Juan ZalvideUniversity of Santiago de Compostela | USC · Department of Physiology
Juan Zalvide
MD, PhD
About
44
Publications
4,609
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,630
Citations
Publications
Publications (44)
Background:
Cavernous cerebral malformations can arise because of mutations in the CCM1, CCM2, or CCM3 genes, and lack of Cdc42 has also been reported to induce these malformations in mice. However, the role of the CCM3 (cerebral cavernous malformation 3)-associated kinases in cavernoma development is not known, and we, therefore, have investigate...
Cerebral cavernous malformations (CCMs) are vascular malformations that can be the result of the deficiency of one of the CCM genes. Their only present treatment is surgical removal, which is not always possible, and an alternative pharmacological strategy to eliminate them is actively sought. We have studied the effect of the lack of one of the CC...
One of the CCM genes, CCM3/PDCD10, binds to the protein kinase family GCKIII, which comprises MST3/STK24, SOK1/STK25, and MST4/STK26. These proteins have been shown to have the same effect as CCM3, both in endothelial cells and in animal models such as zebrafish and are most likely involved in CCM pathogenesis. We describe here an in vitro kinase a...
Aims/hypothesis:
The identification of mediators in the pathogenesis of type 2 diabetes mellitus is essential for the full understanding of this disease. Protein kinases are especially important because of their potential as pharmacological targets. The goal of this study was to investigate whether mammalian sterile-20 3 (MST3/STK24), a stress-reg...
This corrects the article DOI: 10.1038/ncomms15111.
p53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism. Mice with liver-specific p53 deletion develop steatosis and show increased levels of p63. Down-regula...
Supplementary figures, supplementary tables, and supplementary references.
Mutations in cerebral cavernous malformation 3 gene are known to result in development of vascular malformations and have recently been proposed to also give rise to meningiomas. We report in this study that lack of CCM3 unexpectedly impairs the senescence response of cells, and this is related to the inability of CCM3-deficient cells to induce the...
Specific mutations in the CCM3 gene predispose to the development of cerebral cavernous malformations, a special type of vascular lesions. This calls for an elucidation of the precise nature of the CCM3 protein and a deep understanding of its molecular regulation. In this review, we outline our current knowledge of the different CCM3 protein comple...
Cerebral cavernous malformations (CCMs) are vascular lesions that can occur sporadically or as a consequence of inherited loss-of-function mutations, predominantly in the genes CCM1 (KRIT1), CCM2 (MGC4607, OSM, Malcavernin), or CCM3 (PDCD10, TFAR15). Inherited, familial CCM is characterized by the development of multiple lesions throughout a patien...
While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations,
we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of
the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from acci...
Despite intensive study, the mechanisms regulating activation of mTOR and the consequences of that activation in the ischemic heart remain unclear. This is particularly true for the setting of ischemia/reperfusion (I/R) injury. In a mouse model of I/R injury, we observed robust mTOR activation, and its inhibition by rapamycin increased injury. Cons...
Mutations in CCM3/PDCD10 result in cerebral cavernous malformations (CCMs), a major cause of cerebral hemorrhage. Despite intense interest in CCMs, very little is known about the function of CCM3. Here, we report that CCM3 is located on the Golgi apparatus, forming a complex with proteins of the germinal center kinase III (GCKIII) family and GM130,...
A high percentage of tumor cells bear mutations in the Rb tumor suppressor gene. They have high levels of the cdk inhibitor p16(ink4a) and no cyclin D/cdk4-6 complexes. Although p16 is known not to arrest the proliferation of Rb-negative cells, it is not known whether its presence affects how their cycle progresses, how E2F-dependent transcription...
SOK1 is a Ste20 protein kinase of the germinal center kinase (GCK) family that has been shown to be activated by oxidant stress and chemical anoxia, a cell culture model of ischemia. More recently, it has been shown to be localized to the Golgi apparatus, where it functions in a signaling pathway required for cell migration and polarization. Herein...
To investigate the mechanisms by which the hypothalamic peptide GHRH influences cell division, we analyzed its effects on the proliferation of two different cell lines: CHO-4, an ovary-derived cell line, and GH3, a pituitary-derived cell line. We found that GHRH induces the proliferation of pituitary-derived cells but inhibits the proliferation of...
SV40 large T antigen (T-ag) is an oncoprotein that induces transformation of cells through the binding and inactivation of
the p53 tumor suppressor protein and the retinoblastoma family of proteins. This chapter focuses on the interaction of T-ag with
the product of the retinoblastoma susceptibility gene (pRB), and two related proteins, p107 and p1...
Three negative regulators of cell cycle, the related proteins, pRB, p107 and p130, constitute the family of pocket proteins. pRB is a tumor suppressor which has drawn a lot of attention on its family of proteins, with the ensuing intense study of their biology. As a result we have a wealth of information on their biochemistry and biology, ranging f...
The Ste20 (sterile 20) proteins are a large family of serine/threonine kinases. Since their discovery a growing body of evidence has implicated them in the regulation of signaling pathways governing cell growth, cell differentiation cell death and cell volume. Approximately 30 human members have been identified based on the high degree of homology...
Undifferentiated (anaplastic) thyroid carcinoma is a highly aggressive human cancer with very poor prognosis. Although there have been a few studies of candidate treatments, the fact that it is an infrequent tumor makes it very difficult to design clinical trials. A strong association has been observed between undifferentiated thyroid carcinoma and...
We show in this work that the inhibition of Cdk4 (6) in Rb(-/-) 3T3 cells enhances the accumulation of the p27(kip1) cyclin-dependent kinase inhibitor when these cells are induced into quiescence. Two different forms of inhibition of Cdk4 (6), namely overexpression of the Cdk4 (6) inhibitor p16 and overexpression of a dominant negative mutant of Cd...
Independent of its antiapoptotic function, Bcl-2 can, through an undetermined mechanism, retard entry into the cell cycle.
Cell cycle progression requires the phosphorylation by cyclin-dependent kinases (Cdks) of retinoblastoma protein (pRB) family
members to free E2F transcription factors. We have explored whether retarded cycle entry is mediated...
GH-releasing hormone (GHRH) can induce proliferation of somatotroph cells. The pathway involving adenylyl cyclase/cAMP/protein kinase A pathway in its target cells seems to be important for this action, or at least it is deregulated in some somatotroph pituitary adenomas. We studied in this work whether GHRH can also stimulate mitogen-activated pro...
Expression of prothymosin alpha (PTA) has been related to cell proliferation, both normal and pathological. PTA has also been proposed to be a target of the c-myc protooncogene. To study PTA mRNA levels during pathological cell growth, and especially the effect of the activation of specific oncogenes on PTA expression, we have studied its expressio...
Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein...
Little is known about the TGF-beta1 mechanism that promotes thyroid cell growth arrest. We assessed TGF-beta1 effects on Fisher rat thyroid cell line (FRTL-5). This allowed us to study TGF-beta1 action on thyroid cells in various physiological situations such as actively proliferating cells, resting cells stimulated to proliferate by the action of...
Inactivation of the retinoblastoma tumor suppressor protein (pRB) contributes to tumorigenesis in a wide variety of cancers. In contrast, the role of the two pRB-related proteins, p130 and p107, in oncogenic transformation is unclear. The LXCXE domain of simian virus 40 large T antigen (TAg) specifically binds to pRB, p107, and p130. We have previo...
Inactivation of the retinoblastoma tumor suppressor protein (pRB) contributes to tumorigenesis in a wide variety of cancers. In contrast, the role of the two pRB-related proteins, p130 and p107, in oncogenic transformation is unclear. The LXCXE domain of simian virus 40 large T antigen (TAg) specifically binds to pRB, p107, and p130. We have previo...
The amino-terminal domain of SV40 large tumor antigen (TAg) is required for efficient viral DNA replication. However, the biochemical activity associated with this domain has remained obscure. We show here that the amino-terminal domain of TAg shares functional homology with the J-domain of DnaJ/hsp40 molecular chaperones. DnaJ proteins function as...
The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (G0) and to pass through the G1/S transition of the cell cycle. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, however. Here we report that the retinoblastoma tumour-...
We reported that tumor content of prothymosin alpha (ProT alpha) is a proliferation index of human breast tumors that might be used to identify patients at high risk for distant metastasis (Dominguez et al., Eur J Cancer 1993; 29A:893-7). In that study ProT alpha concentrations were measured by a RIA; here we present an alternative nonisotopic assa...
Cyclin E is an important regulator of cell cycle progression that together with cyclin-dependent kinase (cdk) 2 is crucial for the G1/S transition during the mammalian cell cycle. Previously, we showed that severe overexpression of cyclin E protein in tumor cells and tissues results in the appearance of lower molecular weight isoforms of cyclin E,...
p130 and p107 are nuclear phosphoproteins related to the retinoblastoma gene product (pRb). pRb, p107, and p130 each undergo cell cycle-dependent phosphorylation, form complexes with the E2F family of transcription factors, and associate with oncoproteins of DNA tumor viruses, including simian virus 40 (SV40) large T antigen (TAg) and adenovirus El...
Simian virus 40 large T-antigen (TAg) transformation is thought to be mediated, at least in part, by binding to and modulating the function of certain cellular proteins, including the retinoblastoma tumor suppressor gene product, pRb. TAg can disrupt the inhibitory complexes formed by pRb with the oncogenic transcription factor E2F, and this mechan...
The levels of thymosin beta 4 mRNA were studied throughout the cell cycle of NIH 3T3 cells. In serum deprived, quiescent cells, the levels of thymosin beta 4 were undetectable; after serum restoration, the cells were induced to proliferate and we found a pronounced increase in thymosin beta 4 mRNA levels at the G1/S transition. Thymosin beta 4 mRNA...
Prothymosin alpha (ProT) is a polypeptide widely distributed in the organism and expressed by cell types with a high proliferative capacity. The aim of the current work was to investigate if ProT was localized in the progenitor compartment of the adrenal cortex which, following the cell migration theory, corresponds to the zona glomerulosa.
We stud...
Using flow cytometry we observed the effects that different hormonal treatments had on the progression of rat thyroid (FRTL-5) cells through the cell cycle. The absence of hormones or the addition of TSH (6 mU/ml) did not induce DNA synthesis; however, the addition of IGF-I (30 ng/ml) promoted cell proliferation. The number of cells recruited by IG...
In 71 patients with classic invasive ductal carcinomas, levels of prothymosin alpha (PT alpha), as assayed by a radioimmunoassay that detects thymosin alpha 1 (the NH2-terminal fragment of PT alpha), were significantly greater in tumour samples than in normal breast tissue. PT alpha levels were correlated with (a) the number of positive axillary ly...
Prothymosin alpha (PTA) mRNA and histone H4 (H4) mRNA levels were studied in various experimental conditions that affected GH1 pituitary tumor cell proliferation. Cell proliferation and progression through the cell cycle was assessed by counting cells, 3H-thymidine incorporation and flow cytometry. PTA mRNA levels were decreased in a time-dependent...
Prothymosin alpha (PT-alpha) mRNA levels were evaluated at different stages during the cell cycle. NIH 3T3 cells were synchronized: (a) by serum deprivation, (b) by mitotic shake off after nocodazole arrest, and (c) by double thymidine block. Cell synchronism was estimated by flow cytometry. In cells grown in serum-free medium, PT-alpha mRNA levels...