are tightly coupled to the domain
objects. The DA components are particularly important
as they are the basis of a quite simple filtering mecha-
nism: provided we have good descriptions of the domain
objects, a good model of the user’s preferences for the
elements of those descriptions should be the basis for a
straight-forward evaluation mechanism for the objects.

Of course, movie preferences, can be a gestalt
assessment of the movie. In that case, as with other art
forms, DA components are less effective than in domains
like news filtering or learning C, where the attributes of an
object capture its relevance and usefulness for the user
very well. In spite of this, our prototype movie advisor

Domain
Attributes

Domain
Entities

Attributes
User

Figure 2: Classes of user model components

was judged by many users to perform quite well. Positive
results for DA components in this domain make them a
very promising basis for filtering.

The third, and last, group of user model compo-
nents are called user attributes. (UA) These include the
user’s age, sex, education, income level and all other
aspects we want to model about the user.

For the movies filter, they are the components
under the control of the user modelling system. These
might even include movie attributes not in the DA. How-
ev er, this will only be useful if the filter is able to deter-
mine which movies have those properties. In a domain
like movies, where the objects themselves involve huge
amounts of effort, the relative cost of defining DA
attributes is negligible. This makes the DA attributes very
extensive: powerful filtering should be possible without
movie attributes as UA.

Since most current user modelling work has not
considered architectures like that in Figure 1, it has not
distinguished user model components that are tightly cou-
pled to the domain (DO and DA) as being different from
other user attributes (UA).

Note that DO and DA components must be repre-
sented with links to the world outside the user modelling
system. These enable the application, in our case the
movies filtering system, to find the objects and their
attributes.

In the many domains where important information
about the user comes from a knowledge source outside
the user modelling system, the distinctions shown in Fig-
ure 2 are relevant. A user modelling system has no choice
but to make do with the definitions of attributes that are
outside its control. This is important because we would
like to separate systems into small manageable units and
making the domain inference unit quite separate from the
user modelling is one way to do this.

Are all the inferences shown in Figure 2 amenable
to stereotypic reasoning? Most can be.

Certainly the inferences UA −> DO are just those
that systems like KNOME (Chin 1989) make when the
user who is a beginner is inferred to know only the simple
elements of Unix. Note that the elements of Unix are
defined outside the system and the domain expert’s repre-
sentation of them is also. But a Unix advisor needs to
track which of these the user knows and uses. For sim-
plicity, Figure 2 shows only inferences that reason directly
onto domain objects and attributes. But KNOME’s dou-
ble stereotypes also support the opposite inference, DO
−> UA where a user is found to know about some sophis-
ticated aspects and this is used to infer they are experts.

When GRUNDY (Rich 1979) used people’s
descriptions of themselves to deduce the characteristics of
books they would enjoy, it used stereotypic reasoning UA
−> DA. In fact, this is the form that is closest to the usual

Attributes

Domain1

Entities

Domain1

Domain2

attributes

Domain2

Entities

Other

Attributes
User

Figure 3: Stereotype reasoning across domains

english use of stereotype. Information that a user is ‘sen-
sitive’ activates a stereotype that infers several classifica-
tions of books that should appeal to them. GRUNDY also
used UA −> UA to infer more user attributes that would
feed inferences about DA preferences.

Now consider the inferences between DO and DA.
Given that DA are the characteristics of the domain ele-
ments (in our example, movies) this is not subject to
stereotype reasoning. They are completely out of the con-
trol of the user modelling system.

Our movie filter will use these inferences. For
example, if the user is believed to loathe violence in
movies, the filter will discard movies that are classified as
violent. This uses the non-stereotypic inference DA −>
DO.

Now the onto-inference, DO −> DO, offers a par-
ticularly promising set of potential uses for stereotypic
reasoning. These enable one set of user modelling infor-
mation to permit inferences about similar ones, like if you

liked movie X, you will enjoy movie Y.
The appeal of this is partly due to the reduced sen-

sitivity of a simple collection of movie ratings, compared
to personal information that would be part of UA. Giv en
large sets of such user ratings, stereotypes can be identi-
fied.

For the movie filter, it might operate like this.
Many users provide a set of ratings of movies. From
these we build stereotypes, using techniques like cluster
analysis.

Another approach is to identify opinion leaders for
particular stereotype groups. They are typical of particu-
lar classes of users. From their ratings of movies, and
those for a new user, we can activate suitable stereotypes
for the user. Then, as new movies appear, they are rated
by our canonical stereotype member and we use this to fil-
ter for the individuals in that class. These opinion leaders
would serve part of the role of the film critic. Different
users would be able to associate a number of these with

trigger mapping people who (dis)like will (dis)like

books DObook DOmovie {booki} {movie j}
Direct Domain

movies DOmovie DOmovie {moviei} {movie j}

books DAbook DOmovie {attributei} in books {movie j}
Domain Attributes

movies DAmovie DOmovie {attributei} in movies {movie j}

people who have will (dis)like
User attributes user UAgeneral DOmovie attributei {movie j}

Table 1: Mappings between different types of user model components

their own filter.
Inferences DA −> DA might be possible from

domain knowledge (for example where some attributes
are specialisations of others) or it may be useful to
employ stereotypes so that an interview of the user could
ask about a modest number of movie attributes and stereo-
typically infer others.

The situation becomes rather more interesting (and
complex) when we take account of other domains. Sup-
pose, for example, that we already have a filter for books.
Figure 3 shows the extended classes of inferences about
the movies domain (Domain1) when the books filter is
domain 2.

Table 1 summarises the meaning of Figure 3’s
direct inferences onto DOmovie. For example, the first line
is the mapping from DObook to our goal, DOmovie which
corresponds to an inference like this: if the user likes one
set of books −> they will probably like a certain set of
movies.

The rows that involve only the movie domain have
already been discussed. The new mappings are in the first
and third rows. Both of these are clear candidates for
stereotypic reasoning.

A similar table can be constructed for the map-
pings onto DAmovie. The most important of these is
DAbooks to DAmovies. This maps the meaning of the DA
components across the domains. Much of this can be
based upon a mapping between the semantics, and some
may be by stereotypic reasoning.

Inferences across domains are a particularly
promising area for stereotypes. This is partly because
mappings between disparate areas, created by different
agents and with different semantics, seem to be most
amenable to ad-hoc and approximate solutions. From the
user’s point of view, such mappings are desirable, espe-
cially if the user has invested considerable time training
the book filter: it is desirable that some of the effort
should be transferable to other, very similar domains, like
a movies filter or advisor.

Existing heavy users of stereotypes

We all do stereotypic reasoning: for better or for worse,
we develop default inferences about people and then, on
the basis of a little information, we assume much more
until we recognise that we need to alter our assumptions.
One of the dangers of such stereotypic reasoning is that
people build inaccurate stereotypes and are often are slow
to recognise the need to relinquish assumptions.

Implicit modelling of users is an inherent design
constraint on most interactive software.

There are many industries using stereotypic rea-
soning as we have defined it: they are deeply involved in
constructing, selling and using stereotypes. A brief dis-
cussion of some of these is instructive for finding direc-
tions for stereotypes in user modelling.

Lending and credit agencies are reliant upon mod-
els of the sorts of people who are poor risks. These are
typically constructed by various statistical techniques but
machine learning is also useful.

Newspapers present the news that editors think
will attract their reader population. The structure of a
newspaper also reflects the use of sets of sub-stereotypes:
for example, the sports section matches the paper’s sports
sub-stereotype.

Advertising of a product is based upon stereotypes
of what appeals to the various populations that are tar-
geted. Different advertisements target different sub-
stereotype groups, but presumably none is intended to
offend any group.

The widespread sale of mailing lists is based on
the stereotype that people whose names are collected in a
particular way will generally be interested in a range of
items.

There are so many groups building and using
stereotypes that we have a considerable base of tools and
issues to explore as we apply them to user modelling
tasks.

Technical issues for using stereotypes

As Display 1 indicates, there are three main steps in using
stereotypes. These involve defining:

• the triggers that activate a stereotype;
• i ts conclusions;
• and when to retract it.

Constructing stereotypes means defining the stereotype
elements that effect each of these. In the user modelling
toolkits of the future, the current support for stereotypic
reasoning will be enhanced by a range of mechanisms for
constructing stereotypes.

The highly statistical nature of the enterprise
immediately suggests the techniques that are most likely
to be effective. We should expect a growth in the avail-
ability of tools for machine learning based construction of
stereotypes. This direction is hinted by the tools in Dop-
pelganger (Orwant 1993) that use a range of learning
techniques suited for different types of data.

Similarly, following the lead of BGP-MS (Kobsa
1990) ad-hoc stereotypes will be easier to build with good
interfaces to construction tools. A similar role can be
played by knowledge elicitation tools like cm, which was
initially devised to assess learner’s deep knowledge (Kay
1986, Kay 1991) but also provides a graphical interface
for defining user preferences and assessments of an object
(Cook and Kay 1994).

Inter-domain reasoning could be based on a power-
ful knowledge representation that was the basis of both
domains. If this is not a possibility, stereotypes might
help. Even where the semantics of two domains are
defined consistently, it may need stereotypic reasoning to
for inferences between the DAs of each. Where the
semantics of the two domains were defined independently,
stereotypes capture the most natural form of inference.

One form of more subtle inter-domain reasoning is
where the two domains are actually the same, for example
movies, but the DO and DA definitions were done by dif-
ferent agents. For example, there may be several ‘pub-
lishers’ of movies and their descriptions. From the user’s
point of view, it is natural that a filter be able to reason
across these ‘different’ domains. Some elements will
map across very simply but where the DA definitions are
different, it may be that machine generation of stereotypic
mappings is the most effective course.

Although this paper has focused on tasks like the
movies filter, the architecture of Figure 1 is being used for
teaching systems as well. The area of student modelling
already makes extensive use of stereotypes at a number of
levels. For example, the expert model captures a ‘typical’
expert’s view of the domain. In practice, there are differ-
ences between expert’s domain models but the expert
stereotype is useful, especially since the notion of stereo-
type allows for the fact that there may well be some dif-
ferences between actual experts, but considerable com-
monality.

Stereotypes of common misconceptions and their
bases are helpful when a teaching system attempts to

interpret student actions. The construction of useful
learner stereotypes should be possible with similar tools
to those needed for our movie filter.

For example, in a series of studies of users of a text
editor (Thomas, Benyon, Kay and Crawford 1991,
Benyon, Kay and Thomas 1992) we have been building
models of user’s (very slowly) growing knowledge. To do
this, we have monitored a large group of users over three
years. Stereotype groups are identifiable and these allow
prediction of an individual’s knowledge in the long term.
Varying forms of statistical analysis enables one to iden-
tify a collection of stereotypes that characterise the acqui-
sition of editing knowledge across the population.

We hav e also been studying the use of various
teaching strategies to enhance learning (Parandeh-Gheibi
and Kay, 1993) and would like stereotypic reasoning to
support selection of the approach to offer each user. With
proper tools to manage the monitoring and analysis it
should be cost-effective to construct such stereotypes in a
range of such applications.

Perhaps the simplest technical benefit of stereo-
types is one of efficiency: if a large number of user’s mod-
els can have a substantial common part stored once in a
stereotype, less storage is needed and if the same reason-
ing is to be applied to many users, we can devise ways to
do this process efficiently.

Socio-political issues for using stereotypes

Current widespread uses of stereotypic reasoning in vari-
ous areas suggests some of the concerns to become
important for stereotypic user modelling. For example,
most societies recognise the influence of the media and
have various forms of control. One can expect similar
control to be appropriate where machine based filtering
occurs.

At one level, computer use of stereotypes has the
benefit that the process is identifiable and can be exam-
ined. This offers the potential of greater accountability.

However, the transparency of a complex system is
so poor that the possibility of really understanding a
sophisticated filtering process is small. This means that
we must define systems to be highly transparent and
accessible. The user also needs to be able to take real
control of their user model. This has been a critical
design constraint for the um toolkit (Cook and Kay
1994).

There are substantial bodies of literature concern-
ing the effects of stereotypic reasoning by people, includ-
ing, for example, negative stereotyping based on gender
and race. We need to be cognisant of these as we build
systems.

For example, in education, it was observed that a
teacher who thought that children were particularly bright

treated them in ways that caused them to become brighter
than their peers. The teacher was employing stereotypes
to reason from student attributes (brightness) to affect the
way they saw their students and in the selection of teach-
ing strategy and the ways to interact with them.

When we build teaching systems that offer differ-
ent teaching strategies, like those beginning to appear
(Parandeh-Gheibi and Kay 1993a) how do we take
account of this finding? What are dumb-student stereo-
type models doing to learners? Should we treat the
learner as bright, even if they prefer a learning approach
used for the ‘less bright’?

Suppose we run a machine learning program on a
large collection of user models and the conclusion is that
a particular group is identified as having preferences that
are considered unpalatable? What tools will help is
recognise these?

Conclusions

Stereotypes seem to be a special form of knowledge based
reasoning that is particularly useful for reasoning about
people. They are best used to establish default beliefs
about the user while the system waits to collect something
better. They may also offer users a shortcut in building
their user model: users can simply choose the stereotype
trigger sets that they like best and have a good enough
model to let the system work effectively for them.

The other current users and students of stereotypes
provide a wealth of methods and issues to pursue in the
rich mine of future research into stereotypes for user mod-
elling.

Acknowledgements

The filtering project and architecture are a collaborative
project with Bob Kummerfeld. The considerable infras-
tructure for the distributed filtering and modelling pro-
cesses as well as several of the user modelling tools rest
solidly on his contributions. The work on prototype
movie advisor was supported by Telecom Australia Grant
Y05/04/34 (BLO/02/02/89).

References

Benyon, Kay and Thomas 1992.
D Benyon, J Kay, and R Thomas, “Building user
models of editor usage” in UM92 - Third Intl Work-
shop on User Modeling:, ed. E Andre, R Cohen, W
Graf, B Kass, C Paris, and W Wahlster, pp.
113-132, IBFI (Intl Conf and Research Center for
Computer Science), Schloss Dagstuhl, Wadern,
Germany, August 9-13, 1992 (1992).

Brajnik, Guida and Tasso 1990.
G Brajnik, G Guida, and C Tasso, “User modeling
in expert man-machine interfaces: a case study in
intelligent information retrieval,” IEEE Trans on
Systems, Man and Cybernetics, 20, 1, pp. 166-185
(1990).

Brajnik and Tasso 1992.
Giorgia Brajnik and Carlo Tasso, “A flexible tool
for developing user modeling applications with
nonmonotonic reasoning capabilities” in Proc of
UM92: Third International Workshop on User
Modeling, ed. E Andre, R Cohen, W Graf, B Kass,
C Paris, and W Wahlster, pp. 42-66, Deursches
Forschungszentrum fur Kunstliche Intelligenz
(1992).

Chin 1989.
D Chin, “KNOME: modeling what the user knows
in UC” in User models in dialog systems, ed. A
Kobsa and W Wahlster, pp. 74-107, Springer-
Verlag, Berlin (1989).

Cook and Kay 1994.
R Cook and J Kay, “The justified user model,”
UM94 - 1994 User modeling Conference, p. to
appear, Boston, USA (1994).

Finin 1989.
T W Finin, “GUMS - a general user modeling
shell” in User models in dialog systems, ed. A
Kobsa and W Wahlster, pp. 411-431, Springer-
Verlag, Berlin (1989).

Kay 1990.
J Kay, “um: a user modelling toolkit,” Second Intl
User Modelling Workshop, p. 11, Hawaii (1990).

Kay and Kummerfeld 1994.
J Kay and R Kummerfeld, “An individualised
course for the C programming language,” Basser
Dept of CS Tech Rep - to appear (1994).

Kay and R Kummerfeld 1994a.
J Kay and R Kummerfeld, “Customisation and
delivery of multimedia information,” Basser Dept
of CS Tech Rep - to appear (1994).

Kay 1986.
J Kay, “Interactive student modelling using concept
mapping” in Proc First Aust Artificial Intelligence
Congress, p. 11 (1986).

Kay 1991.
J Kay, “An explicit approach to acquiring models of
student knowledge” in Advanced Research on Com-
puters and Education, ed. R Lewis and S Otsuki,
pp. 263-268, Elsevier, North Holland (1991).

Kobsa 1990.
A Kobsa, “Modeling the user’s conceptual

knowledge in BGP-MS, a user modeling shell sys-
tem,” Computational Intelligence, 6, 4, pp. 193-208
(1990).

Orwant 1993.
K Orwant, Doppelganger goes to school: machine
learning for user modeling, MIT MS Thesis, MIT
Media Laboratory (1993).

Parandeh-Gheibi and Kay 1993.
N Parandeh-Gheibi and J Kay, “ Supporting a
coaching system with viewable learner models” in
Proc. Intl Conf for Computers Computer Technolo-
gies in Education, ed. V Petrushin and A Dovgiallo,
pp. 140-141, Kiev, Ukraine (1993).

Parandeh-Gheibi and Kay 1993a.
N Parandeh-Gheibi and J Kay, “ Design of a coach-
ing system with viewable teaching strategies” in
East-West AI Conference, ed. P Brezillon and V
Stefanuk, pp. 293-295 (1993).

Rich 1979.
E Rich, “User modeling via stereotypes,” Cognitive
Science, 3, pp. 355-66 (1979).

Rich 1983.
E Rich, “Users are individuals: individualizing user
models,” Intl J of Man-Machine Studies, 18, pp.
199-214 (1983).

Rich 1989.
E Rich, “Stereotypes and user modeling” in User
models in dialog systems, ed. A Kobsa and W
Wahlster, pp. 35-51, Springer-Verlag, Berlin (1989).

Thomas, Benyon, Kay and Crawford 1991.
R Thomas, D Benyon, J Kay, and K Crawford,
Monitoring editor usage: the Basser data project,
pp. 297-307, Proc MNCC/IFIP Natl Conf on Infor-
mation Technology, NCIT ‘91, Penang, Malaysia
(June 1991).

