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Abstract

A method to precisely calibrate the oscillation amplitude in Dynamic Scanning Force Microscopy

(DSFM) is described. It is experimentally shown that a typical electronics used to process the dynamic

motion of the cantilever can be adjusted to transfer the thermal noise of the cantilever motion from

its resonance frequency to a much lower frequency within the typical bandwidth of the corresponding

electronics. Therefore, the thermal noise measured in the in–phase (“phase”) and out–of–phase (“ampli-

tude”) output of such an electronics can be related to the thermal energy kT . If the force constant of

the cantilever is known then the oscillation amplitude can be precisely calibrated from the thermal power

measured in these signals. Based on this concept, two procedures for the calibration of the oscillation

amplitude are proposed. One is based on simple calculation of the Root Mean Square (RMS) measured

at the outputs of the electronics used to process the dynamic motion of the cantilever, and the other

one is based on analysis of the corresponding spectrum and the calculation of the quality factor, the

resonance frequency and the signal strength.
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I. INTRODUCTION

Scanning Force Microscopy (SFM) is an extremely versatile tool for Nanoscience that has a

very high resolution, but usually only a modest precision. When SFM is used as a microscope,

precise calibration of piezo movements is necessary, as well as careful control of piezo hysteresis

and non–linearities. When used as a force measuring instrument a precise calibration of the

displacement detector as well as the force constant of the cantilever is required. Dynamic SFM

(DSFM) is by now probably the most extended SFM mode, since it allows operation at very

low forces, and operates in the non–contact regime [1–4]. In DSFM the frequency (or phase) of

the tip–sample system and the oscillation amplitude are the basic signals that are measured and

should thus be calibrated for precise measurements. Precise measurement of frequency is easy and

is implemented directly in most instruments. Calibration of oscillation amplitude is an issue that

has received little attention, and less than what we believe it deserves. In Frequency Modulation

DSFM (FM–DSFM) the frequency shift is related to (conservative) tip–sample interaction and the

oscillation amplitude to dissipation. For Amplitude Modulation (AM–DSFM or “tapping mode”)

this separation is less evident, nevertheless the oscillation amplitude is an important parameter,

since it critically determines non–linearity of tip–sample interaction [5, 6], onset of bi–stability

and chaos [7–9] as well as the precise interaction regime (attractive vs. repulsive) used for imaging

[10]. Finally, as shown recently, if correctly calibrated the oscillation amplitude can be used to

obtain a reliable image of the “true topography” that is independent of feedback parameters and

scanning speed [11]. In the present work we will discuss a method to precisely calibrate the

oscillation amplitude in DSFM. Essentially, the method relates the thermal noise measured in the

“amplitude” and “phase” outputs of the electronics to the thermal energy kT . If the force constant

of the cantilever is known then the oscillation amplitude can be calibrated from the thermal power

measured in these signals.

II. CALIBRATION PROCEDURES

In the present work we discuss the response of the DSFM Dynamic Unit (DSFM–DU) in the

frequency domain because we will analyze the response of the system to thermal noise zth(t). Un-

fortunately, thermal noise is non–trivial to describe using a “coherent” superposition of harmonic

signals, as it is implicitly assumed in the Fourier Transform z(t) =
∫
dν z(ν)ei2πνt. The correct

description of noise in the time domain should involve wavelet transforms [12], which is however

beyond of the scope of the present work. We note that in the context of the present work the
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DSFM–DU is used in a non–standard way, where no oscillation is applied to excite the cantilever,

and the reference oscillator frequency νr is not at the resonant frequency of the cantilever. In-

stead, the DSFM–DU is adjusted so that νr ≈ ν0 − bw/2 where bw = 1/τ (τ : time constant) is

the bandwidth of the DSFM–DU. As discussed in detail in Appendix A. The thermal peak of the

cantilever appears centered within the spectral range of the output of the DSFM–DU.

Essentially, the reason for this frequency shift is that when the normal force signal is internally

multiplied with the reference frequency νr of the DSFM–DU, frequency components at ν0 − νr

and ν0 + νr appear (for example from terms like cos(2πν0t) cos(2πνrt), see also figure 1 for a

graphical representation). Usually, the DSFM–DU is opperated with ν0 = νr, then thermal noise

is observed at very low frequencies ν ≈ 0, that is, at DC. At this low frequency the thermal noise

is usually not clearly distinguised from pink noise (1/ν–noise) of typical electronic components.

However, when ν0 6= νr, the thermal peak is shifted to the difference frequency ν0 − νr, which

may be well below the resonance frequency, ν0. As discussed above, we typically adjust νr so that

ν0 − νr ≈ bw/2 ≈ 4 kHz in our system.

Figure 2 shows experimental data for the deflection signal ud(t), and the output uy(t) measured

when the DSFM–DU is configured as just discussed. The main graphs show spectra, and the insets

time domain data. The spectra have been acquired using a Spectrum Analyzer [13] as well as

the “noise” function of a commercial Lock–In Amplifier [14]. The lines through the data points

correspond to a “Lorentzian + offset” fit function f(ν) [15, 16],

f(ν) =
e2
th

(1− (ν/ν0)2)2 + (ν/(ν0Q))2
+ e2

n = e2
th|g(ν)|2 + e2

n (1)

where g(ν) is the mechanical gain of the cantilever (see relation (A1)). The corresponding pa-

rameters for the different fits are specified in table I, and discussed in more detail below. The

scattered points around the horizontal lines show the error of the experimental power spectrum to

the corresponding fit, which show little tendency for both spectra, therefore we conclude that the

chosen fit functions describe well the experimental data. Both spectra lead to essentially the same

results, in particular for the values of the resonance frequency ν0 and the quality factor Q. Since

the DSFM–DU internally amplifies the normal force signal, the signal strength of the deflection

signal ud(t) is smaller than that of the DSFM–DU outputs ux(t) and uy(t), leading to different

thermal noise eth and electronic noise en for the deflection spectrum ud(ν) compared to ux(ν)

and uy(ν). We therefore conclude that the outputs ux(t) and uy(t) of the DSFM–DU essentially

reproduce the thermal noise spectrum of the deflection signal and that the DSFM–DU therefore

“sees” (internally amplified) thermal noise shifted to the frequency ν0− νr. It should be therefore

possible to apply the well–known thermal calibration method based on the equipartition theorem
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[16–22],
c

2
〈z2
th(t)〉rms =

1

2
kT (2)

to the calibration of the oscillation amplitude.

We note that, as for the case of normal force calibration, relation (2) has implicitly two un-

knowns: the force constant c of the cantilever and a sensitivity calibration β (units: nm/V) to

convert the measured signal u(t) (Volts) into physical length units (Nanometers):

z(t) = βu(t) (3)

In the present work, we will assume that the force constant is known or has been determined

independently (see, for example [22, 23]), and will thus use (2) to calibrate the sensitivity β of

the DSFM–DU. We will present and discuss two procedures based on equation (2): a simple one

which only requires estimation of the RMS noise of the output of the DSFM–DU, and a second

one taking into account the full spectral response of the outputs ux(t) and uy(t).

A. Calibration based on root mean square estimation

The first calibration procedure is implemented experimentally by acquiring the outputs ux(t)

and uy(t) for a certain period of time with the laser on and with the laser off. The noise power

that is related to thermal noise is then,

(uth)
2 = 〈u2

on(t)〉rms − 〈u2
off(t)〉rms (4)

The reason to acquire data with the laser off is to estimate and subtract electronic noise that is

not related to the thermal noise of the cantilever motion. In particular for hard cantilevers, where

thermal noise is quite small (see below) the calibration may be severely wrong if this electronic

noise is not subtracted. Without substraction, it is implicitly assumed that all measured noise

(that is, also electronic noise) is thermal noise. The voltage noise ∆uxth =
√
〈(uxth)

2〉 of the

output ux(t) is related to the “phase” noise while the noise ∆uyth =
√
〈(uyth)

2〉 is related to the

oscillation amplitude. Relation (4) can of course also be applied to the fluctuations measured

in the deflection signal ud(t), then ∆udth =
√
〈
(
udth
)2〉 is the deflection noise (in Volts) of the

cantilever motion. We recall that thermal noise is distributed equally between the in–phase and

out–of–phase components; then, if the amplification of the outputs ux(t) and uy(t) as well as the

deflection ud(t) are the same (the latter is usually not the case, see below),

∆uxth = ∆uyth = ∆udth/
√

2 (5)
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since the total deflection signal and the in–phase and out–out–phase componentes x and y are

related by u2
d(t) = u2

x(t) + u2
y(t) and therefore βx = βy (see, for example, [15]). The values

∆uxth and ∆uyth can be either computed directly from the time domain signals ux(t) and uy(t),

or by adding (integrating) the noise spectrum in the frequency domain. Due to the different

normalizations found for the Fourier Transform and the Power Spectral Density in the literature

as well as in software packets, it is usually more secure to use the first option. The insets presented

in figure 2 show the data used for this calibration procedure. The data from the DSFM–DU is

presented as scatter plot (ux(t), uy(t)); as it would be visualized with an oscilloscope in x − y

mode. Data is shown for the laser on and off. The diameter of this scatter plot is proportional

to the fluctuations in both directions. The data corresponding to the deflection signal ud(t) is

shown “normally” as a function of time, again data is shown for the laser on and off. Calibration

factors are computed directly as βy = zth/∆u
y
th/
√

2 (see relation (5) for the factor
√

2) and

βd = zth/∆u
d
th with zth =

√
kT/c rms thermal noise movement (unit: nm, from equation (2)).

The results obtained with this first method are summarized in the left column of table I (termed

“first procedure”). The calibration factors for the cantilever deflection and for the (amplitude)

output of the DSFM–DU have been measured for a cantilever with c = 1.6 N/m, as determined

using Sader’s method [23] from the resonance frequency and quality factor (see table I).

B. Calibration using the thermal noise spectrum

The second calibration procedure is based on estimating the area under the thermal noise

spectrum using the values determined from the fit to a “Lorentzian function + electronic noise

function”, f(ν) from relation (1). In this context we recall that
∫∞

0
dν |g(ν)|2 = Q ν0 π/2,

therefore the measured “thermal noise power” as determined from the fit parameters is e2
th Q ν0π/2,

where e2
th is the strength of the thermal signal (units: V2/Hz). As discussed previously, in the

frequency domain the DSFM–DU shifts the original deflection signal z(ν) from a signal centered

around the resonance frequency ν0 to signals ux(ν) and uy(ν) centered at ν0 − νr ≈ bw/2 where

νr is the reference frequency adjusted by the DSFM–DU. In addition, the original signal ud(t)

is amplified by the internal gains of the DSFM–DU. In principle, there are two possible ways of

processing the data obtained from the DSFM–DU: the spectra |ux(ν)|2 and |uy(ν)|2 may be fitted

either directly to the function f(ν) from relation (1), resulting in a resonance peak near bw/2

(see figure 2) –or the frequency shift induced by the DSFM–DU may be “undone” by adding the

reference frequency to the frequency of the power spectra ux(ν) and uy(ν) in order to fit these
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back–shifted power spectra ux(ν + νr) and uy(ν + νr),

• Option 1: ux(t) raw data → FT and PSD → |ux(ν)|2 → fit→ {eth,Q, ν0, en}

• Option 2: ux(t) raw data →FT and PSD→ |ux(ν)|2 → freq. shift → |ux(ν + νr)|2 → fit

→ {eth, Q, ν0, en}

The second option is the correct one, as relation (2) holds for the “true” deflection signal with the

thermal noise peak at the “correct” resonance frequency ν0.

We therefore fit the frequency shifted spectrum |ux(ν + νr)|2 to the “Lorentzian + offset”

function f(ν) from relation (1), in order to obtain the “strength” eth of the Lorentz function, the

quality factor Q, the resonance frequency ν0 and the noise power en that is not Lorentzian. For

the experimental spectra of the output ud(t), relation (2) is rewritten as

1

2
kT =

c

2
〈z2
th(t)〉rms =

c

2

∫
dν z2

th |g(ν)|2 =
c

2

∫
dν
(
edth β

d
)2 |g(ν)|2 =

=
c

2
Q ν0

π

2

(
edthβ

d
)2 ⇒ βd =

1

edth

√
2kT

πcQν0

(6)

where βd (unit: nm/Volts) is the factor that converts the deflection signal ud(t) (in Volts) to the

physical amplitude z(t) (in nm): z(t) = βdud (t). Similarly, βx and βy convert the signals ux(t)

and uy(t) into the in–phase and out–of–phase components of cantilever deflection. For the outputs

ux(t) (and uy(t)) relation (2) is

1

2
kT =

c

2

∫
dν
(

(exth β
x)2 + (eyth β

y)2
)
|g(ν + νr)|2 =

= 2
c

2
Qν0

π

2
(eyth β

y)2 ⇒ βy =
1√
2eyth

√
2kT

πcQν0

(7)

The last relation for βy in (7) is obtained because in our case the amplification of the two outputs

ux(t) and uy(t) is the same; therefore, as discussed above, βx = βy. The parameters Q, ν0 and

eth are obtained from the fits, kT is the temperature of the cantilever, and c = 1.6 N/m is the

force constant, determined by Sader’s method [23] from the Q factor and the resonance frequency.

The right columns of table I (termed “second procedure”) summarize the results obtained from

this second calibration procedure when applied to the deflection data ud(t) and to the out–of–

phase output uy(t) of the DSFM–DU. We will now comment the different fields of this table.

The Lock–In amplifier is used to measure the noise density, and does not acquire time domain

data, therefore the first procedure cannot be applied, and the corresponding fields are empty.

The Spectrum Analyzer used allows to simultaneously measure the real–time data, as well as the
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spectrum of this data, therefore the first and second procedure can be applied. For this cantilever

with a relatively large thermal noise (about 50 pm) the first and second calibration procedure

give similar results, although the second procedure seems to have less error (see discussion below).

In order to compare the results obtained from the deflection signal with that of the output(s) of

the DSFM–DU a normalized calibration factor βN has been introduced that takes into account

the internal gain of the DSFM–DU. This normalized calibration factor should be the same for the

deflection data and the outputs of the DSFM–DU, which is indeed the case within the experimental

error of the measurements.

Figure 3 shows the spectra of the deflection sensor and the outputs of the DSFM–DU for a

hard cantilever (c = 67 N/m as determined by Sader’s method [23]), with a quite low thermal

noise amplitude (zth =
√
kT/c ' 8 pm). In this case, data is shown for different gains of the

DSFM–DU, and the spectra have been acquired directly from the (calculated) power spectrum

of the time domain signals acquired by the SFM–control unit (more precisely: from uy(t)–images

acquired with the tip far from the surface at maximum adquisition speed, without scanning and

no excitation applied to the driving piezo of the cantilever). Note that for hard cantilevers, the

resonance frequency may be easily outside the acquisition bandwidth of the analog to digital

converters of the SFM–acquisition electronics (usually 16 bits or more and thus rather slow) and

therefore the corresponding thermal noise of cantilever motion cannot be “directly seen” in the

digitalized normal force (deflection) signal ud(t). By contrast, the thermal noise peak is easily

brought into the bandwidth of the analog to digital converters when the outputs ux(t) and uy(t)

are used, since this noise is now at the much lower difference frequency. For this hard cantilever,

the very small thermal noise signal is usually significantly smaller than the electronic noise or

other non–thermal fluctuations. In our setup, this is indeed the case for the direct deflection

signal as well as for the outputs of the DSFM–DU when its internal gain is smaller than 10 (see

the “scatterplots” in the inset of figure 3). Then, it is essential to “normalize” the measured signal

by subtracting the electronic noise (laser off) from the total noise (laser on) as discussed above

(see relation (4)). Still, for low gains this procedure does not give satisfactory results; then only

the second procedure method is precise. Surprisingly the second procedure still works for gains as

small as g = 1 and for the direct deflection signal. Note that for these low gains almost all noise

is electronic noise. The fit to the function f(ν) = e2
th |g (ν)|2 + e2

n is thus a very effective way of

“filtering” all non–thermal noise. For high gains the calibration factors rise by an amount that is

not compatible with the error of our measurements for both procedures. We believe that this is

not a problem of the calibration procedures, instead we think that this is due to low–pass filtering
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of our DSFM–DU that reduces the (nominal) signal strength and leads to a higher calibration

value at high frequency (more nanometers of deflection are “needed” for 1 V signal).

III. CONCLUSION

We have presented two methods for calibration of the oscillation amplitude in DFSM, one based

on simple calculation of the RMS value of the output of the DSFM–DU uy(t), and the other one

based on analysis of the corresponding spectrum uy(ν) and calculation of the parameters Q, ν0,

eth and en. From the results summarized in tables I and II we conclude that both methods give

consistent results, even though the second method is considerably more precise and robust, in

particular for the case of hard cantilevers, where thermal noise has a much smaller amplitude and

the signal to noise ratio of thermal noise (which in this case is “good” signal) vs. other noise sources

is much lower. The second method has several advantages: first, it explicitly “filters” thermal

noise from other noise sources, since it will only take into account signal that has a Lorentzian

shape, signal not compatible with this shape is taken into account by the constant factor en and

the corresponding signal power is rejected for the calculation of the amplitude sensitivity. Also,

fitting of a spectrum with many data points in order to obtain the four parameters Q, ν0, eth and

en results in effective data averaging, and thus additional improvement of the estimation of the

thermal noise power. And finally, from a strictly theoretical point of view, the first method is not

correct because it is only an approximation valid for high Q factors. In fact, the first method only

“sees” thermal noise in the small bandwidth 1/τ � ν0 around the resonance peak, but not all the

noise under the Lorentz function, and in particular not the noise in the low frequency “tail” (from

DC to ν0−bw/2). This noise is “filtered away” by the DSFM–DU and thus not taken into account;

therefore the first method underestimates noise, and overestimates the amplitude sensitivity (see

equation (2)). Since the relation of thermal noise in the resonance peak to that in the low frequency

“tail” is Q : 1 (see for example [15], section 3) this error is negligible for experiments in air and

vacuum, but is expected to be significant for the low Q factors encountered in liquids. Finally,

we note that determination of the parameters eth, Q and ν0 using the outputs of the DSFM–DU

involves significant improvement of signal because of the internal gains of the DSFM–DU and the

principle of Lock–in detection, which implies an important reduction of bandwidth.
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Appendix A: Processing of thermal noise by a Dynamic Unit

We recall that a typical electronics used for analyzing the dynamics of the cantilever (see figure

1), may be implemented using a Lock–in detection scheme [1, 2, 15]: the input signal ud(t) to

be analyzed is multiplied by two reference signals in quadrature (ar cos(2πνrt) and ar sin(2πνrt))

and then filtered with an appropriate time constant τ . The corresponding output signals of the

DSFM–DU are the in–phase (“phase”) and the out–of–phase (“amplitude”) signals1 ux(t) and

uy(t). Generally in DSFM the reference signal ar cos(2πνrt) is used to excite the cantilever at

resonance, then ux = 0; and changes of ux(t) are proportional to the phase (and thus frequency)

variation of the cantilever oscillation and uy(t) is its oscillation amplitude. For FM–DSFM a

feedback loop (Phase Locked Loop, PLL) is used to track the resonance frequency of the tip–

sample system by changing the excitation (i.e., the reference) frequency, in order to keep ux(t) = 0

(not shown in figure 1). In a recent work [15] we have analyzed in detail how such a DSFM–DU

processes signals in the presence of thermal noise. In particular, it was shown that the DSFM–DU

“frequency–shifts” a signal ud(t) = Re[a(ν)e2πiνt] with

a(ν) = x(ν) + iy(ν) =
a0

1− (ν/ν0)2 + i(ν/ν0)/Q
= a0 g (ν) (A1)

at its input, to the sum and difference frequencies, where g(ν) is the complex “mechanical gain” of

the cantilever. The outputs “phase” and “amplitude” have frequency components at νΣ = ν0 + νr

and ν∆ = ν0 − νr: ux(t) = Re [M(t)] and uy(t) = Im [M(t)] with

M(t) =
a(ν)

2

[
1

1 + i2πνΣτ
e−2πi(t νΣ+1/2) +

1

1 + i2πν∆τ
e+2πi(t ν∆+1/2)

]
(A2)

1 Note that in [15] the nomenclature 〈xq(t)〉τ and 〈yq(t)〉τ was used, that is: ux(t) ≡ 〈xq(t)〉τ and uy(t) ≡ 〈yq(t)〉τ .
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where, the matrix notation in [15], appendix A, has been translated into the more compact complex

notation. When the input signal is not at a well defined frequency, but distributed around a central

frequency ν0, ud(t) =
∫
dν ud(ν)ei2πνt, then the outputs of the DSFM–DU will be:

ux(t) =
1

2
Re [D (t)] and uy(t) =

1

2
Im [D (t)] (A3)

with

D (t) =

∫
dν∆d (νref + ν∆) e2πi ν∆t

1

1 + i2πν∆τ
(A4)

where we have assumed that the term with the sum frequency νΣ (see relation (A2)) can be

neglected because the time constant τ of the DSFM–DU is much larger than the time 1/νΣ (see

also figure 1). The DSFM–DU therefore shifts the spectrum of its input signal ud(t) centered at ν0

to a frequency ν∆ = ν0 − νr of the output signals ux(t) and uy(t). That is, if the power spectrum

of ud(t) has a maximum at ν0, the output signals ux(t) and uy(t) will have maxima at the much

lower frequency ν∆ = ν0 − νr, as stated in the main text of the present work.
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Appendix B: Figures and Tables





X

X

VCO

Filter TC: 

Filter TC: 

< x(t) >

< y(t) >

osci

in

Ref. r

0

Figure 1. Schematic description of a typical Lock–in type DSFM detection unit. The signal to be analyzed

by the DSFM detection is assumed to be centered around some frequency ν0. It enters the detection

unit at the input “in”, is amplified by some factor g that can be generally selected and usually high-pass

filtered (for simplicity the corresponding components are not shown) before it is multiplied with two

reference signals in quadrature at some frequency νref . After this multiplication, the signal is shifted to

the frequencies ν0 − νref and ν0 + νref . The resulting signals are then low-pass filtered to remove the

higher frequency component (ν0 + νref), and brought to the outputs ux(t) and uy(t).
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67.54

5

Figure 2. Power spectra uy(ν) (left curve) and ud(ν) (right curve; this curve is amplified to match the

vertical range of the amplitude data) of the outputs uy(t) of the DFSM-DU unit and the deflection signal

ud(t). Data has been acquired with an audio analyzer (green, small points), directly by the AD–converters

of our control electronics (red, larger points) and with a Lock–In amplifier (blue, the largest points). Left

insets: phase vs. amplitude, (ux(t), uy(t)) data acquired with an audio analyzer. Right inset: deflection

vs. time signal, ud(t). For both insets: dark blue, signals with the laser on; light blue, signals with the

laser off.
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3164

Figure 3. Thermal noise data acquired for a hard cantilever (c = 67 N/m). Left side: power spectra

of the outputs uy(t) of the DFSM–DU unit acquired with different input gains. (a) Power spectra for

gains g = 1, 2, 3, 10, 30 and 100. Note that in this figure a logarithmic representation of the spectra has

been choosen in order to compress the vertical scale to fit all spectra with very different gains. Lower

right graph: Spectrum of the deflection vs. time signal ud(t), measured with a digital oscilloscope. Inset:

phase vs. amplitude scatter plots (ux(t), uy(t)) from the data that was used to compute the spectra uy(ν)

shown left; dark blue: signals with the laser on, light blue: signals with the laser off. The upper three

scatter plots of the graph correspond to (ux(t), uy(t)) data for gains g =100, 30 and 10; the lower three

scatter plots to data for gains g = 3, 2 and 1.
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First Procedure Second Procedure

urms
on urms

off urms
th βrms ν Q eth en βPSD

10 βPSD
N

Units → mV mV mV nm/V Hz V/
√

Hz · 10−6 V/
√

Hz · 10−6 nm/V nm/V

DSP 〈uy(t)〉 5.38 0.72 5.33 9.68 67438.0(±14ppm) 138.6(±0.6%) 1.3(±0.5%) 30(±1.9%) 10.39(±0.8%) 36.7(±0.8%)

LI

ud(t) − − − − 67440(±40ppm) 137(±2.4%) 0.35(±2.4%) 3(±66%) − 38.7(±3.6%)

〈uy(t)〉 − − − − 67440(±30ppm) 139(±1.6%) 1.3(±1.6%) 20(±13%) 10.35(±1.1%) 36.6(±2.4%)

AA

ud(t) 1.77 0.39 1.72 29.9 67441(±160ppm) 140(±6.3%) 0.30(±5%) 5(±12%) − 39(±8%)

〈uy(t)〉 5.40 0.56 5.37 9.61 67440(±5ppm) 137.8(±0.22%) 1.33(±0.2%) 20(±1.5%) 10.12(±0.3%) 35.8(±0.3%)

Table I. Results obtained with the two calibration procedures applied to the measured deflection and

amplitude noise acquired from a cantilever with a force constant c = 1.6 N/m.
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First Procedure Second Procedure

urms
on urms

off urms
th βrms βrms

N ν Q eth βPSD
G βPSD

N

Units → mV mV mV nm/V nm/V Hz V/
√

Hz ·10−9 nm/V nm/V

Osci 〈ud(t)〉 0.77 0.68 0.36 – 20 316066(±7ppm) 588(±1.3%) 8.6(±8%) – 53(±9%)

DSP

〈uy(t)〉G=1 0.314 0.299 0.095 80 30 316060(±120ppm) 580(±22%) 3.2(±18%) 140(±29%) 51(±29%)

〈uy(t)〉G=2 0.33 0.29 0.16 50 40 316050(±73ppm) 570(±13%) 6.5(±11%) 72(±18%) 50(±18%)

〈uy(t)〉G=3 0.36 0.30 0.21 40 40 316050(±59ppm) 570(±13%) 9.4(±9%) 50(±14%) 51(±14%)

〈uy(t)〉G=10 0.73 0.38 0.63 13 44 316054(±6ppm) 570(±1.3%) 33(±1%) 14.1(±1.7%) 50.1(±1.7%)

〈uy(t)〉G=30 1.53 0.60 1.41 5.6 48 316053(±0.4ppm) 576(±0.67%) 74.8(±0.56%) 6.21(±0.9%) 53.2(±0.9%)

〈uy(t)〉G=100 6.24 2.02 5.91 1.33 53 316055(±0.3ppm) 563(±0.6%) 316.2(±0.51%) 1.49(±0.8%) 52.9(±0.8%)

Table II. Results obtained with the two calibration procedures for a hard cantilever (force constant c = 67

N/m).
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[11] JF González Mart́ınez, I Nieto Carvajal, J Abad, and J Colchero. Nanoscale measurement of

the power spectral density of surface roughness: how to solve a difficult experimental challenge.

Nanoscale Research Letters, 7(1):174, 2012.

[12] G Malegori and G Ferrini. Wavelet transforms to probe long- and short-range forces by thermally

excited dynamic force spectroscopy. Nanotechnology, 22(19), MAY 13 2011.

16



[13] Standford Research. Audio analyzer. SR1 200 kHz dual-domain audio analyzer, 2010.

[14] Standford Research. Lock–in. SR830 dual channel 102 kHz digital lock-in amplifier, 2009.
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