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Transferring Compressive-Sensing-Based
Device-Free Localization Across

Target Diversity
Ju Wang, Xiaojiang Chen, Member, IEEE , Dingyi Fang, Chase Qishi Wu, Zhe Yang, and Tianzhang Xing

Abstract—Device-free localization (DFL) plays an impor-
tant role in many applications, such as wildlife popula-
tion and migration tracking. Most of current DFL systems
leverage the distorted received signal strength (RSS)
changes to localize the target(s). However, they assume
a fixed distribution of the RSS change measurements,
although they are distorted by different types of targets.
It inevitably causes the localization to fail if the targets
for modeling and testing belong to different categories.
This paper presents TLCS—a transferring compressive
sensing based DFL approach—which employs a rigorously
designed transferring function to transfer the distorted
RSS changes across different categories of targets into a
latent feature space, where the distributions of the distorted
RSS change measurements from different categories of
targets are unified. A benefit of this approach is that the
same transferred sensing matrix can be shared by different
categories of targets, leading to a substantial reduction in
the human efforts. The results of experiments illustrate the
efficacy of the TLCS.

Index Terms—Compressive sensing (CS), device-free lo-
calization (DFL), target diversity, transferring.

I. INTRODUCTION

THE past few years have witnessed an increasing interests
in localizing target(s) that do not carry any device, termed

as “device-free localization (DFL)” [1]–[6], in contrast to
device-enabled localization technologies exemplified by vehi-
cle position system [7] and indoor localization [8]. The DFL has
found pervasive use in a variety of applications ranging from
intrusion detection [1], privacy-enhanced monitoring [3], [6]
to wild animal monitoring [4]. Particularly, DFL for multiple
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diverse targets attracts a great deal of attention from zoologists
in need of keeping track of wildlife population and migration
trajectory, and several techniques have been proposed. The
real-time, accurate, and scalable system (RASS) [1] is among
the most widely used methods, since it has an advantage of
sparse triangular deployment, which can be easily scaled and
is cost effective. However, the RASS system fails to localize
multiple targets when the targets fall within the same triangle
[1]. To cope with the multitarget DFL problem, the radio tomo-
graphic imaging (RTI) system [3] is proposed, and it achieves
an improved localization performance even through the wall.
However, it is at the expense of data volume increase and
high energy consumption as it requires any pair of transceivers
to sample the received signal strength (RSS) measurements.
To address the high energy consumption issue in multitarget
DFL, many compressive sensing (CS)-based DFL algorithms,
such as those in [4] and [5], have been proposed to localize
multiple targets accurately by explicating the sparse property
(the multiple targets are sparse in contrast to the number of
grids, which are utilized to represent the locations) and the
advantage of CS in sparse recovery even in using a small
number of RSS measurements.

The key assumption behind these CS-based DFL algorithms
is that the RSS change measurements distorted by different
categories of targets follow the same distribution, which, un-
fortunately, is not always true in practical settings. In fact,
different categories or types of targets (such as tigers and
monkeys in a wild animal monitoring application) are always
of disparate shapes and hence yield different distributions of
their RSS change measurements. Toward this end, this study
conducts preliminary study of the distorted RSS change distri-
butions across diverse targets, as shown in Fig. 1(a).1 For each
category of targets, we collect a set of distorted RSS change
measurements when one target of each category is located at
the same position and on the same link. Let us consider four
targets with different types, i.e., A (H = 0.6 m, W = 0.15 m),
B (H = 0.3 m, W = 0.6 m), C (H = 0.3 m, W = 0.3 m), and
D (H = 0 m, W = 0.15 m), where H and W are the effective
height and width of each target, respectively. The effective
height is equal to the height of the target minus the height of
the transceivers. We vary a target’s effective height and width
by aligning a group of human subjects either half-crouching or
standing straight up in a row. The MICAZ [9] nodes are used

1The purpose of this preliminary study is not to localize the target; thus, the
experimental setup is different from Fig. 2, which shows the deployment view
for the localization.
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Fig. 1. Preliminary study of the distorted RSS change distributions and the localization errors caused by the target diversity. (a) Experiment scene.
(b) Gaussian estimation. (c) Localization of three target categories.

to set up a wireless link with the length of 4 m. All the MICAZ
nodes are placed 0.95 m above the ground. Then, we collect a
set of distorted RSS change measurements when one target of
each category is located at the middle point of the link. Fig. 1(b)
shows that the distributions of the RSS changes distorted by
different targets differ significantly from each other even when
residing at the same location. This observation implies that
the traditional localization models (e.g., trained database [1],
[2], [6], shadowing loss [3], or sensing matrix [4], [5]) are
bound to fail, if we use one category of targets for building the
localization model and another category of targets for testing.
For example, Fig. 1(c)2 shows the localization results of the
localization with CS (LCS) algorithm [4] for targets B, C,
and D solely based on target A’s sensing matrix. Note that, in
many cases, it is prohibitively expensive to collect sufficient
measurements to build a reasonably accurate localization model
for every category of targets. This challenge necessitates a re-
examination of the traditional localization methods for reducing
the human efforts.

In view of the above limitation, this study considers a more
practical method where a small amount of data is collected
for a new category of targets and is then integrated with a
large amount of data previously collected for other categories of
targets. Specifically, two key observations are as follows: 1) The
differences in the distorted RSS changes across different target
categories are reflected by the differences in their distributions,
as shown in Fig. 1(b), and 2) the localization models formulated
for different target categories are related as they all reconstruct
a sparse location vector using the sensing matrix and a few
measurements.

The first observation motivates us to seek for a transferring
function that transfers the measurements of RSS changes across
different categories of targets into a latent feature space, in
which the geometric structure of the changes for each target
category is preserved, while the distributions of the RSS change
measurements from any two target categories are as close as
possible. The second observation motivates us to transfer the
original sensing matrix into the latent space where different
categories of targets can share a unified transferred sensing
matrix to avoid rebuilding a new sensing matrix.

2The deployment setup follows the work in [13], which uses multiple links
to localize the target(s).

Without transferring, it is rather difficult to establish an om-
nipotent trained database, a shadowing loss, or a sensing matrix
to localize disparate categories of targets. Thus, according to
the preceding observations, this paper presents a transferring
CS-based DFL method, referred to as TLCS, to solve the mul-
titarget DFL problem across different target categories without
rebuilding the localization model, thus saving the human efforts.

The contributions of this work are summarized as follows.
1) This paper initiates a research direction toward the DFL

problem across different categories of targets, which is a
generalization of the traditional DFL problem for a single
category of targets.

2) This paper presents a transferring CS-based DFL method
across different categories of targets together with a rig-
orous proof of its feasibility.

3) This paper justifies that a low-cost linear transformation
of RSS changes is sufficient for compensating the differ-
ences across different target categories.

4) This paper performs extensive real-life experiments to
evaluate the performance of TLCS with various param-
eter settings. The results illustrate the effectiveness and
robustness of the TLCS method and transferring scheme.

This paper would also like to point out that the key idea
of TLCS has a wider implication beyond localization across
different target categories for solving the similar problems, such
as across different space and time domains.

Meanwhile, localizing intensive multiple targets who distort
the same link is still an open problem; thus, following most
of the current DFL approaches [1]–[6], TLCS will consider
intensive multiple targets as a “big” one when they distort the
same link. Fortunately, this misidentification event is rare in
practice since the effective location area is limited [4].

1) Assumptions: In general, identifying the distorted RSS
changes for different targets is a great challenge [1]–[6]. Since
the proposed transferring scheme requires a prior knowledge of
target categories, this study assumes that one can identify the
category of targets.

II. RELATED WORK

The basic idea of RSS-based DFL is to explicate the
RSS changes distorted by the target and modeled DFL as a
fingerprint-matching (location matched with the RSS changes)
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problem [1]–[6]. Compared with the similar techniques, such
as video-based DFL [10] and ultrasonic-based DFL [11], one
main advantage of using RSS for DFL is that the RSS read-
ings are readily available in existing wireless infrastructures
and without requiring additional devices (such as camera and
ultrasonic sensor). Several research efforts have been devoted
to the problem of DFL for multiple targets. Zhang et al. [1]
proposed the RASS system to perform DFL. They divided the
tracking field into grids and used the support vector regression
model to localize the object in each area. Wilson and Patwari
[3] proposed the RTI system, which exploits the redundancy
introduced by sensor arrays surrounding the monitored area to
visualize the target induced RSS fluctuations. Since the RSS
signal is sensitive and a slight variation of the environment
will lead to a large localization error, Wang et al. [2] proposed
a robust DFL scheme based on the differential RSS, which
overcomes the negative effect incurred by the environment. In
order to reduce the number of measurements required by DFL
systems while maintaining the high localization accuracy, the
work in [4] and [5] formulated DFL as a sparse signal recon-
struction problem by taking advantage of CS in sparse recovery
to handle the sparsity property of the localization problem. The
preceding efforts have achieved a good performance in solving
the traditional DFL problem.

However, a major drawback of the traditional localization
methods is that they assume a fixed distribution of RSS changes
distorted by different categories of targets, so that the trained
database [1], [2], [6], the shadowing loss [3], or the sensing
matrix [4], [5] modeled on one target category can be used
for others. This drawback poses a fundamental limitation on
the performance of traditional DFL methods, since without
transferring, it is rather difficult to establish an omnipotent
trained database, shadowing loss, or sensing matrix to localize
disparate categories of targets. This study attempts to transfer
the original localization framework to a latent space where
diverse targets can be treated in a unified framework.

III. TRANSFERRING CS-BASED DFL

This section presents the basic idea of the transferring CS-
based DFL algorithm under the LCS [4] framework. This study
chooses LCS as its deployment is sparser than other CS-based
DFL methods [5] and requires fewer measurements.

A. Outline of LCS

Consider K targets randomly located in an isotropic free
space of size a× b, which is equally divided intoN grids of edge
length ω. Divide 2M nodes into two groups, i.e., a TX-node
group {TX1, . . . , TXi, . . . , TXM} and an RX-node group
{RX1, . . . , RXi′ , . . . , RXM}, which are then deployed on
both sides of the monitoring area, respectively. Each node is
placed at the midpoint of a grid edge, as illustrated in Fig. 2.
This study considers a pair of TXi and RXi′ as a link only
if i = i′. Therefore, there is a total of M links. Since the
monitoring area has been divided into N grids, let the locations
of K targets over N grids be denoted by vector

Θ = [θ1, . . . , θj , . . . , θN ]T (1)

Fig. 2. Deployment view for the localization.

where θj ∈ {0, 1}. If there is one target located at grid j, θj =
1; otherwise, θj = 0. The vector Θ has a K-sparse nature [4],
i.e., K � N , and only K elements of Θ are nonzero. Accord-
ing to the CS theory, rather than measuring the N -dimensional
K-sparse signal Θ directly, RSS change measurements YM×1

in an M -dimensional space are collected to recover Θ, i.e.,

YM×1 = AM×N ·ΘN×1 + n (2)

where n is the measurement noise. AM×N is the sensing matrix,
under which the measured signal YM×1 has sparse coefficient
vector Θ. In LCS [4], the sensing matrix is defined as AM×N =
(ri,j), where ri,j ∈ R

M×N is the RSS change distorted by a
target located at grid j and measured by link i in the pre-
deployment phase; the measurements are defined as YM×1 =
(oi,1), where oi,1 ∈ R

M×1 is the RSS change measured by
link i in the localization phase. For the N × 1 sparse location
vector Θ, it has been proved that if A holds, the restricted
isometry property (RIP) and the number of measurements obey
M = O(K log(N/K)) [12]; then, the vector Θ can be exactly
obtained from the �1-minimization with relaxed constraints, i.e.,

min ‖Θ‖�1 subject to ‖AΘ − Y ‖�2 < ε (3)

where ε bounds the amount of noise in the measurements,
and its value depends on the empirical knowledge. Following
Wang et al. [4], [5], this study sets the value of ε as 2 dBm. It
has been proved [13] that the reconstruction error of Θ based on
the value computed from (3) is bounded by c0ε0 + c1ε, where
c0 and c1 are small constants, and ε0 is the reconstruction error
when Y is noiseless.

B. Framework of TLCS

The design of the sensing matrix is important for accurate
recovery of the location vector Θ [4], [5], [12]. For different cat-
egories of targets, the established sensing matrix is completely
different due to the different RSS change ri,j , as illustrated in
Fig. 1(b). This observation implies that the traditional CS-based
localization model is bound to fail, if the categories of targets
used for sensing matrix construction and target localization are
different. In practice, the RSS changes ri,j are affected not only
by the target category but also by the environmental dynamics.
In order to better understand the RSS change distorted by differ-
ent categories of targets rather than the noise, one must take into
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account the variability of the environment. Thus, in this work,
we collect Q continuous ri,j,q , 1 ≤ q ≤ Q, samples, which are
denoted by Ri,j = {ri,j,q}, and then have the following 3-D
sensing matrix:

AM×N×Q =

⎡
⎢⎣

R1,1 · · · R1,N

... Ri,j

...
RM,1 · · · RM,N

⎤
⎥⎦ (4)

and collect Q continuous oi,1,q, 1 ≤ q ≤ Q, samples, which are
denoted by Oi = {oi,1,q}, and then have the 2-D measurement

YM×1×Q = [O1, . . . , Oi, . . . , OM ]. (5)

Consider that there are T different categories of targets
(each category has multiple targets) sparsely located in the
monitoring area, and one has the sensing matrix AM×N×Q for
the lth category of targets. The goal is to accurately localize all
the T categories of targets under the transferred sensing matrix
for the lth category of targets. One intuitive solution would be to
find a transferring function that makes the distributions of Ri,j

across different categories of targets as close as possible. The
detailed discussion on how to find such functions is shown in
Section IV. This section focuses on the TLCS framework under
the condition of a known transferring function, consisting of
two steps as follows.

In the predeployment phase, we are transferring the sensing
matrix. Within the effective localization area [4] of link i(1 ≤
i ≤ M), we randomly choose a grid j(1 ≤ j ≤ N). From each
of the T categories, we choose one target, and thus, we have T
different targets. Let each of the T targets stand at the grid j,
respectively, and link i measures a set of RSS changes {R1

i,j ,

. . . , RT
i,j}. Based on this set of RSS changes, one can find a set

of corresponding transferring functions {φ1 . . . , φT }. Then, the
transferred sensing matrix of the lth category is given by

AM×N×Q = (φl(Ri,j)) , 1 ≤ l ≤ T. (6)

In the localization phase, we are transferring the measure-
ments. Suppose that one can identify the kth (1 ≤ k ≤ T )
category of targets located in the localization area, and the
transferred measurements are given by

YM×1×Q = (φk(Oi)) , 1 ≤ k ≤ T. (7)

After the preceding two transferring phases, the distributions
of RSS change measurements across different categories of
targets have been made as close as possible. In order to acquire
the real RSS change in a noisy environment, this study adopts
a traditional method, i.e., the real RSS change is the most
frequent measured value, i.e.,

ri,j = arg max
1≤q≤Q

p (φ(ri,j,q)) (8)

where p(·) is the probability acquired by the histogram or
the Gaussian estimation. Another benefit of this step is that it
reduces the 3-D sensing matrix AM×N×Q and the 2-D measure-
ments YM×1×Q into a lower dimensional space, in which one
can easily apply the CS theory to reconstruct the location vector

Θ accurately, i.e., localize all the targets of the kth category
accurately, while only using the lth category target’s sensing
matrix.

C. Key Issues

There are two key issues in the design of TLCS as follows.
• Key issue 1: How to find the transferring functions that

transfer the distributions of RSS changes across different
categories of targets as close as possible.

• Key issue 2: Since the transferring functions are obtained
by randomly choosing a location in the monitoring area,
would such transferring functions work out for all the
locations in the area.

IV. TRANSFERRING

A. Transferring Problem Formulation

Suppose that there are T categories of targets with disparate
shapes denoted by set H = {h1, h2, . . . , hT }. Let Rhl = {rhl

1 ,

rhl
2 , . . . , rhl

nl
}, 1 ≤ hl ≤ hT , and Rhk = {rhk

1 , rhk
2 , . . . , rhk

nk
},

1 ≤ hk ≤ hT , be two sets of RSS changes that are distorted
by a target of the lth category (with the shape of hl and nl

measurements) and a target of the kth category (with the shape
of hk and nk measurements) residing at the same location on
the same link, respectively. Let n =

∑T
l=1 nl. Here, the distri-

butions of Rhl and Rhk are different due to the different RSS
changes distorted by different categories (shapes) of targets.
The goal is to find transferring functions φl and φk, with which
one can transfer Rhl and Rhk into a latent feature space, where
the geometric structure of the RSS changes in each category
of targets is preserved, while the RSS distributions of any two
categories of targets are made as close as possible.

Obviously, one fundamental question is how to measure
the difference between the distributions of Rhl and Rhk . One
option would be to use the Kullback–Leibler divergence, as the
work in [14] did. However, the RSS changes are usually high
dimensional, and it is hard to precisely model the distributions
over the two different sets of RSS changes. Hence, this study
proposes to use the maximum mean discrepancy (MMD) [15],
which can directly measure the distribution distance without
density estimation, to quantify the difference in distributions
based on the reproducing kernel Hilbert space distance.

Definition 1: Let F be a class of functions f : X → R. Let
P and Q be probability distributions defined on a domain X,
and let X = (x1, . . . , xm) and Z = (z1 . . . , zn) be independent
identically distributed samples drawn from distributions P and
Q, respectively. Then, the MMD (empirical estimation) is

MMD[F , X, Z] = sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(zi)

)
(9)

where sup is the supremum of a given set.
It follows that the distance of the RSS change distributions

between the lth and kth categories of targets is calculated as

dist(Rhl , Rhk) =

∥∥∥∥∥ 1

nl

nl∑
i=1

φl

(
rhl
i

)
− 1

nk

nk∑
i=1

φk

(
rhk
i

)∥∥∥∥∥
2

H

(10)
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which can be simplified as

dist(Rhl , Rhk) = tr
(
Φhl,hkShl,hk(Φhl,hk)

T
)

= tr(Shl,hkΩhl,hk) (11)

where Φhl,hk = [φl(r
hl
1 ), . . . , φl(r

hl
nl
), φk(r

hk
1 ), . . . , φk(r

hk
nk
)],

Ωhl,hk = (Φhl,hk)TΦhl,hk , and Shl,hk ∈ R
(nl+nk)×(nl+nk) is

defined as

Shl,hk

ij =

⎧⎨
⎩

−1/n2
l , if ri, rj ∈ Rhl

−1/n2
k, if ri, rj ∈ Rhk

−1/(nlnk), otherwise.
(12)

For all RSS changes of T categories of targets, we summate the
distances between any two categories as follows:∑

hl,hk

dist(Rhl , Rhk) =
∑
hl,hk

tr
(
Φhl,hkShl,hk(Φhl,hk)

T
)

= tr(ΦSΦT ) = tr(SΩ) (13)

where Φ=[φ1(r
h1
1 ), . . . , φ1(r

h1
nl
), . . . , φT (r

hT
1 ), . . . , φT (r

hT
nk

)],
Ω = ΦTΦ, and S ∈ R

n×n is defined as

Sij =

{
(T − 1)/n2

k, if ri, rj ∈ Rhk

−1/nlnk, if ri ∈ Rhl and rj ∈ Rhk .
(14)

In addition, we have

Ω =

⎡
⎢⎢⎣

(
φ1

(
rh1
1

))2

· · · φ1

(
rh1
1

)
φT

(
rhT
nT

)
...

...
...

φT

(
rhT
nT

)
φ1

(
rh1
1

)
· · ·

(
φT

(
rhT
nT

))2

⎤
⎥⎥⎦ .

(15)

Note that the smaller the value of (13) is, the closer the
distributions of the RSS changes between any two target cat-
egories are. Thus, the goal can be formulated as the following
optimization problem:

min
Ω

tr(SΩ), s.t. tr(Ω) = C (16)

where C is any positive constant, and tr(Ω) = C is introduced
to avoid a trivial solution. Note that it does not require the
matrix Ω to be universal. The universal matrix Ω guarantees
that MMD [F ,X ,Z] = 0, if and only if X = Z. However, the
goal is to find a function such that X and Z are close, but not
necessarily the same. Obviously, S and Ω are n× n symmetric
matrices. S can be expressed as S = PΛPT =

∑n
t=1 λtvtv

T
t ,

where Λ = diag(λ1, . . . , λn), 0≤λ1≤· · · ≤ λn, are the eigen-
values, and |vt| = 1 are the eigenvectors. Following Zhu et al.
[16], we aim to obtain matrix Ω in the form of

Ω =
n∑

t=1

σtvtv
T
t , σt > σt+1; t = 1, 2, . . . (17)

where vt is the eigenvector of S, corresponding to the tth
smallest eigenvalue λt. Thus, (16) is transformed into

min
Ω

tr(SΩ) = min
Γ

tr(PΛPTPΓPT )

= min
Γ

tr(ΛΓ) = min
σt

n∑
t=1

λtσt

s.t. 0 ≤ σt ≤ 1,
n∑

t=1

σt = C (18)

where Γ = diag(σ1, . . . , σn) is the linear programming solu-
tion of (18), which can be obtained by many existing effective
methods such as MATLAB toolbox (R2011a).

B. Finding the Transferring Function

Now, the following problem still remains: how to find an
appropriate transferring function φl(·) in (13) when we get
matrix Ω by (17). This is a challenging problem because of
the following: 1) it is difficult to model the correlation between
the shape of a target and the distorted RSS changes, which is
still an open problem, and 2) it is difficult to find a unique
mapping function from a high-dimensional matrix Ω to a low-
dimensional polynomial product due to the multiplicity of the
inner product. This study attempts to construct an approximate
transferring function based on extensive experiments. Since the
RSS changes are discrete points, there must exist a differential.
According to Taylor’s formula, it is well known that φl(r

hl
i ) can

be approximated as

φl

(
rhl
i

)
≈ ahl

0 + ahl
1 rhl

i + · · ·+ ahl
m

(
rhl
i

)m

(19)

where ahl
0 = φl(0), and ahl

m = φ
(m)
l (0)/m!, m = 1, 2, . . ..

Let us examine (15) more closely. Each element of (15) is a
product of two polynomials, and the polynomial is formulated
as (19). Obviously, Ω is an n× n symmetric matrix with
n(n+ 1)/2 different elements, making it possible to construct
n(n+ 1)/2 equations. There is a total of (m+ 1)T unknown
coefficients in (15) since there are m+ 1 unknowns for the lth
category of targets in (19). Usually, the number T of targets is
smaller than the total number n of RSS changes. This indicates
that, by choosing an appropriate order m of (19) (such that
(m+ 1)T ≤ n(n+ 1)/2), eventually there would be enough
constraints to make every transferring function φl(·), 1 ≤ l ≤
T , uniquely solvable. In fact, some of the elements are close
but not exactly equal since none of any pair distributions would
be identical. Obviously, these are a set of simultaneous multi-
variate quadratic equations since the order of all the unknown
coefficients in (19) is one. To the best of our knowledge, there
exists neither an analytical solution nor any prior work that an-
alyzes them. However, in most practical scenarios, it is possible
to determine whether or not the equations are uniquely solvable
by checking if the Jacobian of the equations has a full rank
(equal to the number of variables) when formulated in the form
of Jy = z, where J is the Jacobian, y is a vector containing all
the unknown parameters, and z is a constant vector. As long
as the equations are uniquely solvable, this problem can be
formulated as a quadratic programming problem [17] so that
all the m+ 1 coefficients of the transferring function φl(·) can
be acquired. The quadratic programming problem can be solved
by many existing algorithms, such as the work in [17], which
find the best least squares fit with a relatively low complexity.

It is difficult to determine an appropriate order m of func-
tion φl(·) through theoretical analysis due to the challenges
described earlier. Nevertheless, this paper shows that the order
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Fig. 3. Each point in each scatterplot represents a pair of RSS change values from two categories of targets.

m = 1 achieves good performance in most cases based on
extensive empirical studies. Based on a thorough investigation
into the impact of different target shapes on the distorted
RSS change measurements, we are able to determine the most
suitable order m of the transferring function. It is generally in-
feasible to exhaust all possible cases with limited experiments.
However, by carefully choosing three key parameters, we are
able to ensure the comprehensiveness of our experimental
studies as described in the following.

1) Link Length: The basic idea of the DFL is to use the
RSS changes to localize the target [1]–[6]. The longer the link
length is, the weaker the distorted RSS changes are [4]. Since
the weak RSS changes may be absorbed by the noise, most of
the existing DFL work [1]–[6] limit the link length within 10 m.
Following that, we set the link length to be b = 4 m, and other
link lengths are tested in Section V.

2) Target Shape: According to the diffraction theory [18],
when the target blocks the propagation path, we can model the
signal propagation using the knife-edge diffraction model. If a
target blocks the first ellipsoidal Fresnel zone, there will be a
great amount of signal attenuation [18]. Since the cross section
of the blocked ellipsoidal Fresnel zone is a circle, as illustrated
in Fig. 2, the height or the width of a target has similar
impact on the RSS changes. Moreover, a target’s thickness is
equivalent to its width when the target turns 90◦ from facing the
transceiver. Hence, we only need to test the changes of height
in the first Fresnel zone. The benefit of changing the effective
height lies in the fact that we can easily change the shape of a
target to ensure the comprehensiveness of our experiments. The
maximum radius of the first Fresnel zone in this experiment (on
a link length of 4 m) is 0.7 m. We arrange nine human subjects
with an effective height of 0.9, 0.75, 0.6, 0.3, 0.15, 0, −0.15,
and −0.3 m, respectively, to act as nine different categories of

targets (we change the effective height by asking the human
subjects to half-crouch).

3) Test Locations: Since not all the locations where the
target stands would distort RSS changes, the test locations must
fall within the effective location area [4]. In this paper, we
choose five test locations along the line of a single link within
the effective localization area. The five test points are dtx = 1,
1.5, 2, 2.5, and 3 m, respectively; and dtx is the distance from
a test point to the TX node, as illustrated in Fig. 2.

Based on this experiment, the following three observations
indicate that the order m = 1, i.e., a low-cost linear function, is
a reasonable choice.

1) Most pairs of RSS changes across different categories of
targets show a strong linear correlation. Since there are
nine categories of targets with disparate shapes, we have
a total of 36 pairs of combinations between any two cat-
egories. Fig. 3 plots the RSS changes for each pair of the
two categories; as we can see, it shows a strong linear cor-
relation. For example, the scatterplot in row 3, column 2
compares the RSS change values of the two categories
of targets with an effective height of 0 and 0.75 m,
respectively.

2) The linear function significantly reduces the differences
in distributions of RSS changes across different cate-
gories of targets. Note that the goal is to minimize the
MMD across different categories of targets. Fig. 4 shows
the impact of the order m on the MMD. The MMD
declines drastically when the order m increases from 0 to
1. However, the MMD is not sensitive to larger values of
m. For example, the decrease in MMD is merely 6.25%
as m increases from 1 to 2 and remains almost unchanged
for m ≥ 3.
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Fig. 4. Impact of the order m.

Fig. 5. Impact of the effective height.

3) The error caused by the linear function is absorbed by
the noise. Fig. 5 shows the impact of the effective height
on the standard deviation of the RSS changes. We observe
that the maximum standard deviation is under 2 dBm, i.e.,
the noise is bounded under 2 dBm. The MMD decreases
to 0.8 dBm when the order m ≥ 2. This reduction is
trivial and is already mixed into the noise.

C. Compensation With the KDE

Based on the transferring function described above, Fig. 6 de-
picts the transferring performance across four targets described
in Fig. 1(b). The mean values of these four distributions are sim-
ilar, but the variances are quite different. The discrepancy in the
variances is mainly caused by the noise of individual samples,
such as the absorption differences and variations over time. In
order to mitigate such differences in distributions, this study
considers kernel density estimation (KDE) for compensation as
it takes the noisiness of individual samples into account. The
kernel density estimator p̂R(·) [19] estimates the probability
density function pR(·) as follows:

p̂R(r) =
1

LR ·W

LR∑
i=1

K

(
r − ri
W

)
(20)

Fig. 6. Gaussian estimation.

Fig. 7. Kernel estimation.

where ri is an observed sample of random variable R, LR is
the length of variable R, W is the kernel width, and K(·) is the
kernel function. This study uses the Gaussian kernel as the
kernel function since most of the RSS changes fit the log-
normal distribution [2], [4], as shown in Fig. 1(b).

Fig. 7 illustrates the effectiveness of using KDE to compen-
sate different distributions across different categories of targets.
A kernel width of 4 dBm is used in this experiment, whereas
the best kernel width is tested in Section V.

D. Performance Analysis

This subsection provides a theoretical proof to address the
second key issue and show that our transferring scheme works
well for all the grids of the monitoring area.

Theorem 1: If the transferring function is linear, most of the
greedy CS recovery (GR) algorithms reconstruct Θ correctly,
i.e., output Θ̂ = Θ.

Proof: The key idea of the GR algorithms is to minimize
the term ‖Y −AΘ‖22 with respect to Θ[20]. For TLCS, the GR
can be written as

min ‖φ(Y )− φ(A)Θ‖22 (21)

where φ(Y ) and φ(A) are the shorthands of (7) and (6),
respectively. Since the transferring function φ(·) is linear, (21)
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can be rewritten as

min ‖a(Y −AΘ + b)‖22 = min
∥∥Y −A(Θ −A−1b)

∥∥2
2

(22)

where a and b are real numbers. We consider proof by induc-
tion. We first prove that the GR generates the correct prediction
at the first iteration. Note that, if there are targets on grid i,
there must exist zi > 0, ‖zi −Θ‖22 = ‖Θ − zi‖22 ≤ ‖Θ‖22 − 1.
Based on [4], sensing matrix A satisfies RIP with δ < 1/K, and
we have

‖φ(Y )− φ(A)Θ‖22
=

∥∥A (
zi − (Θ −A−1b)

)∥∥2
2

(23)

≤ (1 + δ)
∥∥zi − (Θ −A−1b)

∥∥2
2

(24)

≤ (1 + δ)
(
‖Θ −A−1b‖22 − 1

)
. (25)

In addition, note that, if there is no target on grid j but the
GR chooses zj > 0, ‖zj −Θ‖22 = ‖Θ − zj‖22 ≥ ‖Θ‖22 + 1, we
have

‖φ(Y )− φ(A)Θ‖22
=

∥∥A (
zj − (Θ −A−1b)

)∥∥2
2

(26)

≥ (1− δ)
∥∥zj − (Θ −A−1b)

∥∥2
2

(27)

≥ (1− δ)
(
‖Θ −A−1b‖22 + 1

)
. (28)

Since ‖Θ‖22 ≥ K and δ < 1/K, we have

∥∥A (
zi − (Θ −A−1b)

)∥∥2
2

‖A(zj − (Θ −A−1b))‖22
≤

(1 + δ)
(
‖Θ−A−1b‖22 − 1

)
(1− δ)

(
‖Θ−A−1b‖22 + 1

)<1.

(29)

Thus, there exists i with Θi ≥ 1 for all j with Θj = 0 such
that ‖A(zi−(Θ−A−1b))‖22 < ‖A(zj − (Θ −A−1b))‖22. This
indicates that GR generates the correct prediction at the first
iteration.

Let us suppose that GR generates the correct prediction at
the first u iterations. To prove the correctness of the (u+ 1)th
iteration, a key observation is that, given δ < 1/K, we know
δ < 1/(K − u) for all u ≥ 0. At the (u+ 1)th iteration, we
define a 1×N vector Θ′ such that Θ′

i = Θi, if there are targets
on grid i and zi has not yet been identified at the first u
iterations, and Θ′

i = 0. We have ‖Θ′ − zi‖22 ≤ ‖Θ′‖22 − 1, iff
Θ′

i > 0. If no target is located at grid j, we have ‖Θ′ − zj‖22 ≥
‖Θ′‖22 + 1. Similar to the derivations in (25) and (28), we have

∥∥A(z′i−(Θ−A−1b)
)∥∥2

2∥∥A(z′j−(Θ −A−1b)
)∥∥2

2

≤
(1+δ)

(
‖Θ′ −A−1b‖22 − 1

)
(1− δ)

(
‖Θ′−A−1b‖22+1

) < 1.

(30)

Thus, GR generates the correct prediction at the (u+ 1)th
iteration. In summary, GR accurately predicts the locations of
all the targets as long as the transferring function is linear. �

This study applies the greedy matching pursuit (GMP) [21]
to recover the sparse location vector, since GMP recovers
signals without requiring the sparsity level, i.e., the number K
of targets is generally unknown in practical applications.

Fig. 8. Experiment scene.

V. DEPLOYMENT AND RESULTS

A. Experimental Setup

We conduct extensive experiments in an open space of size
4 m × 4 m, as depicted in Fig. 8. Based on the work in [4], we
set the grid length ω = 0.5 m. We use the MICAZ [9] nodes
as the transceivers, which exhibit a relatively good propagation
performance when they are 0.95 m above the ground based
on our empirical studies, and the similar setup also can be
seen in [2]–[5]. In each localization experiment, every link
records 30 measurements. We attempt to localize three cate-
gories of targets (“category 1”{A, B}, “category 2”{C, D}, and
“category 3”{E}) under the condition of only knowing the
sensing matrix of category 3. We arrange five human subjects
that act as the targets. As we described before that the height
or the width of a target has similar impact on the RSS changes,
thus, we only consider the differences in height. The targets A,
B, C, D, and E have different effective heights of 0.3, 0.3, 0.6,
0.6, and 0.8 m, respectively. Unlike most of the existing work
[1]–[6], which assume that the targets are located at the center
of a grid, the targets in our experiment are randomly positioned
in the grid, which reflects a more realistic scenario.

Comparisons: We implement two state-of-the-art algo-
rithms for comparison, i.e., the RASS [1] and RTI [3] al-
gorithms. In order to show the improvement in localization
accuracy made possible by our transferring scheme and better
illustrate the effectiveness of the TLCS algorithm, we add our
transferring scheme into the RASS and RTI algorithms and
refer to them as RTI w/Trans. and RASS w/Trans., respectively.

We evaluate the performance by adjusting the following
parameters: 1) M : the number of links; 2) K: the number of
targets; 3) m: the order of transferring function φ; 4) W : the
kernel width; 5) C: the constant in (16); 6) b: the length of
link; and 7) As: the size of localization area. Unless mentioned
otherwise, the default values in Table I are used.

B. Localization Accuracy and Energy Consumption

Here, we attempt to localize the two categories of targets
{A, B} and {C, D}, respectively, using the sensing matrix of
category 3. Each category of targets is tested in 15 runs of
localization.
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TABLE I
DEFAULT VALUES OF EXPERIMENTAL PARAMETERS

Fig. 9. Impact of link count.

First, we evaluate the feasibility of a sparser deployment.
We decrease the number M of links from 8 to 1, by randomly
removing the links deployed on two sides of the monitoring
area while other parameters use the default values. As shown
in Fig. 9, compared with the default deployment scenario, the
result indicates that TLCS supports a sparser deployment with
a particular number of targets, e.g., the localization error of
TLCS still maintains a smaller value when M = 4 < 8, as it
still satisfies M = 4 > K(log(N/K)) = 3.01 according to the
CS theory. RTI w/Trans. and RASS w/Trans. do not perform
as well because they require a denser deployment to collect
sufficient measurements to localize the target accurately [1],
[3]. The reason that TLCS outperforms RTI w/o Trans. and
RASS w/o Trans. will be explained in Fig. 11.

This experiment investigates how many targets can be accu-
rately localized by TLCS. We increase the number K of targets
from 1 to 8 (all the targets are from category 2), whereas other
parameters use the default values, except for the number of
links, which is set to be 5. As shown in Fig. 10, the maximum
number of targets that can be accurately localized by TLCS
depends on the number of links, i.e., under the restriction of
M > K(log(N/K)). For example, when K > 5, the number
of links required is K(log(N/K)) ≈ 5.6, which is larger than
what we have deployed in this scenario. For the similar reason,
TLCS outperforms the RTI w/Trans., RTI w/o Trans., RASS
w/Trans., and RASS w/o Trans. algorithms.

Fig. 11 shows the cumulative distribution function (CDF)
of localization errors. TLCS performs the best with 50th and
80th percentile errors of 0.5 and 0.7 m, respectively, whereas
RTI w/o Trans. and RASS w/o Trans. yield a large error with

Fig. 10. Impact of target count.

Fig. 11. Localization performance.

values of 1.8 m (80th percentile) and 2.2 m (80th percentile),
respectively. The poor performance of RTI w/o Trans. and
RASS w/o Trans. is mainly due to the fact that the trained
database of RASS and the shadowing loss of RTI are quite
different across all the three categories of targets. Fig. 11 also
shows that the performance of the RTI and RASS algorithms is
significantly improved by our transferring scheme, for example,
the 80th percentile errors of RTI w/Trans. and RASS w/Trans.
decrease from 2 and 2.5 m to 0.9 and 1.2 m, respectively.

Here, we compare the energy consumption among TLCS,
RASS, and RTI under a given localization accuracy. For a
fair comparison, we add the transferring scheme into RASS
and RTI, i.e., compare TLCS with RTI w/Trans. and RASS
w/Trans. For each method, we increase the number of links
until the localization accuracy reaches the given value and
then calculate the energy consumption. Based on the first-order
radio model [22], the energy consumption for each link is
calculated as Eradio = elBb2 + 2BEelc, where B is the size
of a packet in bits, b is the link length, el = 100 pJ/bit/m2,
and Eelc = 50 nJ/bit. In our experiments, B = 320 bit, b =
4 m, and we repeatedly send 30 packets each time. Thus, the
energy consumption of a method with the number M of links
is M × 0.96 mJ. Fig. 12 shows the energy consumptions under
different average localization errors. To achieve a given accu-
racy, TLCS consumes the least energy, whereas RTI w/Trans.
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Fig. 12. Comparison of energy consumptions.

Fig. 13. Impact of function order.

and RASS w/Trans. consume more energy. The reason is that
TLCS employs CS to localize targets accurately even with just a
small number of measurements, whereas RTI and RASS require
more measurements for an accurate localization. Fig. 12 also
shows that the energy consumption increases as the localization
error decreases. The reason is that the more links there is, the
less the localization error is [1], [4], as shown in Fig. 9.

C. Impact of the Parameters in a Transferring Function

We discuss the most critical parameters used in our trans-
ferring scheme, i.e., the order m, the kernel width W , and the
constant C in (16). Each category of targets is tested in 15
runs of localization. Fig. 13 shows the localization errors under
different order m. For all these three methods, the localization
accuracy does not change significantly when the order m is
larger than 1. This indicates that the order m = 1 is capable of
compensating the differences across different targets. Fig. 14
shows the localization errors under different kernel widths.
A kernel width of 3.5 dBm provides the best localization
performance in this experiment. Not surprisingly, the effect of
kernel estimation is also significant for different categories of
targets, as their deviation is large, as shown in Fig. 5. A strategy
of doing more “smoothing” than that required for single-target
localization is more effective. Fig. 15 shows the localization
errors under different constant C. The localization error of all
methods does not vary significantly as C only restricts the
transferring space size, and it does not change the “matching”
between the sensing matrix and the measurements.

Fig. 14. Impact of kernel width.

Fig. 15. Impact of constant C.

Fig. 16. Performance of new target.

D. Robustness of TLCS

Here, we evaluate the robustness of the TLCS algorithm
through the following two experiments.

This experiment investigates the performance of TLCS when
it localizes a new category of targets that are not used for mod-
eling the transferring function. A new target category means
a new MMD across the existing categories of targets; thus,
we only need to investigate how does the difference of MMD
among targets affect the localization performance. To answer
these questions, we purposefully add white Gaussian noise to
the RSS changes of category 1 (targets A and B) after the trans-
ferring. Fig. 16 shows the average localization errors under dif-
ferent values of MMD. We observe that TLCS outperforms the
other two schemes, no matter how the MMD is scaled. An inter-
esting observation is that when the MMD is larger than 4 dBm,
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Fig. 17. Performance of other link lengths.

the localization error of TLCS increases linearly, whereas for
the other two algorithms, the error remains almost at a large
constant value. According to [23], if the measurement error
or noise is power limited to ε, the reconstructed signal Θ̂
is guaranteed to be within δε of the original signal Θ̂, i.e.,
‖Θ̂ −Θ‖�2 ≤ δε, where the constant δ depends only on the
measurement parameters, not on the level of noise. Since
the MMD quantifies the bound of the measurement noise,
the localization error of TLCS increases linearly as the MMD
varies linearly.

Since all the experiments we conduct above are under the
link length of b = 4 m, the localization area is limited to 4 m ×
4 m. To investigate the performance of TLCS and our trans-
ferring scheme under other link lengths and other area sizes,
we conduct additional experiments, with a link length of b = 3
m (area size of 3 m × 3 m), 4 m (area size of 4 m × 4 m),
5 m (area size of 5 m × 5 m), 6 m (area size of 6 m × 6 m), 7 m
(area size of 7 m × 7 m), and 8 m (area size of 8 m × 8 m), re-
spectively. In each experiment, we use the same implementation
and deployment settings as described earlier, except for the link
length. Since these experiments require a significant amount
of human efforts, we only randomly test 20 grids in each
experiment due to the time and resource constraints. Fig. 17
shows the average localization errors under six different link
lengths, and we observe that all the three localization methods
achieve a stable accuracy performance and that TLCS performs
the best. These experimental results indicate that TLCS and our
transferring scheme perform well under different link lengths.

E. Reducing the Human Efforts With Transferring

In order to examine how much human effort can be reduced
by our transferring scheme, we compare the time–cost of the
predeployment in the conditions with and without our trans-
ferring scheme, respectively. Traditionally, Rij of the sensing
matrix [in the form of (4)] is acquired manually, i.e., one target
stands at the grid j and the link i records the corresponding Q
continuous RSS change measurements. It takes a lot of human
hours to build the sensing matrix this way. Fig. 18 shows the
time–cost under different categories of targets in a 10 m × 10 m
area. The area is divided into grids with the edge length of
0.5 m, and we collect 30 continuous measurements at each grid,
and each transceiver transmits one packet every second. Then,
the time–cost for one category of targets to establish the sensing

Fig. 18. Time–cost under different categories.

Fig. 19. Time–cost under different sizes of area.

matrix is at least (30× (10/0.5)2)/3600 ≈ 3.3 man hours. For
T categories of targets, the time–cost is at least 3.3 T man hours
without our transferring scheme. In contrast, there is almost no
extra time–cost (still about 3.3 h) with our transferring scheme.
Note that the maximum time–cost (when T = 100) to calculate
the transferring function and the transferred sensing matrix is
only 0.5 h (we test it using MATLAB 7.0 on an Acer laptop with
2.0-GHz central processing unit and 4-GB memory), which can
be ignored compared with 340 h when T = 100. Moreover, we
also compare the time–cost under different sizes of areas in
Fig. 19, which shows that the time–cost generally increases as
the area scales up, whereas our transferring scheme is still able
to reduce a great number of human hours.

F. Scalability of TLCS

As mentioned in Section IV, most of the existing DFL
methods [1]–[5] limit the link length within 10 m, which leads
to a limited monitoring area. In recent years, many solutions
[1], [2], [4], [5] have been developed to deal with this limitation.
The basic idea is to divide a large area into a small number of
subareas and then apply the localization method, such as TLCS,
in each subarea. Since TLCS is under the framework of LCS
[4] method, we use the scalable approach introduced in LCS.
In order to evaluate the scalability of TLCS, we increase the
size of the localization area from 4 m × 4 m to 8 m × 8 m
and the number K of targets from 5 to 30. For simplicity, we
still set the size of each subarea to be 4 m × 4 m. All the
K targets are from category 2, whereas the sensing matrix of
category 3 is used for localization. Fig. 20 shows the average
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Fig. 20. Scalability of TLCS.

localization errors under different sizes of areas and different
numbers of targets. It illustrates that the maximum area where
TLCS is applicable relies on the maximum number of targets.
For example, when K = 15, the localization error increases
drastically in the 4 m × 4 m area, whereas the error is still
small in the 8 m × 8 m area. The reason is that the maximum
number of targets that can be precisely localized in each subarea
is less than 10, since K log(N/K) ≈ 8.1 > 8 when K = 10
and N = (4/0.5)2. Therefore, the maximum numbers of targets
that can be precisely localized in the 4 m × 4 m and 8 m × 8 m
areas are 10 (< K = 15) and 20 (> K = 15), respectively.
Thus, the localization error is large in the 4 m × 4 m area,
whereas the error is small in the 8 m × 8 m area.

Since these experimental results show that the maximum area
where TLCS is applicable relies on the maximum number of
targets, here, we provide some analyses and discussions about
the scalability of TLCS. Based on the CS theory [12] and the
experimental results shown in Fig. 10, there exists a maximum
number Kmax of targets that can be precisely localized in each
subarea. Considering a large monitoring area, which is divided
into ξ subareas, the maximum number of targets randomly
located in the area that can be precisely localized is less than
ξKmax. If the maximum number of targets in the monitoring
area is less than ξKmax, TLCS can scale to any area size with
high localization accuracy. Otherwise, the localization error has
the following two characteristics: 1) If the area size is fixed,
more targets lead to higher localization errors, and 2) if the
number K of targets is fixed, larger area sizes lead to lower
localization errors, as illustrated in Fig. 20.

VI. DISCUSSION

A. Solutions for the Assumption

Since the proposed TLCS scheme requires a prior knowledge
of target categories, this study assumes that one can identify
the category for any target located in the monitoring area.
According to the diffraction theory [18], the distorted RSS
change measurement r can be expressed as r = f(H, dtx, drx),
where f(·) is the Fresnel integral function; H is the effective
height of target; and dtx and drx are the distances from the
target to the TX and RX nodes, respectively. Based on the
measurement r, it is a challenge to identify the target category,
i.e., determine the effective height H , since we do not know
the location of the target, i.e., the distances dtx and drx. For

example, a large RSS change measurement may be caused by
a small target that is close to the transceiver or a large target
that is far away from the transceiver; thus, it is a challenge to
determine whether the target is small or large. One approach
to this problem is to construct a “DFL profile” for each target
category that characterizes the targets in the same category. For
example, Xi et al. [24] constructed a channel state information
(CSI) profile model for different categories of targets and then
determined the sizes of different targets by analyzing the CSI
characteristics.

B. Impact of the Environment and the Assumption

In real-world applications, the environment may have some
negative effects on the identification of the target category. For
example, the noise may lead to an incorrect identification. On
the other hand, if this assumption is not satisfied, it may also
result in an incorrect identification. If a target is incorrectly
identified, as long as the target belongs to one of the known cat-
egories, TLCS is still able to localize the target accurately since
the transferring function still works well in this case. However,
if the incorrectly identified target category is not among the
known ones, it would become a test for the robustness of TLCS,
which is discussed in Section V-D.

VII. CONCLUSION

This paper has identified the multiple-target DFL problem
across different categories of targets based on transferring CS.
This paper has investigated the impact of target diversity on
the RSS changes distorted by different categories of targets
and has shown that most pairs of RSS changes across different
shapes of targets show a linear correlation. Thus, we use a linear
function to compensate the difference between different targets
and prove that our transferring scheme works well for our TLCS
method. Additionally, the results of experiments illustrate the
effectiveness and robustness of the proposed TLCS method.
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