Jozef Gecz

Jozef Gecz
University of Adelaide · Discipline of Paediatrics

PhD

About

500
Publications
117,969
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
27,045
Citations
Introduction
Jozef Gecz is Honorary Channel 7 CRF Chair for the Prevention of Childhood Disability at the University of Adelaide, Australia. Jozef does research in Genetics and Biology of Neurodevelopmental Disabilities.
Education
September 1986 - June 1994
Slovak Academy of Sciences
Field of study
  • Human Molecular Genetics
September 1981 - June 1986
Comenius University Bratislava
Field of study
  • Human Genetics

Publications

Publications (500)
Article
Full-text available
Börjeson-Forssman-Lehmann syndrome (BFLS) is an X-linked intellectual disability and endocrine disorder caused by pathogenic variants of plant homeodomain finger gene 6 (PHF6). An understanding of the role of PHF6 in vivo in the development of the mammalian nervous system is required to advance our knowledge of how PHF6 mutations cause BFLS. Here,...
Article
Full-text available
This study describes a protocol to assess a novel workflow called Epi-Genomic Newborn Screening (EpiGNs) on 100,000 infants from the state of Victoria, Australia. The workflow uses a first-tier screening approach called methylation-specific quantitative melt analysis (MS-QMA), followed by second and third tier testing including targeted methylation...
Article
A growing number of genes have been identified in individuals with cerebral palsy (CP); however, many of these studies have poor compliance with the cerebral palsy clinical description. This systematic review aimed to assess the quality of the cerebral palsy clinical description/phenotype in cerebral palsy genetic studies published between 2010 and...
Article
Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs)...
Article
Full-text available
Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of...
Preprint
Full-text available
Short tandem repeats (STRs) are amongst the most abundant class of variations in human genomes and are meiotically and mitotically unstable which leads to expansions and contractions. STR expansions are frequently associated with genetic disorders, with the size of expansions often correlating with the severity and age of onset. Therefore, being ab...
Article
Full-text available
Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequen...
Article
Full-text available
Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokine...
Article
Full-text available
Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developin...
Article
Full-text available
Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability¹, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified a...
Article
Full-text available
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hy...
Article
Full-text available
Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss o...
Article
Full-text available
Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or ‘blocks’. Rare variants in a small number of genes encoding lysosomal path...
Article
Full-text available
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unr...
Preprint
Full-text available
Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokine...
Article
Full-text available
Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with 9 different heterozygous de novo variants in RAB5C. All but one patient with missense variants...
Article
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and...
Article
Full-text available
Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been tradit...
Article
Full-text available
Familial adult myoclonus epilepsy (FAME) is a genetic epilepsy syndrome that for many years has resisted understanding of its underlying molecular cause. This review covers the history of FAME genetic studies worldwide, starting with linkage and culminating in the discovery of noncoding TTTTA and inserted TTTCA pentanucleotide repeat expansions wit...
Article
Full-text available
Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare...
Article
Introduction: Protocadherin-19 (PCDH19)-clustering epilepsy is a distinct developmental and epileptic encephalopathy characterized by early-onset seizures that are often treatment refractory. Caused by a mutation of the PCDH19 gene on the X chromosome, this rare epilepsy syndrome primarily affects females with seizure onset commonly in the first y...
Article
Full-text available
FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear....
Article
Pregnancy loss and perinatal death are devastating events for families. We assessed ‘genomic autopsy’ as an adjunct to standard autopsy for 200 families who had experienced fetal or newborn death, providing a definitive or candidate genetic diagnosis in 105 families. Our cohort provides evidence of severe atypical in utero presentations of known ge...
Article
Full-text available
TIMMDC1 encodes the T ranslocase of I nner M itochondrial M embrane D omain- C ontaining protein 1 (TIMMDC1) subunit of complex I of the electron transport chain responsible for ATP production. We studied a consanguineous family with two affected children, now deceased, who presented with failure to thrive in the early postnatal period, poor feedin...
Article
Full-text available
Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints,...
Article
Full-text available
Immunoprecipitation (IP) of endogenously expressed proteins is one of the most biologically relevant techniques to identify protein-protein interactions. We describe an adaptable IP protocol reliant on a specific antibody to the target protein. We detail a quantitative proteomics workflow for the unbiased identification of co-immunoprecipitating pr...
Article
Full-text available
Purpose Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV...
Article
Full-text available
SLITRK2 is a single-pass transmembrane protein expressed at postsynaptic neurons that regulates neurite outgrowth and excitatory synapse maintenance. In the present study, we report on rare variants (one nonsense and six missense variants) in SLITRK2 on the X chromosome identified by exome sequencing in individuals with neurodevelopmental disorders...
Article
Full-text available
An expanding range of genetic syndromes are characterized by genome‐wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder‐specif...
Article
Full-text available
Aim To define clinical common data elements (CDEs) and a mandatory minimum data set (MDS) for genomic studies of cerebral palsy (CP). Method Candidate data elements were collated following a review of the literature and existing CDEs. An online, three‐round Delphi survey was used to rate each data element as either ‘core’, ‘recommended’, ‘explorat...
Article
Protein ubiquitination is a widespread multi-functional post-translational protein modification best known for its ability to direct protein degradation via the Ubiquitin Proteasome System (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets o...
Preprint
Full-text available
Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints,...
Article
Full-text available
Background and objectives: The 2-hit model of genetic disease is well established in cancer, yet has only recently been reported to cause brain malformations associated with epilepsy. Pathogenic germline and somatic variants in genes in the mechanistic target of rapamycin (mTOR) pathway have been implicated in several malformations of cortical dev...
Article
Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic...
Article
Full-text available
Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we...
Article
Full-text available
Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study we...
Article
Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/int...
Article
Full-text available
Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/int...
Article
Background : The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A ‘ciliopathy’ and links with laterality disorders have been...
Article
Full-text available
Introduction: The goal of this study was to understand individuals with cerebral palsy (CP) and their family's attitudes and preferences to genomic research, including international data sharing and biobanking. Methods: Individuals with CP and their family members were invited to participate in the web-based survey via email (NSW/ACT CP Register...
Article
Full-text available
Steroids yield great influence on neurological development through nuclear hormone receptor (NHR)-mediated gene regulation. We recently reported that cell adhesion molecule protocadherin 19 (encoded by the PCDH19 gene) is involved in the coregulation of steroid receptor activity on gene expression. PCDH19 variants cause early-onset developmental ep...
Article
Full-text available
Cerebral palsy (CP) is the most common cause of childhood physical disability, with incidence between 1/500 and 1/700 births in the developed world. Despite increasing evidence for a major contribution of genetics to CP aetiology, genetic testing is currently not performed systematically. We assessed the diagnostic rate of genome sequencing (GS) in...
Article
PCDH19 is a non-clustered protocadherin molecule involved in axon bundling, synapse function and transcriptional co-regulation. Pathogenic variants in PCDH19 cause an infantile onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA sequencing technologies have led to a significant increase in the number of reported...
Article
Full-text available
Cerebral palsy is the most prevalent physical disability in children; however, its inherent molecular mechanisms remain unclear. In the present study, we performed in-depth clinical and molecular analysis on 120 idiopathic cerebral palsy families, and identified underlying detrimental genetic variants in 45% of these patients. In addition to germli...
Article
Full-text available
Moderate to hyper expansion of trinucleotide repeats at the FRAXA and FRAXE fragile sites, with or without concomitant hypermethylation are associated with intellectual disability and other conditions. Unlike molecular diagnosis of FMR1 CGG repeat expansions in FRAXA, current detection of AFF2 CCG repeat expansions in FRAXE relies on low-throughput...
Article
Full-text available
PCDH19-Clustering Epilepsy (PCDH19-CE) is an infantile onset disorder caused by mutation of the X-linked PCDH19 gene. Intriguingly, heterozygous females are affected while hemizygous males are not. While there is compelling evidence that this disorder stems from the coexistence of WT and PCDH19-null cells, the cellular mechanism underpinning the ne...
Article
Full-text available
Background With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype–phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendel...
Article
The pioneering discovery research of X‐linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide however, approximately 30% of XLID families still remain unresolved. We postulated that non‐coding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detect...
Article
Full-text available
Inherited paediatric cataract is a rare Mendelian disease that results in visual impairment or blindness due to a clouding of the eye’s crystalline lens. Here we report an Australian family with isolated paediatric cataract, which we had previously mapped to Xq24. Linkage at Xq24–25 (LOD = 2.53) was confirmed, and the region refined with a denser m...
Article
The PHF6 mutation c.1024C > T; p.R342X, is a recurrent cause of Börjeson-Forssman-Lehmann Syndrome (BFLS), a neurodevelopmental disorder characterized by moderate–severe intellectual disability, truncal obesity, gynecomastia, hypogonadism, long tapering fingers, and large ears (MIM#301900). Here, we generated transgenic mice with the identical subs...
Article
The PHF6 mutation c.1024C > T; p.R342X, is a recurrent cause of Börjeson-Forssman-Lehmann Syndrome (BFLS), a neurodevelopmental disorder characterized by moderate-severe intellectual disability, truncal obesity, gynecomastia, hypogonadism, long tapering fingers, and large ears (MIM#301900). Here, we generated transgenic mice with the identical subs...
Article
Objective To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. Methods We performed wh...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41588-021-00780-8.
Article
The BCAP31 gene, located at Xq28, encodes BAP31, which plays a role in ER-to-Golgi anterograde transport. To date, BCAP31 pathogenic variants have been reported in 12 male cases from seven families (six loss of function (LoF) and one missense). Patients had severe intellectual disability (ID), dystonia, deafness, and central hypomyelination, deline...
Preprint
Full-text available
FTSJ1 is a conserved human 2-O-methyltransferase (Nm-MTase) that modifies several transfer RNAs (tRNAs) at position 32 and the wobble position 34 in the AntiCodon Loop (ACL). Its loss of function has been linked to Non-Syndromic X-Linked Intellectual Disability (NSXLID), and more recently to cancers. However, the molecular mechanisms underlying the...
Article
Full-text available
Since the introduction of next‐generation sequencing, an increasing number of disorders have been discovered to have genetic etiology. To address diverse clinical questions and coordinate research activities that arise with the identification of these rare disorders, we developed the Human Disease Genes website series (HDG website series): an inter...
Article
Full-text available
This commentary is on the original article by Påhlman et al. on pages 320–327 of this issue.
Article
PCDH19 Clustering Epilepsy (CE) is an intriguing early-onset seizure, autism and neurocognitive disorder with unique inheritance. The causative gene, PCDH19, is on the X-chromosome and encodes a cell–cell adhesion protein with restricted expression during brain development. Unlike other X-linked disorders, PCDH19-CE manifests in heterozygous female...
Article
Full-text available
Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case–control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a to...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
USP9X is an X-chromosome gene that escapes X-inactivation. Loss or compromised function of USP9X leads to neurodevelopmental disorders in males and females. While males are impacted primarily by hemizygous partial loss-of-function missense variants, in females de novo heterozygous complete loss-of-function mutations predominate, and give rise to th...