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The microscopic stress field provides a unique connection between atomistic simulations and mechanics
at the nanoscale. However, its definition remains ambiguous. Rather than a mere theoretical preoccupation,
we show that this fact acutely manifests itself in local stress calculations of defective graphene, lipid bilayers,
and fibrous proteins. We find that popular definitions of the microscopic stress violate the continuum
statements of mechanical equilibrium, and we propose an unambiguous and physically sound definition.
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The stress σðxÞ is a second-rank tensor field encoding the
internal force distribution in a continuum system; when
multiplied by a unit vector n, it provides the forces per unit
area in the material across a surface passing through x and
perpendicular to n. The continuum stress field can be con-
nected to the statistical mechanics of discrete particle systems,
inwhat is called themicroscopic stress.Today, themicroscopic
stress is increasingly used to recapitulate mechanical infor-
mation contained in long molecular dynamics (MD) trajecto-
ries of nonuniform systems, or to connect molecular details
with continuum physics at larger scales. Significant applica-
tions includedefectivebulk [1,2] and two-dimensional crystals
[3,4], biomolecular assemblies such as lipid bilayers [5–7],
membrane proteins [8,9], and even isolated molecules [10].
The average (or virial) stress of a periodic system can be

uniquely defined and given a precise thermodynamical
interpretation [11]. There are, however, multiple procedures
to map a statistical mechanics ensemble into a stress field.
This indeterminacy is expected since any divergence-free
symmetric tensor field (self-equilibrated) can be added to
the local stress without affecting the continuum statements
of balance of linear and angular momentum for a system in
equilibrium [12,13],

σij;j ¼ 0; ð1aÞ
σij ¼ σji; ð1bÞ

where we have ignored externally applied force and torque
densities. The ambiguity in the microscopic stress is widely
appreciated theoretically, but its practical consequences
have been largely overlooked, partly because different
definitions coincide for simple force fields [7]. Asmolecular
simulations model increasingly complex systems, the issue
of whether different definitions of the microscopic stress
satisfy the fundamental requirements of mechanical equi-
librium in Eq. (1) has not been systematically examined.
Here, we simulate the equilibrium behavior of three

important condensed matter systems—defective graphene,
lipid bilayers, and coiled-coil fibrous proteins—using MD
simulations with realistic atomistic force fields, and study

the significance of the definition of the microscopic stress.
We consider the atomic virial stress [3,4,14] and several
flavors of the Irving-Kirkwood stress [7,8,15–19].
Strikingly, we find that the atomic virial stress does not
satisfy balance of linear momentum. Furthermore, we find
that awidely used version of the Irving-Kirkwood stress [15]
does not satisfy balance of angular momentum for systems
with chiral constituents. Our results favor a recent canonical
definition of the Irving-Kirkwood stress [16,17], which,
however, is limited to multibody potentials with at most
four-body interactions. Motivated by higher-body force
fields used in materials science and biochemistry [20,21],
we develop and test a new and general procedure [22] to
uniquely obtain a physically meaningful microscopic stress.
Microscopic stress fields include a kinetic contribution

σK , describing the flux of momentum due to internal
vibrations, and a potential contribution σV , accounting for
the interatomic forces. Since the difficulty in the micro-
scopic stress definition stems from the potential part, we
focus only on this contribution and refer to [23] for the
expression of σK . For solid systems, where atoms stay
relatively immobile, it is common to resort to the atomic
virial stress definition [14], which is conceptually and
computationally simpler than other definitions. In this
method, the potential component is computed by distribut-
ing the virial of each potential contribution equally among
the particles involved. More specifically, let the potential of
the system be described additively as V ¼ P

M
I¼1 VI , with

each contribution involving nI particles. Then, we have

σαV ¼ 1

Ωα

X
I∈Iα

1

nI

�X
β

∂VI

∂rβ ⊗ rβ
�
; ð2Þ

where rβ is the position of particle β, Iα collects the set of
potential contributions involving particle α, and Ωα is the
volume of this particle.
An alternative definition of the microscopic stress with a

more solid statistical mechanics foundation was pioneered
by Irving and Kirkwood [34,35] for two-body potentials.
This approach, which we label as IK, defines the stress at
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each point in space, σðxÞ, rather than at the particles, and is
thus more popular in fluid systems. The IK microscopic
stress is identified by invoking Eq. (1a), which is therefore
satisfied ab initio [34,35]. The potential component at
position x is given by

σVðxÞ ¼
�X

α;β>α

f αβ ⊗ rαβBðrα; rβ; xÞ
�
; ð3Þ

where rαβ ¼ rβ− rα, Bðrα;rβ;xÞ¼R
1
0 δ½ð1−sÞrαþsrβ−x�ds

is the bond function [35], and δðrα − xÞ is the Dirac delta
distribution centered at x. For two-body interactions
VI ¼ VαβðrαβÞ, we have f αβ ¼ V 0

αβr
αβ=rαβ, where rαβ ¼

jrαβj. In practice, space is subdivided into a grid and the
microscopic stress is evaluated at discrete positions [7].
There have been a number of extensions of the

IK framework to deal with multibody potentials
[12,15,16,18,19]. Some of these approaches fully retain
balance of linear momentum by construction [12,15,16], by
defining f αβ as the terms of a pairwise force decomposition
Fα ¼ P

βf
αβ satisfying f αβ ¼ −f βα, with Fα being the total

force acting on particle α. The indeterminacy of the local
stress tensor manifests itself in the IK definition because the
pairwise force decomposition is not unique for potentials
involving three or more particles. We consider initially the
so-called central force decomposition (CFD) [13,16] and
defer further discussion to later in this Letter.
We first consider a periodic graphene sheet with a Stone-

Wales defect as a model system to compare the atomic virial
and the IK stresses. The system is modeled with the force
field described in [36] involving up to four-body interactions
and simulated in aNVT ensemble at 300K [23].We compute
microscopic stresses here and elsewhere in the Letter with a
freely available implementation [7,37]. Figure 1(a) high-
lights the fundamental features of each stress definition. The
atomic virial stress is defined discretely at the atoms, while
the IK stress is continuous but exhibits marked concen-
trations along lines joining atomic positions, a signature of
the force decomposition. It is often convenient to spatially
average the discrete features in these fields with weighting
functions such as Gaussian kernels [13,23,38]. Figure 1(b)
shows that the spatially averaged fields σ̄ according to both
notions of stress are qualitatively similar, although the atomic
virial stress exhibits smaller magnitudes.
We analyze next whether these fields are in equilibrium,

as physically expected. Importantly, it can be shown by a
simple calculation that σ̄ij;jðxÞ is the spatial average of
σij;jðyÞ [23]. Therefore, σ̄ij;j should be zero if the corre-
sponding microscopic stress σij obeys Eq. (1a). Strikingly,
the atomic virial stress is strongly out of equilibrium in the
vicinity of the defect, Fig. 1(c). In contrast, the IK stress
field exhibits nearly zero divergence (except from devia-
tions due to discretization and limited statistical sampling).
Thus, our results suggest that the atomic virial stress should
be employed only for visualization purposes.
We focus next on the various extensions of the IK stress

for multibody interactions. A generalization of the method

of planes has been proposed by Heinz, Paul, and Binder
(HPB) [18,19], which is consistent with the IK stress for
two-body potentials and also recovers the global virial
stress. We find that this method does not exactly satisfy
balance of linear momentum, albeit with a smaller error
than the atomic virial stress [23]. We examine next other IK
generalizations satisfying Eq. (1a) by construction. A
natural force decomposition satisfying f αβ ¼ −f βα was
proposed by Goetz and Lipowsky [15],

f αβGLD ¼
XM
I¼1

1

nI

�∂VI

∂rβ −
∂VI

∂rα
�
: ð4Þ

This Goetz-Lipowsky decomposition (GLD) has been
widely employed to analyze MD simulations ([5,7,8]
and references therein), yet it produces noncentral forces;
i.e., in general f αβGLD is not parallel to rαβ. In principle, this
could lead to nonsymmetric stresses [12,16]. Recently, a
central force decomposition has been proposed by Admal
and Tadmor [13,16], which produces a symmetric stress
tensor by construction because f αβ is defined such that it is
always parallel to rαβ, see Eq. (3). By invariance with
respect to rigid body transformations, the additive potential
contributions can be represented in terms of interatomic
distances, ~VIðr12;…; rðnI−1Þ;nIÞ ¼ VIðr1;…; rnIÞ, leading
to the CFD pairwise forces

f αβCFD ¼
XM
I¼1

∂ ~VI

∂rαβ
rαβ

rαβ
: ð5Þ

The CFD andGLD force decompositions result in pairwise
forces with large differences in magnitude and direction [23].
To explore the features of each force decomposition,
we consider a lipid bilayer system of fluid DPPC

FIG. 1 (color online). Balance of linear momentum of the
microscopic stress in a graphene sheet with a Stone-Wales defect:
comparison of the atomic virial (upper row) and the IK (lower
row) stress definitions. (a) Trace of the raw stress fields.
(b) Spatially averaged trace of the stress field. (c) Norm of the
divergence of the spatially averaged microscopic stress. Plots
focus on a small region near the defect in the x − y plane. Because
the system is quasi-2D, we only consider the in-plane compo-
nents and express stress in units of surface tension.
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(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), which is iso-
tropic in the membrane plane (x − y) at the simulated temper-
ature (323 K). In addition to the conventional profiles of all
stress components across the thickness, we adopt an uncon-
ventional but intuitive method to visualize stress through the
traction vector, t ¼ σ · n, on a given internal surface with unit
normal n (Fig. 2). The traction can be decomposed into a
normal and a tangential component, t ¼ tnnþ τ. Here, we
consider a test cylinder, and represent the normal traction tn as
a color map and the tangential component τ using arrows.
In agreement with the symmetries of this system and the

fluidity of the bilayer, the CFD stress is diagonal with equal
lateral components (σxx ¼ σyy) and a normal constant
component across the bilayer [σzzðzÞ ¼ const.] as dictated
by Eq. (1a) [Fig. 2(a)]. We note that for a bilayer in the gel
phase, the off-diagonal components could be nonzero but
should nevertheless respect the symmetry of σ. In sharp
contrast, the GLD stress exhibits nonzero in-plane
off-diagonal components, which are antisymmetric
(σxy ¼ −σyx) and of significant magnitude [Fig. 2(b)],
hence violating Eq. (1b). Furthermore, CFD and GLD
produce significantly different lateral components, and,
hence, normal tractions (tn ¼ σxx ¼ σyy) [Fig. 2(c)].
Focusing on the tangential traction, we note that τ is

parallel to the bilayer plane with sense and magnitude given

by σxy ¼ −σyx. As expected, for CFD τ is nearly zero. For
GLD, however, it is clear from Fig. 2(c) that the non-
symmetry of the stress tensor introduces distributed torques
of opposite sign in each leaflet of the bilayer, since
σxyðzÞ ¼ −σxyð−zÞ. We hypothesize that such behavior
may be due to the internal structure of each lipid, since
the headgroup portion of DPPC contains a chiral carbon.We
test this hypothesis by comparing the stress tensors for three
systems with different mixtures of the two DPPC enan-
tiomers (L-DPPC and D-DPPC). Consistent with this
hypothesis, the torques induced in each monolayer accord-
ing to GLD adopt the same sign for a system with one
monolayer composed solely of L-DPPC and the second
monolayer composed solely of D-DPPC [Fig. 2(d)]. Mixing
equal numbers of each chiral lipid in bothmonolayers results
in nearly zero distributed torques according to the GLD
stress. Thus, the off-diagonal components of the GLD stress
tensor reflect the average chirality of the molecular compo-
sition. In contrast, we find that the CFD stress tensor is
essentially unchanged by the lipid chirality [23].
To physically interpret the GLD distributed torques, it is

necessary to resort to an extended theory of continuum
mechanics. In micropolar continuum theories, these torques
can be balanced locally by invoking a couple stress fieldm,
which in equilibrium satisfies ϵijkσ

jk ¼ ∇lmil, where ϵijk is
the Levi-Civita symbol [12,39–41]. In our situation, how-
ever, there is no compelling physical justification for this
field since the primary objects of our model are achiral
point particles [41] and there is no apparent external source
for m. Thus, although the connection between the non-
symmetry of the IK-GLD stress and molecular chirality is
very appealing, this example undermines its mechanical
interpretation. The HPB stress [18,19] produces nonsym-
metric stresses very similar to GLD for this system [23].
The microscopic stress tensor not only serves as a tool to

explore the local distribution of forces, but can also provide
important material properties. For instance, the Gaussian
curvature elastic modulus of lipid bilayers can be computed
as κ̄ ¼ R ½ðσxx þ σyyÞ=2 − σzz�z2dz, which is highly sensi-
tive to the features of the stress profile (see [6] and
references therein). For the three bilayer systems with
different chiralities in Fig. 2, we obtain κ̄CFD ¼
ð−6.4;−6.7;−6.1Þ × 10−20 J, in agreement with the
common estimates of κ̄ in the order of the negative of
the bending modulus ∼5–15 × 10−20 J [42]. Strikingly, we
find κ̄GLD ¼ ð0.91; 0.57; 1.3Þ × 10−20 J, with the wrong
sign—suggesting that a DPPC bilayer would be unsta-
ble [43]—and widely varying magnitudes.
Taken together, these results show that the choice of

microscopic stress definition is not a mere theoretical
preoccupation. Our results strongly favor the IK-CFD
definition, which, unlike the atomic virial or the IK-GLD
stresses, identically satisfies Eq. (1) for a system in equi-
librium. However, CFD is not uniquely defined when
nI > 4. The geometric reason behind this ambiguity is that
the nIðnI þ 1Þ=2 interatomic distances ðr12;…; rðnI−1Þ;nIÞ

FIG. 2 (color online). Balance of angular momentum of the IK
stress in a planar DPPC fluid membrane, and influence of lipid
chirality. In-plane components of the stress tensor analyzed with
CFD (a) and GLD (b). (c) Visualization of the normal and
tangential components of the traction vector along a cylindrical
surface perpendicular to the bilayer plane, for both CFD and
GLD. The effect of the lipid chirality on the GLD stress for the
two DPPC enantiomers, L-DPPC and D-DPPC, is shown in (d),
where we consider a lipid membrane composed of monolayers
with different chiralities (one with pure L-DPPC and the other
with pure D-DPPC, left), and a bilayer with both monolayers
having equal numbers of L-DPPC and D-DPPC (right).
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involved in a given multibody potential VI cannot be

arbitrarily chosen in DI ¼ RnIðnIþ1Þ=2
þ . There are geometric

conditions that make these distances realizable by a system
of nI particles, which define the so-called shape space
SI ⊂ DI . When nI > 4, the dimension of the manifold SI is
smaller than nIðnI þ 1Þ=2, and, therefore, the differential
calculus involved in Eq. (5) needs to be carefully considered
[44,45]. More practically, when nI > 4 there are infinitely
many different ways to express the potential, ~VI , in terms of
interatomic distances, each resulting in a different force
decomposition and microscopic stress [13,16].
In the spirit of [46–48], we propose an alternative

thermodynamic derivation of the IK microscopic stress,
which naturally and unambiguously extends CFD to multi-
body potentials. In analogy to the Doyle-Ericksen equation
of continuum mechanics [49,50], the stress tensor can be
defined from covariance arguments as

σðxÞ ¼ 2ffiffiffiffiffiffiffiffiffi
gðxÞp δA

δgðxÞ ; ð6Þ

where gðxÞ is the Jacobian determinant of the metric and δA
is the variation of the canonical free energy with respect to
an infinitesimal change of metric δgðxÞ resulting from a
change of coordinates. As fully detailed in [22], this
variational formalism identifies the covariant central force
decomposition (cCFD)

f αβcCFD ¼
XM
I¼1

ð∇SI
~VIÞαβ

rαβ

rαβ
; ð7Þ

where ∇SI
~VI is the covariant derivative of the potential

along the shape spaceSI . For four- or fewer-body potentials,
cCFD and CFD in Eq. (5) coincide. However, cCFD
circumvents the main limitation of CFD by providing a
unique expression for potentials with any number of
particles. In practice, ð∇S

~VIÞαβ can be computed by pro-

jecting ∂ ~VI=∂rαβ for an arbitrary extension onto SI [23].
Through a different rationale, the projection of the CFDonto
the shape space has been recently discussed in [51]. Our
assumption that the potential is additively decomposed into
a many-body expansion is appropriate for most classical
force fields. For semiempirical methods based on density
functional theory concepts, such as the embedded-atom
model [20], this additive structure is not apparent. We refer
the interested reader to [22,51] for further discussion.
We test the cCFD microscopic stress by considering a

coiled-coil structural protein, composed of two identical α-
helical chains that wrap around each other to form a super-
helix. The coiled-coil structure is a double “zipper,” with an
inner core of intercalating hydrophobic amino acids that are
flanked by opposing negatively and positively charged amino
acids, Fig. 3(a). We model this system as an infinitely long
periodic molecule with a widely used protein force field
(CHARMM22/CMAP) [21,52] involving up to five-body
interactions. We compare the tractions on the surface of the

coiled-coil protein, essentially exerted by the solvent, calcu-
lated with GLD, cCFD, and another seemingly reasonable
way to fix the indeterminacyofCFD(byminimizing the norm
of the force decomposition) that we call nCFD [23]. We find
that for GLD and cCFD, tn exhibits a similar pattern that
follows the left-handed helical structure, Figs. 3(b) and 3(c).
The zippered interface between the two chains is dominated
by outward tractions (red), which transition to inward
tractions (blue) at the periphery of the protein. In contrast,
nCFD produces spurious maps of tn [Fig. 3(d)], highlighting
the need for a physically meaningful method to fix the gauge
freedomofCFD [40]. Focusing on τ, cCFDpresents tractions
that locally equilibrate and do not produce net forces. GLD,
however, produces a predominantly leftward traction field
following the twist of the protein as a result of the non-
symmetric components of σ. Quantitatively, the GLD trac-
tions produce a net force per unit protein length along its axis
of 34 mN=m,whereas for cCFDwe have 0.35 mN=m. Thus,
the GLD stress again contains information about chirality but
produces tractions that cannot be physically balanced in our
periodic system, which does not undergo any translation or
rotation during the course of the simulation.
In summary, the ambiguity of the microscopic stress

acutely emerges when analyzing complex materials and
biomolecular assemblies. Strikingly, the widely used atomic
virial stress does not satisfy balance of linear momentum,
while a popular version of the Irving-Kirkwood stress does
not satisfy balance of angular momentum as a result of
molecular chirality. In contrast, Irving-Kirkwood stress fields
based on a covariant central force decomposition can be

FIG. 3 (color online). The IK stress for force fields beyond four-
body interactions. (a) Ribbon representation of a structural
coiled-coil protein simulated with the five-body CMAP potential
(cross-term energy correction map for adjacent dihedrals used
with the CHARMM22 force field). Tractions at the surface of the
protein are calculated with different variants of the IK stress:
GLD (b), cCFD (c), and nCFD (d, see text).
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rationally derived irrespective of themany-body nature of the
potential and satisfy by constructionmechanical equilibrium
in Eq. (1). This definition ofmicroscopic stress thus provides
a solid footing to systematically connectMDsimulations and
the mechanical behavior of materials at the nanoscale [6,53].
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1 Supplemental figures

Figure 1: Pairwise forces obtained from different decompositions. Torsional potential acting on four
atoms as determined by a dihedral angle φ (left). Net forces on each atom are displayed in green. The resulting
decomposed forces in the case of CFD (top) and GLD (bottom, scaled 5x for visualization purposes) are shown
on the right. There is a great difference both in the magnitude and direction of the resulting force pairs. While
the CFD forces are always central (i.e. parallel to rαβ), the GLD pairs are not central, and much smaller than
those of CFD.
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Figure 2: The atomic virial stress and the method of planes of Heinz-Paul-Binder (HPB) [18, 19]
violate conservation of linear momentum. The left column shows the raw stress fields for each stress
definition. The HPB stress produces fields similar to those of IK-GLD, with stresses concentrated along
interaction lines. However, the interaction lines of the former join the positions of geometric centers, which
sometimes do not coincide with the positions of the atoms, whereas the interaction lines of the latter always
join atomic positions, as for the IK-CFD definition. Due to the decomposition, see Fig. S1, the dihedral
interaction lines present large stresses for the IK-CFD while these are much smaller for the IK-GLD definition.
The middle column shows the smoothed stress fields, where we appreciate that the HPB stress and the IK-GLD
stress are very similar to the IK-CFD stress, but with slightly smaller magnitudes. The right column shows
the divergence of each stress field. While the IK-CFD and the IK-GLD stresses are divergence-free, and thus
self-equilibrated, the HPB stress is out-of-equilibrium, yet with a smaller force density than that of the atomic
virial definition.
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Figure 3: IK-GLD and the HPB stress [18, 19] violate conservation of angular momentum in a
DPPC bilayer. (A) IK-CFD stress profiles for the DPPC bilayer. Due to the fluidity of the bilayer, the IK-
CFD stress is diagonal for this system. (B) IK-GLD stress profiles. In this case, the violation of the conservation
of angular momentum is clear from the presence of antisymmetric off-diagonal components that create torque
densities in the membrane. (C) The HPB stress behaves similarly to the IK-GLD stress, violating conservation
of angular momentum, yet with somewhat smaller torques. For all three stress definitions, we observe that
σyy = σxx, σzz(z) = cst, and σ·z = σz· = 0 (· = x, y) within numerical error.
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Figure 4: Effect of chirality in the IK-CFD stress and IK-GLD stress. (A) IK-CFD and IK-GLD
stresses for a bilayer composed of a monolayer of L-DPPC lipids and a monolayer of D-DPPC lipids (see inset
on the left). While the IK-CFD stress is diagonal, the IK-GLD off-diagonal stress profiles are opposite to those
in the membrane composed of two monolayers of L-DPPC lipids for the lower monolayer (see Fig. S3). (B)
IK-CFD and IK-GLD stresses for a bilayer composed of a two monolayer with homogeneous mixture of L-DPPC
lipids and D-DPPC lipids. The IK-CFD stress remains diagonal regardless of the chirality of the lipids. In B,
the IK-GLD stress is also diagonal. From all these calculations we conclude that the torque densities generated
in the IK-GLD stresses stem from the internal chirality of the lipids. The HPB stress presents a similar behavior
to that of the IK-GLD stress (data not shown).
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Figure 5: Our microscopic stress calculation is consistent with periodic boundary conditions. Trace
of the IK-CFD stress tensor over the whole computational domain for the defective graphene system. No
spurious stress distributions are present near the boundaries of the computational box.
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2 Theory

2.1 Irving-Kirkwood framework: conservation of linear momentum and force
decompositions

In the Irving-Kirkwood framework, the continuum density field is defined as

ρ(x) =
N�

α=1

�mαδ(rα − x)� , (1)

where �·� stands for an ensemble average, mα and rα are the mass and position of particle α,
δ(x) is the 3D Dirac distribution centered at 0, and N is the total number of particles in the
system. Invoking the equivalence of the macroscopic momentum ρ(x)v(x) and the microscopic

momentum
�N

α �mαvαδ(rα − x)�, the continuum velocity field is defined as

v(x) =
1

ρ(x)

N�

α=1

�mαvαδ(rα − x)� , (2)

where vα is the velocity of particle α. These two fields satisfy the continuity equation
∂ρ/∂t + ρ∇ · v = 0, expressing balance of mass in continuum mechanics, where ∇· stands
for the divergence operator. In the absence of external forces, the continuum balance of linear
momentum requires that

∇ · σ(x) = ρ(x)
dv(x)

dt
. (3)

After invoking Liouville’s equation, one finds that [16, 13]

∇ · σ(x) =∇ ·
�

N�

α=1

�mαvα ⊗ vαδ(rα − x)�
�
−

−
N�

α=1

�F αδ(rα − x)� ,
(4)

where F α is the force on particle α and a⊗ b denotes the dyadic product of vectors a and b.
If Eq. (4) is used to derive an expression for σ, this definition is clearly non-unique since

given any stress σ satisfying Eq. (4), we can add any divergence-free field ω to σ with the
resulting field σ +ω also satisfying this equation. An expression of σ that satisfies Eq. (4) by
construction is [34, 35]

σ(x) = σK(x) + σV(x),

σK(x) = −
��

α

mαvα ⊗ vαδ(rα − x)

�
,

σV(x) =

� �

α,β>α

fαβ ⊗ rαβB(rα, rβ;x)

�
,

(5)

where rαβ = rβ − rα, fαβ are the terms of a force decomposition, F α =
�N

β=1 f
αβ satisfying

fαβ = −fβα, and B(rα, rβ;x) =
� 1

0
δ[(1− s)rα + srβ −x]ds is the bond function that spreads

7



to contribution from the pair αβ to the stress along the line segment joining the particles [35].
The lack of uniqueness in the definition of the stress is present in this formulation since the
force decomposition is not unique. For instance, let the potential of the system be described
additively as V =

�M
I=1 VI , with each contribution involving nI particles, then the Goetz-

Lipowsky force decomposition is [15]

fαβ
GLD =

M�

I=1

1

nI

�
∂VI

∂rβ
− ∂VI

∂rα

�
. (6)

This decomposition satisfies the requirement that fαβ = −fβα. However, as shown in the
experiments performed in this work, the IK-GLD is not symmetric, which therefore violates
conservation of angular momentum for simple bodies.

2.2 Conservation of angular momentum: Central Force Decomposition and
Covariant Central Force Decomposition

Conservation of angular momentum in a continuum theory of simple bodies in the absence
of external torque densities requires the stress to be symmetric, i.e. σij = σji. Not all force
decompositions compatible with conservation of linear momentum, i.e. fαβ = −fβα, lead to
conservation of angular momentum in the IK setting. It has been recently shown [16] that the
central force decomposition (CFD) is the only possible choice to obtain a symmetric stress by
construction. To define this decomposition, let us express the classical potential as a sum of
many-body contributions, V =

�M
I=1 VI , where VI involves nI particles and cannot be described

as a sum of lower-body interactions. Then, the CFD decomposition follows from

fαβ
CFD =

M�

I=1

∂ �VI

∂rαβ
rαβ

rαβ
, (7)

where �VI is a representation of the interatomic potential in terms of particle distances
rαβ = |rαβ|. Such a representation always exists as result of the invariance with respect to
rigid body transformations of classical potentials [13].

However, CFD has an important limitation when nI > 4. To show this, we first note
that the nI(nI + 1)/2 interatomic distances (r12, . . . , r(nI−1)nI ) involved in a given multibody

potential VI cannot be arbitrarily chosen in DI = RnI(nI+1)/2
+ . There are geometric conditions

that guarantee that these distances can be realized by a system of nI particles, which define
the so-called shape space SI ⊂ DI . These geometric conditions are expressed in terms of
Caley-Menger determinants. More precisely, the sets of distances need to satisfy [13, 44, 45]

χ(rαβ, rαγ , rβγ) ≤ 0

χ(rαβ, rαγ , rαδ, . . . , rγδ) ≤ 0

χ(rαβ, rαγ , rαδ, rα�, . . . , rδ�) = 0

χ(rαβ, rαγ , rαδ, rα�, rαζ , . . . , r�ζ) = 0

(8)

8



where χ(r12, . . . , r(N−1),N) is the Caley-Menger determinant given by

χ(r12, . . . , r(N−1),N) = det




0 s12 s13 . . . s1N−1 s1N 1
s12 0 s23 . . . s2N−1 s2N 1
s13 s23 0 . . . s3N−1 s3N 1
...

...
...

. . .
...

...
s1N−1 s2N−1 s3N−1 . . . 0 sN−1,N 1
s1N s2N s3N . . . sN−1,N 0 1
1 1 1 1 1 1 0




= 0, (9)

where sαβ = (rαβ)2. The first 2 equations in Eq. (8) are inequalities involving 3 and 4 particles
respectively and restrict SI to a part of DI , but do not modify the intrinsic dimension of
SI . Therefore, for potentials involving up to 4-body interactions, the differential calculus in
Eq. (7) can be directly applied. However, the last two equations in Eq. (8), which involve 5
and 6 particles respectively, restrict the intrinsic dimension of SI . Therefore, when nI > 4, the
dimension of the manifold SI is smaller than nI(nI + 1)/2, and therefore the differential calculus
involved in Eq. (7) needs to be carefully considered [44, 45]. Noting this fact, it has been argued

that, to be able to take the partial derivative ∂ �VI/∂r
αβ in Eq. (7), the potential needs to be

extended to DI [16, 13]. However, when nI > 4, there exists infinitely many extensions, leading
to an extension-dependent force decomposition and an ambiguous definition of the stress, all of
which differ by divergence-free fields. The lack of a rational procedure to fix this gauge freedom
has been a source of criticism [40].

Following an alternative yet compatible path to the IK derivation of the stress based on
covariance arguments (see main text), we propose an unambiguous CFD [22]. This central force
decomposition, which we call covariant central force decomposition (cCFD), can be computed
by just replacing the partial derivatives in Eq. (7) by covariant derivatives along SI ,

fαβ
cCFD =

M�

I=1

�
∇SI

�VI

�
αβ

rαβ

rαβ
, (10)

This procedure leads to a uniquely defined CFD regardless of the extension that is used to
compute the stress and completely fixes the Gauge invariance in the IK stress, since the
covariant derivative of the potential is uniquely defined. This definition is based on the
assumption that the potential V is written as a sum

�
I VI of n-body potentials VI that

cannot be written in terms of lower-body interactions (i.e. cannot be further reduced). In
biomolecular simulations, these potentials are 2-, 3-, 4- and 5-body (Coulomb, van der Waals,
angles, dihedrals and CMAP) interactions. For a discussion about the treatment of more general
force fields, see [51, 22]. A numerical procedure to compute the cCFD for 5 and higher-body
potentials is proposed in the next section.

2.3 Numerical implementation

In our algorithm to compute the local stress, we read velocities and forces from GROMACS
4.5.5 as explained in reference [7] and in the manual of our implementation [37]. Thus, for each
frame, we receive {vα}α=1,...,N and {F α

I = −∂V α
I /∂rα}α=1,...,N for each potential VI in the force

field, V =
�

I VI .
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Assuming this as an input, the kinetic part of the stress can be easily calculated and spread
into the grid (we refer to [7] for a detailed explanation of the spreading process). For GLD,
we compute pairwise terms following Eq. (6) and spread each contribution into the grid. For
the HPB stress, we follow the prescriptions in [18, 19]. The computation of the decompositions
CFD, cCFD is detailed next.

Consider a potential VI with nI = N interacting particles. The set of forces F 1, . . . ,FN

is an input. We want to find the set of pairwise forces ϕαβr̂αβ, where r̂αβ = rαβ/rαβ, satisfying

�

β

ϕαβr̂αβ = F α, ∀α. (11)

Introducing the notation r̂αβ = (x̂αβ, ŷαβ, ẑαβ), we can write these relations in matrix form as




x̂12 . . . x̂1N 0 . . . 0 . . . 0
ŷ12 . . . ŷ1N 0 . . . 0 . . . 0
ẑ12 . . . ẑ1N 0 . . . 0 . . . 0
−x̂12 . . . 0 x̂23 . . . x̂2N . . . 0
−ŷ12 . . . 0 ŷ23 . . . ŷ2N . . . 0
−ẑ12 . . . 0 ẑ23 . . . ẑ2N . . . 0
...

. . .
...

...
. . .

...
. . .

...
0 . . . −ẑ1N 0 . . . −ẑ2N . . . ẑ(N−1),N




� �� �
D, dim = m× n




ϕ12
...

ϕ1N

ϕ23
...

ϕ2N
...

ϕ(N−1),N




� �� �
ϕ, dim = n

=




F 1
x

F 1
y

F 1
z

F 2
x

F 2
y

F 2
z
...

FN
z




� �� �
F, dim = m

, (12)

where m = 3N , n = N(N − 1)/2 and the rank of this system is r = 3N − 6 (number of
independent equations). For systems withN = 3, 4, this system has a unique solution. However,
for N > 4 this system is underdetermined.

To obtain a particular solution to Eq. (12) we resort to the DGELSD function of the
LAPACK library. This function computes the solution ϕ with minimum norm amongst all
solutions of Eq. (12). This leads to the results of nCFD for the coiled-coil shown in the main
text. To obtain the cCFD, we use this nCFD as a seed and apply the method explained next.

The covariant derivative in Eq. (10) can be computed from the partial derivative in Eq. (7)

for any extension of �VI to DI followed by a projection onto SI . In practical terms, given a
set of atomic forces {F α}α=1,...,N this means that after obtaining a particular solution of ϕ,

ϕαβ = ∂ �V /∂rαβ, from Eq. (12), we need to project the result onto SI to obtain ϕSI
, whose

components are precisely
�
∇SI

ṼI

�
αβ
. ϕSI

is extension-independent as well as independent of

the choice of particular solution of Eq. (12). This coincides with the usual definition of the
covariant derivative in a manifold that is embedded in Euclidean space. For 3- and 4-body
interactions, this projection is the identity.

For the special case of 5-body potentials, such as the CMAP interaction present in our
coiled-coil model, the distance space is DI = R10 and the shape space, which has dimension 9,
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is given by the equation

χ(r12, . . . , r45) = det




0 s12 s13 s14 s15 1
s12 0 s23 s24 s25 1
s13 s23 0 s34 s35 1
s14 s24 s34 0 s45 1
s15 s25 s35 s45 0 1
1 1 1 1 1 0




= 0. (13)

Then, taking into account that the (non-unit) normal to SI is given by

nSI
=




∂χ

∂r12
...
∂χ

∂r45


 , (14)

we have

ϕSI
= ϕ− 1

|nSI
|2
nSI

nT
SI
ϕ (15)

Thus, we obtain the cCFD for 5-body potentials from the following procedure:

1. Compute a CFD from the linear system Eq. (12).

2. Compute the gradient of the Caley-Menger determinant χ(r12, . . . , r45).

3. Project the CFD onto SI following (15).

This method is very efficient for 5-body potentials since the gradient of the Caley-
Menger determinant can be evaluated analytically. For higher-body potentials, we propose
next an equivalent method based on algebraic arguments. This procedure provides a method to
compute the cCFD without an analytic expression for all (possibly non-independent) gradients
of the corresponding Caley-Menger determinants, and therefore is best suited for higher-body
interactions.

First, we note that the normal space to the shape space SI is precisely the kernel of D
(see Eq. (12)), i.e. it is the vector space spanned by the solutions of

DX = 0. (16)

Any component of the force decomposition on this space does not alter the net forces on the
particles, as can be checked by comparing Eqs. (12) and (16). The solution to this problem can
be computed through a QR decomposition. LetDT be the transpose ofD. Its QR decomposition
exists and has the general form

DTP = QR =
�
Q1 Q2

��R1 R2

0 0

�
(17)

where

• Q is an orthogonal matrix of dimension n× n.
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• Q1 is a n× r with orthonormal columns (this is uniquely defined).

• Q2 is a n× (n− r) with orthonormal columns.

• R1 is a r × r upper triangular and invertible.

• R2 is a r × (m− r) matrix.

• P is a m×m pivoting matrix.

Then we can rewrite Eq. (16) as

DX = PRTQTX = P

�
RT

1 0
RT

2 0

��
QT

1

QT
2

�
X = 0. (18)

Taking into account that Q is an orthogonal matrix , its columns form an orthonormal basis
of Rn. We can then define the two components of X on the subspaces spanned by the columns
of Q1 and Q2, X1 = QT

1X, X2 = QT
2X. Inserting this decomposition in Eq. (18) we obtain the

equivalent system �
RT

1X1

RT
2X1

�
= 0. (19)

Since RT
1 is invertible, this results in X1 = 0, while the component X2 is completely free. In

other words, the kernel of D is the subspace formed by the column vectors of Q2. Therefore,
given a CFD ϕ, its projection onto the shape space is simply

ϕSI
= Q1Q

T
1ϕ. (20)

We resort to the implementation of the QR decomposition in the DGEQRF function of
LAPACK.

2.4 Stress smoothing and calculation of its divergence

It is convenient to spatially average the microscopic stress fields with discrete features as

σ̄(x) =

�

R3

w(|x− y|)σ(y)dy, (21)

where w(r) is a normalized compactly-supported weighting function [38, 13]. For the atomic
virial stress, this averaging can be applied by interpreting it as a field of concentrated Dirac
distributions at the atoms, i.e. σ(x) =

�
α δ(�rα� − x)σα. The divergence of these spatially

averaged stress fields has an important property:

σ̄ij,j(x) =
∂

∂xj

�

R3

w(|x− y|)σij(y)dy =

=

�

R3

∂w(|x− y|)
∂xj

σij(y)dy =

=−
�

R3

∂w(|x− y|)
∂yj

σij(y)dy =

=

�

R3

w(|x− y|)σij,j(y)dy

(22)
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where we have employed that ∂w/∂xj = −∂w/∂yj and integration by parts. This shows that
the divergence of the spatially averaged stress is the spatially averaged divergence of the raw
stress fields, and thus it must satisfy the same balance equation of the raw divergence, which
in the absence of external applied force densities is σij,j = 0 (see the main text). Practically,
we compute the divergence from

σ̄ij,j(x) =
∂

∂xj

�

R3

w(|x− y|)σij(y)dy =

=

�

R3

w�(|x− y|)xj − yj
|x− y|σij(y)dy

(23)

3 Simulation methods and analysis

All simulations were conducted with the GROMACS 4.5.5 simulation package [24, 25] at the
Barcelona Supercomputing Center.

3.1 Local stress calculations

We compute the local stress with our freely available implementation [7, 37]. This
implementation, which is based on GROMACS-4.5.5, computes the stress for the different
definitions in this article: atomic virial, HPB stress (we have implemented the HPB method
of planes as outlined in [19, 18]), IK-GLD, IK-nCFD and IK-cCFD, using a discretization in
a 3D grid. For the discretization we employ trilinear weighting functions, which lead to good
compromise between both smoothing and preserving the locality of the microscopic stress.
Periodic boundary conditions are handled by considering always the closest periodic image
of two interacting particles, see Fig. 5. This implementation also deals with constraints in a
consistent manner, as explained in [7].

3.2 Graphene

The graphene sheet with the Stone-Wales defect was simulated with a Morse-potential modified
version of the OPLS-AA FF [36] for 500 ns of data collection where the positions and velocities
were stored every 5 ps. The system was simulated in the NVT ensemble and temperature was
held at 300 K with a Nosé-Hoover thermostat. The infinitely periodic (in x and y directions)
sheet contains 1500 atoms and was simulated in a box of size [6.369 nm, 6.131 nm, 3.0 nm].
Lennard-Jones forces were calculated with a plain cut-off of 1.0 nm, and all carbon atoms were
uncharged. The stored trajectories were analyzed with our custom GROMACS implementation
[37] outlined in [7] to produce stress fields with a grid spacing of 0.005 nm for the IK-CFD
definition. The stress is then post-processed to obtain smoother fields with a Gaussian filter
of 1.25Å, barely large enough to provide smooth fields without excessively smearing out the
non-uniform features (see section 2.4).

3.3 DPPC bilayer

The DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayers were simulated with the
Berger [26] FF obtained from the website of the Tieleman group [27]. Three bilayer systems
were simulated with 1) pure L-DPPC in both leaflets, 2) pure L-DPPC in the upper leaflet
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and pure D-DPPC in the lower leaflet, and 3) a homogeneus mixture of L-DPPC and D-DPPC
in both leaflets. Lennard-Jones forces were calculated with a plain cut-off of 1.0 nm. Long-
range electrostatic interactions were computed using the particle-mesh Ewald (PME) method
with a real-space cut-off of 1.0 nm and a Fourier grid spacing of 0.15 nm. Pressure was semi-
isotropically coupled with a Parrinello-Rahman barostat at 1 atm, and the temperature was held
constant at 323 K with a Nosé-Hoover thermostat. Each bilayer system contains 200 lipids and
12,000 SPC [28] water molecules, and the integration time step was 2 fs. Each bilayer simulation
was run for a 400 ns equilibration period, followed by a 400 ns data collection period where the
positions and velocities were stored every 5 ps. The stored trajectories were then analyzed to
produce stress profiles using a grid spacing of 0.1 nm. Given that the current implementation
does not take into account the electrostatic contributions computed in reciprocal space, the
analysis of the stress from the PME method was carried out only considering Coulomb forces
up to a cut-off radius of 2.2 nm. The accuracy of this common treatment has been previously
examined in [7].

3.4 Coiled-coil

A synthetic coiled-coil protein was constructed from two identical parallel alpha-helices each
with the amino-acid sequence (IEALKAE)14. The protein was simulated as an infinitely long
periodic molecule with a pitch of -3.673◦ per residue, so that the beginning and end residues
of each chain would interact seamlessly across the periodic boundary. The positions of the
backbone atoms were generated using the CCCP server [29, 30] and the sidechain positions
were subsequently added with the molecular visualization package UCSF Chimera [31]. The
amino-acid sequence was selected as it has been experimentally shown to be very stable even for
short chains [32]. The protein was simulated with the CHARMM22/CMAP force field [52, 21].
Lennard-Jones forces where calculated using a cut-off scheme with a switching function between
1.0 nm and 1.2 nm. Long-range electrostatic interactions were computed using the particle-
mesh Ewald (PME) method with a real-space cut-off of 1.2 nm and a Fourier grid spacing of 0.12
nm. Temperature was held constant at 298 K with a Nosé-Hoover thermostat. The system was
composed of 196 protein residues (3,080 atoms) with 8,703 TIP3P [33] water molecules (26,109
atoms) and 28 Na+ ions to neutralize the protein charge. Two alpha carbons of each protein
chain were harmonically restrained with a force constant of 500 kJ/mol·nm2 in order to prevent
rotation of the molecule. The system was simulated under constant volume conditions, with
the box size ([14.423 nm, 4.488 nm, 4.488 nm]) adjusted to produce global pressures close to 1
atm. The hydrated protein system was first pre-equilibrated with harmonic position restraints
on the protein backbone atoms for 250 ps. After the short pre-equilibration, the system was
simulated for 300 ns where the first 100 ns were used for equilibration and the remaining 200 ns
for data collection (storing position and velocities every 5 ps). The stress fields (cCFD, nCFD,
and GLD) for the coiled-coil protein were calculated over the simulation period from 100 to
300 ns using a coulomb cut-off radius of 2.2 nm and a grid spacing of 0.1 nm. The computed
stress fields were processed with a Gaussian filter (standard deviation of 0.8 nm) to remove high
frequency fluctuations. The surface of the protein used to compute the traction was obtained
as an iso-contour of the mass-density of the protein (also processed with a Gaussian filter with
a standard deviation of 0.4 nm). Visualization of the traction was performed with the program
ParaView.
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