J.P. Borges

J.P. Borges
Faculty of Science and Technology New University of Lisbon · Materials Science Department and CENIMAT|i3N

PhD.

About

100
Publications
19,095
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,249
Citations
Additional affiliations
January 2002 - December 2012
Universidade NOVA de Lisboa

Publications

Publications (100)
Article
Full-text available
Structural metamaterials presenting negative values of one or more mechanical and thermomechanical indices – namely the Poisson's ratio, the linear compressibility, and the coefficient of thermal expansion – are the promising candidates to the applications in many fields, ranging from precision mechanics to biomedical devices or energy absorption....
Article
Cancer theranostics is a recent concept that aims to combine in the same device diagnostic and therapeutic features. Magnetic nanoparticles (mNPs) are commonly used as a critical part of these systems due to their ability to respond to an external magnetic field. Consequently, mNPs can generate heat when an alternating magnetic field is applied and...
Article
Full-text available
Engineering drug delivery systems (DDS) aim to release bioactive cargo to a specific site within the human body safely and efficiently. Hydrogels have been used as delivery matrices in different studies due to their biocompatibility, biodegradability, and versatility in biomedical purposes. Microparticles have also been used as drug delivery system...
Article
Full-text available
The present paper regards the preparation and characterization of Pluronic F127 + F68/water/poly (ε-caprolactone) microcapsules (MCs) composite systems for tissue repair. The first part of the work relates to the production of poly(ε-caprolactone) (PCL) MCs via water-in-oil-in-water (W/O/W) double emulsion system combined with solvent evaporation m...
Article
Full-text available
The delivery of multiple anti-cancer agents holds great promise for better treatments. The present work focuses on developing multifunctional materials for simultaneous and local combinatory treatment: Chemotherapy and hyperthermia. We first produced hybrid microgels (MG), synthesized by surfactant-free emulsion polymerization, consisting of Poly (...
Article
Design, research, and development of new and improved smart multifunctional devices is one of the main topics in the advanced functional materials agenda for the next decade. Smart materials that can be triggered by external stimuli are seen with high potential for innovative treatments and improved drug delivery systems by regulatory agencies like...
Article
Full-text available
The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-...
Article
Full-text available
Several problems and limitations faced in the treatment of many diseases can be overcome by using controlled drug delivery systems (DDS), where the active compound is transported to the target site, minimizing undesirable side effects. In situ-forming hydrogels that can be injected as viscous liquids and jellify under physiological conditions and b...
Article
Full-text available
Advanced functionalities textiles embedding electronic fibers, yarns and fabrics are a demand for innovative smart cloths. Conductive electrospun membranes and yarns based on polyaniline/polyvinylpyrrolidone (PANI/PVP) were investigated using the chemical modification of PANI instead of using conventional coating processes as in-situ polymerization...
Article
Control of the properties of electrospun polycaprolactone can be achieved by adjusting the acetic acid:water ratio used to dissolve and electrospin the polymer. In this work, we studied the effect of using up to 15 wt% water in the solvent mixture. Solution conductivity and viscosity and fibre morphology vary dramatically with water content and sol...
Article
Full-text available
The aim of the present study is to investigate the effect of the hydrolysis process on the properties of nanocrystalline cellulose (NCC) isolated from different precursors and the subsequent use of the extracted NCC for the reduction of graphene oxide (GO). The raw materials (almond and peanut shells) chosen for the isolation of cellulose were sele...
Article
The composition and architecture of a scaffold determine its supportive role in tissue regeneration. In this work, we demonstrate the feasibility of obtaining a porous electrospun fibrous structure from biodegradable polyurethanes (Pus) synthesized using polycaprolactone-diol as soft segment and, as chain extenders, chitosan (CS) and/or dimethylol...
Article
Full-text available
A (model) composite system for drug delivery was developed based on a thermoresponsive hydrogel loaded with microparticles. We used Pluronic F127 hydrogel as the continuous phase and alginate microparticles as the dispersed phase of this composite system. It is well known that Pluronic F127 forms a gel when added to water in an appropriate concentr...
Article
Bacterial infections affect about one in five patients who receive a dental implant within five years of surgery. To avoid the implant rejection it is necessary for the development of innovative biomaterials, with addition or substitution of the ions, for implant coatings that promote a strong bond with the new host bone and antibacterial action. T...
Article
Full-text available
This paper reports the application of additive manufacturing technology to fabricate bi-dimensional lightweight composite meshes capable of demonstrating auxetic properties (negative Poisson’s ratio (NPR)) in combination with negative thermal expansion (NTE) behaviour, using as constituent materials polymers that do not exhibit NTE behaviour. To de...
Article
Nonwoven membranes of poly(ε‐caprolactone) (PCL) and chitosan (CS) were produced according to the two methods: by blending the polymers in solution followed by electrospinning – polymer blending method – and by simultaneous deposition of fibers electrospun from separate solutions – fiber blending (FB) method. The two production methods were compare...
Conference Paper
In this paper the rheological characterization of Pluronic/water systems filled with alginate microparticles is presented. The rheological characterization of the Pluronic/water systems allowed for the choice of the best Pluronic concentration taking into account its applications as injectable hydrogels for tissue repair. The effect on the rheologi...
Article
Full-text available
One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first p...
Article
In the present work composite membranes were produced by combining magnetic nanoparticles (NPs) with cellulose acetate (CA) membranes for magnetic hyperthermia applications. The non-woven CA membranes were produced by electrospinning technique, and magnetic NPs were incorporated by adsorption at fibers surface or by addition to the electrospinning...
Article
A simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisatio...
Article
Biodegradable polyurethanes have been studied as scaffolds for tissue engineering due to their adjustable physico-chemical properties. In this work, we synthesized a biodegradable gelatin-based poly(urethane urea) using polycaprolactone-diol, as soft segment, and isophorone diisocyanate and gelatin from cold water fish skin as hard segment. The syn...
Article
A novel cellulose-based bio-battery made of electrospun fibers activated by biological fluids has been developed. This work reports a new concept for a fully organic bio-battery that takes advantage of the high surface to volume ratio achieved by an electrospun matrix composed of sub-micrometric fibers that acts simultaneously as the separator and...
Chapter
Hybrid materials have been widely studied for structural applications. Polysaccharide-based fibers, especially cellulosic fibers, have been explored in the last two decades as substitutes of the traditional reinforcements made of glass or carbon fibers due to their mechanical properties. However, their biocompatibility, biodegradability, and chemis...
Article
Full-text available
The incorporation of thermosensitive microgels that can act as active sites into polymeric fibers through colloidal electrospinning originates multifunctional, highly porous, and biocompatible membranes suitable for biomedical applications. The use of polyvinylpyrrolidone (PVP), a biocompatible, water-soluble polymer as a fiber template, not only a...
Article
The unique properties of electrospun nanofibers combined with functional compounds allow the preparation of novelty materials that can be employed in a wide range of applications. Among a vast number of polymers, Cellulose Acetate (CA) it is considered easy to electrospun and it was employed as the polymeric matrix, where free and iridium-porphyrin...
Article
Fast-dissolving delivery systems (FDDS) have received increasing attention in the last years. Oral drug delivery is still the preferred route for the administration of pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have difficulties in swallowing solid tablets. In this work, gelatin membranes were produced...
Article
Chitosan with three different molecular weights (538±48, 229±45 and 13±3 kDa) was used to develop biodegradable Inverted Colloidal Crystal (ICC) scaffolds with uniform pore size and interconnected pore network. Mass loss and compression modulus were analyzed after hydrolytic degradation in order to understand the influence of molecular weight on st...
Article
Inspired by chitin based hierarchical structures observed in arthropods exoskeleton, this work reports the capturing of chitin nanowhiskers’ chiral nematic order into a chitosan matrix. For this purpose, highly crystalline chitin nanowhiskers (CTNW) with spindle-like morphology and average aspect ratio of 24.9 were produced by acid hydrolysis of ch...
Article
Nanometric and sub-micrometric monodispersed hydroxyapatite (HAp) particles with different morphologies (spheres and rods) were synthesized via a simple solvothermal method using Ca(NO3)2·4H2O and P2O5 as starting materials without any requirement to use organic templates. The growth, evolution and purity of the nanoparticles were investigated by c...
Article
Hydroxyapatite (HAp) scaffolds with uniform pore size and interconnected pore network were constructed based on the inverted colloidal crystal (ICC) geometry and a simple sol-gel formulation. Monodisperse polystyrene microspheres were self-assembled and annealed into a hexagonal close packed structure. HAp sol-gel was infiltrated in this template f...
Chapter
Cellulose and chitin are the two most abundant natural polysaccharides. Both have a semicrystalline microfibrillar structure from which nanofibres can be extracted. These nanofibres are rod-like microcrystals that can be used as nanoscale reinforcements in composites due to their outstanding mechanical properties. This chapter starts by reviewing t...
Article
The strategy of confining stimuli-responsive microgels in electrospun fibres would allow the fabrication of polymeric networks that combine the microgels swelling ability and properties with the interest features of the electrospun fibres. Colloidal electrospinning is an emerging method in which fibres containing microgels can be produced by a sing...
Article
Full-text available
Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs...
Article
Functionalized electrospun fibers are of great interest for biomedical applications such as in the design of drug delivery systems. Nevertheless, in some cases the molecules of interest have poor solubility in water or have high melting temperatures. These drawbacks can be overcome using deep eutectic solvents. In this work, poly(vinyl alcohol) (PV...
Chapter
Full-text available
Chitin, the second most abundant polymer in nature, is a renewable, nontoxic, biodegradable, and antibacterial polysaccharide. This semicrystalline biopolymer exhibits hierarchical structure from nano to micro-scale and is responsible for interesting living tissue properties. Recently, the scientific interest in chitin nanofibrils for applications...
Article
Full-text available
The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the in...
Article
Full-text available
The electrorheological (ER) effect is known as the change in the apparent viscosity upon the application of an external electric field perpendicular to the flow direction. In this work we present the electrorheological behaviour of suspensions in silicone oil of two different dispersed phases: foams of liquid crystal 4-n-penthyl-4'-cyanobiphenyl (5...
Article
The influence of Ag nanoparticles (Ag NPs) on the luminescence of electrospun nonwoven mats made of polyvinylpyrrolidone (PVP) has been studied in this work. The PVP fibers incorporating 2.1-4.3 nm size Ag NPs show a significant photoluminescence (PL) band between 580 and 640 nm under 325 nm laser excitation. The down conversion luminescence emissi...
Article
The electrospinning of polycaprolactone (PCL) dissolved in glacial acetic acid and the characterization of the resultant nonwoven fiber mats is reported in this work. For comparison purposes, PCL fiber mats were also obtained by electrospinning the polymer dissolved in chloroform. Given the processing parameters chosen, results show that 14 and 17...
Chapter
Cellulose is the most abundant biopolymer on earth. It can be used in different applications, namely in the form of fibers, and cellulose can be converted into numerous cellulose derivatives. Cellulose micro- and nanofibers have been the subject of intense research in the field of composites. Cellulose derivatives can show liquid crystalline chiral...
Article
a b s t r a c t Iron oxide nanoparticles are having been extensively investigated for several biomedical applications such as hyperthermia and magnetic resonance imaging. However, one of the biggest problems of these nanoparticles is their aggregation. Taking this into account, in this study the influence of three different surfactants (oleic acid,...
Article
Full-text available
Scaffolding is at the heart of Tissue Engineering but the number of techniques available for turning biomaterials into scaffolds displaying the features required for a TE application is somewhat limited. Inverted colloidal crystals (ICC) are inverse replicas of an ordered array of monodisperse colloidal particles, which organize themselves in packe...
Article
Full-text available
We report a method to obtain electrospun fibers based on ionic liquids and gelatin, exhibiting antimicrobial properties.
Article
Electrospun fibers of poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐bithiophene] (F8T2) with exceptional electro‐optical performance are obtained. The I/T characteristics measured in fibers with 7–15 µm diameter and 1 mm length show a semiconductor behavior; their thermal activation energy is 0.5 eV and the dark conductivity at RT is 5 × 10−9 (Ω cm)−1. B...
Article
The development of nanoscaled materials has deserved a remarkable interest for biomedical applications. Biological tissues are essentially composite materials with particular mechanical properties that should be carefully considered during the design of innovative biomedical scaffolds. Electrospun membranes are often found in medical applications d...
Article
Chemocapacitors are polymer coated Interdigital electrodes (IDE) where the transducer mechanism relies on the permittivity changes and swelling of the coating polymer (sensitive layer), usually in a form of a thin film, when exposed to an volatile organic compound (VOC). Despite several synthetic and natural polymers have already been produced by e...
Article
Ion Jelly materials combine the chemical versatility and conductivity of an ionic liquid (IL) with the morphological versatility of a biopolymer (gelatin). They exhibit very interesting properties, such as conductivities up to 10− 4 S cm− 1, and high thermostability up to 180 °C, and have been used successfully to design electrochromic windows. In...
Article
Osteosarcoma is the most common primary bone tumor in children and adolescents, with a 5-year disease free survival rate of 70%. Current chemotherapy regimens comprise a group of chemotherapeutic agents in which doxorubicin is included. However, tumor resistance to anthracyclines and cardiotoxicity are limiting factors for its usage. Liposomal form...
Patent
Full-text available
A presente invenção refere-se a um produto injectável biocompatível e bioactivo para substituição óssea e o respectivo processo de obtenção. O presente produto é composto por duas fases previamente misturadas a sua aplicação, uma fase líquida composta por um hidrogel de dois polímeros biocompatíveis e uma fase sólida composta por grânulos de fosfat...
Article
This work reports the production of hydroxyapatite (HA) sub-micron fibers by combining electrospinning and a non-alkoxide sol–gel system, using cheap precursors. Phosphorus pentoxide (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) were used as precursors of phosphorus and calcium, respectively. The fibers were electrospun from a mixture of...
Article
Full-text available
Cancer is one of the main causes of death in the world and its incidence increases every day. Current treatments are insufficient and present many breaches. Hyperthermia is an old concept and since early it was established as a cancer treatment option, mainly in superficial cancers. More recently the concept of intracellular hyperthermia emerged wh...
Book
Polarization can accelerate the bioactivity of HAp immersed in an SBF solution. However a careful choice of polarization conditions has to be made. One relevant issue is to have long relaxation times of the polarization and this is related to the amount of water in Hap, which was to be kept as low as possible during poling. It was shown that the pr...
Chapter
The use of cellulosic fibers as load bearing constituents in composite materials has increased over the last decade due to their relative cheapness compared to conventional materials such as glass and aramid fibers, their ability to recycle, and because they compete well in terms of strength per weight of material. All-cellulosic based composites p...
Article
Resumo Este trabalho pretende dar a conhecer a importância da análise de imagem e do ensaio de torção na caracterização física da cortiça para a produção de rolha, de modo expedito. As amostras foram preparadas para determinação do calibre, massa específica, umidade, porosidade, força e respectivo ângulo de torção. Procedeu-se à comparação da clas...
Article
The present work proposes the development of a bio-battery composed by an ultrathin monolithic structure of an electrospun cellulose acetate membrane, over which was deposited metallic thin film electrodes by thermal evaporation on both surfaces. The electrochemical characterization of the bio-batteries was performed under simulated body fluids lik...
Article
This research work envisages the production of bio-batteries based on electrospun membranes.The present work aims at the development of an electrochemical device (bio-battery) able to generate electrical power from body fluids, like sweat or blood, to supply small power consumption electronic devices.To the development of these bio-batteries, cellu...
Article
This paper reports a new method of producing hydroxyapatite (HA) fibres, combining electrospinning and a non-alcoxide sol-gel system, using cheap precursors. Phosphorus pentoxide (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) were used as precursors of phosphorus and calcium, respectively. The fibres were electrospun from a mixture of the...
Article
Wound healing is a complex process involving an integrated response by many different cell types and growth factors in order to achieve rapid restoration of skin architecture and function. The present study evaluated the applicability of a chitosan hydrogel (CH) as a wound dressing. Scanning electron microscopy analysis was used to characterize CH...