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Abstract 

Background 

Passive heat therapies have been reported to have similar effects on the cardiovascular system 

as exercise.  Studies supporting these findings in healthy populations have predominantly 

been done with men using warm water immersions or traditional saunas, rather than newer 

infrared-based saunas.   

Objective 

To explore short-term thermal and cardiovascular responses in women using an infrared 

sauna as compared to moderate-intensity exercise.  

Study design 

Randomised controlled crossover trial with balanced allocations.  
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Setting 

Brisbane, Australia (August 2019 - March 2020) 

Participants 

Ten healthy women (36 ± 9 years) 

Interventions 

45 minutes of resting, infrared sauna or indoor bicycling 

Primary outcome measures 

tympanic/skin temperatures; respiratory rate; blood pressure; arterial stiffness; heart rate 

variability 

Results 

Tympanic temperatures were elevated during infrared sauna as compared to both control 

(mean diff = +1.05
o
C ± SEM 0.12

 o
C, 95% C.I.: 0.73 – 1.36, p < 0.0005) and exercise (mean 

diff = +0.79
o
C ± SEM 0.12

 o
C, 95% C.I.: 0.49 – 1.08, p<0.0005).  Respiratory rates were 

higher during exercise as compared to both control (mean diff = +7.66 ± SEM 1.37, 95% 

C.I.: 4.09 – 11.23, p < 0.0005) and infrared sauna (mean diff = +6.66 ± SEM 1.33, 95% C.I.: 

3.20 – 10.11, p < 0.0005).  No significant differences in non-invasive measures of blood 

pressure, arterial stiffness or heart rate variability were detected between any of the 

interventions.   

Conclusions 

These findings suggest the physiological effects of infrared sauna bathing are underpinned by 

thermoregulatory-induced responses, more so than exercise-mimetic cardiorespiratory or 

cardiovascular activations.   

Highlights 

 Physiological responses to infrared sauna and exercise were compared in women. 

Jo
ur

na
l P

re
-p

ro
of



 Tympanic temperatures with infrared sauna were higher compared to moderate 

exercise. 

 Exercise reduced back skin-surface temperatures more than sauna. 

 Unlike exercise, infrared sauna use did not increase breathing rates. 

 Blood pressure, arterial stiffness and HRV responses were similar.   

 

Keywords:  

Infrared sauna, Exercise, Pulse wave analysis, Heart rate variability, Thermal responses 

Abbreviations
1
 

1. Introduction 

Habitual lifestyle practices involving whole-body heat exposures (saunas, steam rooms, hot 

springs, etc.) have been used for centuries to promote good health and feelings of wellbeing.  

Exercise is the lifestyle activity most endorsed by health authorities for preventive health and 

for its anti-inflammatory, anti-aging and disease-mitigating effects when performed 

regularly.
1-3

  The most established clinical benefits of frequent sauna use, especially low 

humidity forms such as Finnish and/or infrared-based sauna, involve improvements in 

cardiovascular disease (CVD) outcomes.
4-6

  The habit of Finnish sauna bathing at least 4 

times weekly has been associated with reductions in sudden cardiac death by 63% and 

reduced all-cause mortality by 40% in men.
5
  These findings are remarkably similar to the 

benefits demonstrated in large cohort studies, correlating habitual exercise with a 35% 

                                                 
1
 AIx75 - augmentation index - adjusted to HR 75 bpm, measure of arterial stiffness; ANS - autonomic nervous 

system; AugPress - central augmented pressure, measure of arterial stiffness; CHF - congestive heart failure; 

COVID-19 - coronavirus disease of 2019; CVD - cardiovascular disease; HRV - heart rate variability; LF/HF 

ratio - low frequency-to-high frequency ratio, measure of HRV; IR - infrared sauna; PWA - pulse wave 

analysis; RRMSD - square root of mean squared differences in successive R wave-to-R wave intervals, measure 

of HRV; Ttymp - tympanic body temperature; USG - urine specific gravity 
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reduction in CVD and a 33% reduction in all-cause mortality.
7
  Similar physiological 

mechanisms proposed to explain these long-term benefits for both activities include 

improvements in endothelium-dependent vascular dilatation, reduced arterial stiffness, 

modulations of the autonomic nervous system (ANS), changes in circulating inflammatory 

markers and lipid profiles, as well as lowering of blood pressure.
6, 8-12

 

Newer non-invasive measures of arterial stiffness and heart rate variability (HRV) have been 

gaining reliability as clinical indicators of CVD.
13, 14

  Arterial stiffness is a biomarker of 

vascular aging and is claimed to be a more dynamic measure of blood vessel alterations, more 

so than resting blood pressure (BP).
15, 16

  Heart rate variability (HRV), analysed in both time 

and frequency domains, is interpreted as a cardiac barometer of the ANS.
14, 17

  Higher HRV is 

associated with a greater capacity of the cardiovascular system to respond to stressed 

conditions, both mental and physical.
18, 19

 

Several studies involving single and/or repeat sessions of thermal therapy have measured 

arterial stiffness responses of passive water-based heating (water perfusion suits or warm 

water immersions) as compared to exercise,
20-22

 but fewer have focused on dry heat-based 

(sauna) interventions as compared to exercise.
23, 24

  HRV parameters have been measured 

after single and/or repeated sessions of sauna bathing (humid and dry forms), either as a sole 

intervention or pre/post-exercise, but predominantly in men.
25-35

  Evidence in these studies 

could be improved firstly, by recruiting more female participants; secondly, by using a 

crossover design; thirdly, by including adequate washout periods; and finally, by 

incorporating control groups or interventions.  These considerations were integrated into this 

study’s design. 

To further investigate the physiological effects of increasingly popular infrared sauna 

bathing
36, 37

, inclusive of these newer clinical markers of CVD more thoroughly studied with 

exercise, a controlled crossover trial in women was conceived.  The clinical protocol 
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compared thermal responses, arterial stiffness and heart rate variability within premenopausal 

women before, during and after interventions of infrared sauna, exercise or controlled resting.  

It was hypothesised that similar thermal and cardiovascular-related responses would be seen 

for the sauna and exercise activities, both as compared to control. 

2. Methods 

2.1 Study design 

This was a randomised, controlled crossover trial adhering to the Consolidated Standards of 

Reporting Trials (CONSORT) 2010 guidelines with extension for randomised crossover trials 

section, which was added in 2019.
38, 39

 (Fig.1)  The parameters of the three interventional 

visits (control, exercise and infrared sauna) were designed to enable comparisons with the 

duration and intensity of typical sauna bathing sessions.
4, 36, 40, 41

  All visits were conducted at 

least 48 hours apart.  The first visit for all participants was the control intervention, at which 

time they were randomly assigned by the same researcher (JH) to the exercise and sauna 

interventions (random draws.com/au/random-sequence-generator) to ensure balanced 

allocation of intervention order.  Data were collected from August 2019 to March 2020, at the 

indoor research gym of the Queensland Academy of Sport in Brisbane, Australia.  The 

COVID-19 pandemic restrictions instituted mid-March 2020 in Brisbane prematurely closed 

the clinical trial.   Jo
ur
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Assessed for eligibility (n=37) 

Excluded (n= 27) 

   Not meeting inclusion criteria (n=14) 

   Declined to participate (n=11) 

   COVID-19 pandemic restrictions 

prevented participation (n=2) 

Analysed (n=5) 

Excluded from analysis (n=0) 

Lost to follow-up (n=0) 
Discontinued intervention (n=0) 

Allocated to crossover group I:  
(n=5) 
2nd experimental visit = infrared 
3rd experimental visit = exercise 

Lost to follow-up (n=0) 
Discontinued intervention (n=0) 

Allocated to crossover group II: 
(n=5) 
2nd experimental visit = exercise 
3rd experimental visit = infrared 

Analysed (n=5) 
Excluded from analysis (n=0) 
 

Allocation 

Analysis 

Follow-Up 

Attended 1st experimental (control) visit (n=10); 

randomized to one of two crossover groups 

Enrollment 

 
 

Figure 1 CONSORT Flow diagram 

 

2.2 Participants, Recruitment and Inclusion/Exclusion Criteria 

Participants were recruited from the general population using social media and various public 

advertisement postings.  Prospective study participants were screened by the same researcher 

(JH) via telephone/email.  All participants were assessed with pre-specified inclusion criteria 
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to be premenopausal, non-pregnant women, ≥ 18 years old, non-smokers, regular exercisers 

(non-elite), non-frequent (< 6-monthly) sauna bathers, not diagnosed with any medical 

disorders, not taking any medications regularly (except hormonal contraceptives), and 

generally considered healthy, within normal BMI range (BMI < 30.0 and ≥18.5 kg/m
2
).  

Anyone with a history of atrial fibrillation and/or Raynaud’s syndrome (or phenomenon) 

were excluded due to contraindications with the pulse wave analysis testing.  Baseline 

demographic and clinical characteristics of participants are presented in Table 1. 

Table 1. Baseline demographic and clinical characteristics of participants by crossover sequence 

group and entire cohort (total) 

 Crossover Sequence for Experimental Visits 

Characteristic Group I: 

Control visit, followed 

by IR, then EX (n = 5) 

Group II: 

Control visit, followed 

by EX, then IR (n = 5) Total (n =10) 

Age, yrs 39.8 ± 8.7 33.0 ± 9.8 36.4 ± 9.4 

Weight, kg 58.6 ± 9.9 53.8 ± 3.0 56.2 ± 7.3 

Height, cm 167.1 ± 5.0 163.7 ± 3.7 165.4 ± 4.5 

BMI, kg/m
2
 21.1 ± 3.7 20.1 ± 1.8 20.6 ± 2.8 

 C IR Ex C Ex IR  

Washout time 

(range - no. of days after 

preceding interventional visit) 

N/A 3-14 7 -28 N/A 2- 8 2 -42  

Menstrual status  

(range - no. of days after 

LMP) 

2 -21 1-15 6 -30 2 -27 7-25 6 -31  

Legend for Table 1: 

Values are means ± SD.  C = control; IR = infrared sauna; EX = exercise; LMP = last menstrual period; N/A = 

not applicable.   

 

2.3 Ethics 

All subjects provided written informed consent before participation.  Study procedures were 

conducted in concordance with approval granted by the RMIT University Human Research 

Ethics Committee (no. 21191).  This study was registered with the Australian New Zealand 

Clinical Trials Registry (ANZCTR no. 12618000679280). 
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2.4 Interventions 

Each participant completed only one of three interventions at each designated visit, with the 

control intervention being the first visit for all participants. The control intervention involved 

resting for three 15-minute sessions.  The room temperature (temp) was adjusted to 

participant comfort, at ~ 25
o
C, for all the visits.  In the exercise intervention, participants 

engaged in three sessions of moderate intensity aerobic exercise on a standard bicycle 

ergometer, with 5-min cool-down breaks at room temp between sessions.  A finger 

pulsoximeter was worn during bicycling to help guide participants to maintain pulse rates 

associated with moderate intensity exercise (55 - 70% of maximal heart rate, HRmax).
42

  

HRmax was calculated for each participant based upon the equation: HRmax = 220 – (age in 

years).
42

 

The sauna intervention utilised a full-spectrum infrared cabin (Clearlight Jacuzzi™ Sanctuary 

2 Unit, Berkeley, CA, U.S.A.).  The sauna was maintained at 60
o
C, < 20% RH for the three 

sessions.  The 5-min cool-downs were experienced at room temp.   

2.5 Outcome Measures 

2.5.1 Vital signs and thermal measurements 

Body weight was measured using medical-grade scales with ± 0.1 kg accuracy (Salter Kent, 

U.K.).  Height was determined using a stadiometer (QuickMedical, Warwick, RI).  Urine 

specific gravity (USG) was measured by manual reading of Roche™ Combur-10 Roche 

urinalysis test strips.  Tympanic body temperatures (Ttymp) were assessed using a diagnostic-

grade thermometer (Microlife Ear, Taipei, Taiwan) and skin temperatures were obtained at 

the forehead, back and both inner forearms using an infrared-based surface thermometer 

(Microlife Non-Contact, Taipei, Taiwan).  Respiratory rate (RR) measurements involved 

counting the observations of chest movements timed over 1 min.  O2 saturations (O2 sat) and 
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pulse rates (PR) were measured using a medical pulsoximeter (NONIN 9590 Vantage, Heal 

Force Bio-Meditech Holdings Ltd, Shenzhen, China).   

2.5.2 Blood Pressures and Pulse Wave Analysis (PWA)   

Systolic/diastolic blood pressure (SBP/DBP), mean arterial pressure (MAP) as well as PWA-

derived variables including central blood pressures and heart rate (HR) were obtained from 

participants sitting upright, using a brachial cuff-based electronic sphygmomanometer/ laser 

microprocessor - SphygmoCor XCEL (AtCor Medical Pty,Ltd, Sydney, NSW, Australia), as 

validated in prior studies.
13, 43-45

  (Table 2) 

2.5.3 Heart Rate Variability (HRV)   

Continuous 10-min measurements of heart rate (ECG-based) and breathing rate (motion-

based) were obtained from subjects resting and positioned supine on a massage table, using 

the Zephyr™ bioharness3 device (Medtronic, Boulder, CO, USA).  HRV data was extracted 

using Zephyr™ software (Medtronic, Boulder, CO, USA), then filtered and analysed in time 

and frequency domains with Kubios HRV Premium software (v3.3.1, University of Kuopio, 

Kuopio, Finland).
46

  Table 3 summarises the key HRV parameters used in this study.   

2.6 Experimental Protocol 

For 24 hours prior to each visit, participants abstained from using over-the-counter medicines 

or topical skin preparations.  Each participant fasted overnight and remained fasting until the 

assigned interventional visit was complete.  All experimental visits occurred in the mornings 

and were completed within 3 hours.  

Each study visit entailed outcome measures taken before (T0), during (T1, T2) and/or after 

(T3, T4) the interventions, as detailed in Table 4.  Room temp and relative humidity (RH) 

were monitored throughout visits with an indoor hygrometer (ThermoPro, TP-50, 

Guangdong, China).  Participants were encouraged to drink water ad libitum throughout 

experimental sessions.   
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For clinical safety and risk mitigation purposes, participants were visually monitored by a 

registered medical practitioner (JH) throughout all interventions.  Additionally, participants 

were verbally polled with fit-for-purpose questionnaires after each 15-min interventional 

session and at the end of visits.  These questionnaires assessed symptoms associated with 

dehydration and other commonly reported complications of sauna or exercise in clinical 

studies.
36, 47

 

 

Table 2. SphygmoCor XCEL algorithm-generated PWA parameters with cardiovascular-

related definitions/validations 

Parameter Description Cardiovascular-related definitions 

AIx
§ 
(%) Augmentation 

Index 

The ratio of AP (central augmented pressure) to C-PP (central aortic 

pulse pressure*), indicating the combined influences of large artery 

pulse wave velocity, peripheral pulse wave reflection and inherent 

vascular function.
48

 

AIx75
α 

(%) Augmentation 

Index, corrected to 

HR of 75 bpm 

 

Since AIx (augmentation index) varies with heart rate, it is commonly 

adjusted to a standard heart rate of 75 bpm.
49

 

AugPress
§
(mmHg) Central augmented 

pressure 

The difference between two pressure peaks: the initial peak detected as 

central aortic systolic pressure and then a second peak as aortic central 

pressure reading increased by the pulse wave reflected back towards the 

heart from the periphery, which adds to (or ‘augments’) the central 

aortic pressure in late systole.
43

 

   

Legend for Table 1: 
§
Both AIx and AugPress are validated measures that approximate ‘arterial stiffness’ for clinical settings.

13, 43, 44
 

*Aortic pulse pressure >50 mmHg has been independently associated with adverse cardiovascular outcomes.
50

 
α
AIx @HR 75 is a widely researched index of PWA, with several studies indicating that AIx is independently 

predictive of adverse cardiovascular events.
45, 50

  

 

Table 3. Summary of key HRV parameters and associated physiological origins 
HRV Parameter Description Associations with ANS Responses 

Time-domain 

RRMSD (ms) Square root of the mean squared 

differences between successive R wave-

to-R wave intervals on ECG*
14

 

Reflects vagal tone 

(parasympathetic nervous system 

activities)
51
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Frequency-domain 

LF power (ms
2
)

 ∞
 Signal energy filtered into ECG 

components of rhythms with oscillations 

between 0.04 and 0.15 Hz (low 

frequencies)
14

 

Produced by both sympathetic and 

parasympathetic nervous system 

influences on primarily baroreflex 

activities
19, 51

 

HF power (ms
2
)

 ∞
 Signal energy filtered into ECG 

components of rhythms with oscillations 

between 0.15 and 0.40 Hz (high 

frequencies)
14

 

Reflects primarily respiratory-

mediated vagal influences 

(parasympathetic nervous system 

activities)
51, 52

 

LF/HF ratio Ratio of LF power to HF power
14

 Estimates the mix of sympathetic 

and vagal (parasympathetic) 

activities
51, 52

 

Legend for Table 2: 

ms = milliseconds; ECG = electrocardiogram, a recording of graphed voltage versus time electrical activity of the heart using 

electrodes placed on the skin; Hz = 1/sec. 

*Mean HR, Min HR and Max HR computed by Kubios HRV software using N beat moving average or default value of N = 

5, with minimum 5 minute segments46. 
∞Power is the signal energy found within one frequency band.  Fast Fourier transform (FFT) was utilized with our 

frequency-domain measurements, expressed as ms (milliseconds) squared divided by cycles per second (ms2 /Hz) 51 

 

 

Table 4. Time Points of Outcome Measures 

Parameters T0 I Rest-

T1 

I Rest-

T2 

I T3 T4 

Height & Age         

Body weight         

Tympanic/Skin temps         

Respiratory rate         

Pulsoximetry         

Blood pressure         

Pulse wave analysis         

Heart rate variability         
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Parameters T0 I Rest-

T1 

I Rest-

T2 

I T3 T4 

Control or 

Exercise or 

Infrared sauna 

        

Time to sweat         

Urine samples         

Legend for Table 3:  

T0=before intervention; T1=post 15 min intervention; T2=post 30 min intervention;T3=post 45 min 

intervention; T4=post 30min recovery; I = intervention. 
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 Pre-Intervention Questionnaire completed. 

Pre-intervention body weight obtained. 

Participant collected pre-intervention urine sample 

Temperatures measured: core tympanic and forehead/forearms/back surface skin temps. 

Finger pulsoximetry: pulse rate and O2 saturations measured. 

Respiratory rate measured clinically. 

Temperatures measured: core tympanic and forehead/forearms/back surface skin temps. 

Finger pulsoximetry: pulse rate and O2 saturations measured. 

Respiratory rate measured clinically. 

 

15-min Intervention 

Temperatures measured: core tympanic and forehead/forearms/back surface skin temps. 

Finger pulsoximetry: pulse rate and O2 saturations measured. 

Respiratory rate measured clinically. 

15-min Intervention 

15-min Intervention 

Temperatures measured: core tympanic and forehead/forearms/back surface skin temps. 

Finger pulsoximetry: pulse rate and O2 saturations measured. 

Respiratory rate measured clinically. 

Participant collected post-intervention urine sample 

Post-intervention body weight obtained. 

Post-Intervention Questionnaire completed. 

Snacks eaten; discussed findings of intervention with participant. 

Figure 2 - Experimental Protocol Flow Chart 
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2.7 Sample Size 

A power analysis for primary variables of interest (body temperatures, heart rate variability 

and pulse wave analysis), specifying repeated measures, using conventional α = 0.05 and β = 

0.80 (G*power software v.3.1.9.4
53

), determined a minimum sample size of 9 participants 

necessary to detect within-subject changes.   

2.8 Statistical Analyses 

Data were compiled with Microsoft Excel (Office 365, 2019) and statistically analysed using 

IBM SPSS Statistics 26.0 (SPSS, Chicago, IL).  Datasets were assessed for normality using 

Kurtosis/Skewness values, Shapiro-Wilk testing and plotted histograms.  Variance-

covariance matrices were explored using principal components analysis to determine the 

variables suitable for MANOVA.   

Data were expressed as mean with standard deviation (SD) or standard error or means 

(SEM), or as median with 25th-75th interquartile range (IQR), depending on the distribution 

of the data.  One-way ANOVA/MANOVA repeated measures with the repeated factors of 

time (within subjects, 2 - 4 time points) were used to analyse measurements across the 

interventions.  In the event of significant time-by-intervention interactions (α = 0.05), post-

hoc Bonferroni analyses were performed to report multiple pairwise differences.   

3. Results 

Of 37 individuals assessed for eligibility, 10 women enrolled and completed the three 

interventional visits in their allocated order.  There were no dropouts in the study.  Adjusted 

indoor environmental settings were mean room temp 25.4
o
C ± SD 0.9

o
C and mean RH 50 % 

± SD 10 %.  The women presented and departed the study visits in states of adequate 

hydration (USG < 1.025
54

) with pre/post USG median (IQR) of crossover group I = 1.005 

(0.005)/ 1.005 (0.005); and of crossover group II = 1.000 (0.000)/ 1.008 (0.008).   
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3.1 Thermal responses 

Tympanic and skin temperatures were measured at T0 (baseline), T1 (15 min), T2 (30 min) 

and T3 (45 min).  The first two participants, both by chance assigned to Crossover Group I, 

do not have control-T3 data, as this time point was not included in the original protocol.  It 

was added by HREC amendment after these participants completed their 1
st
 visit.  

(Supplementary Tables 1 and 2) 

Significant intervention-based effects with Ttymp were detected (Wilks’ Lambda = 0.116, 

F(6,46) = 14.824, p<0.0005, multivariate η
2
 = 0.659).  Post-hoc analysis revealed increases 

with sauna as compared to both control (mean diff = +1.05
o
C ± SEM 0.12

 o
C, 95% C.I.: 0.73 

– 1.36, p<0.0005) and exercise (+0.79 ± 0.12
 o

C, 95% C.I.: 0.49 – 1.08, p<0.0005), at 15 min, 

30 min, 45min (all p<0.0005).  A similar trend towards increased Ttymp with exercise as 

compared to control was noted but did not reach statistical significance (+0.26 ± 0.12
 o

C, 

95% C.I.: - 0.05 – 0.58, p=0.127).  (Fig.2)   

Analysis of skin temperatures (forehead, wrist, back) measured at the same time points 

revealed the back temperatures showed the clearest differences across time/interventions 

(Wilks’ Lambda = 0.399, F(6,46) = 4.470, p=0.001, multivariate partial η
2
 = 0.368).  Post-

hoc comparisons indicated both sauna- and exercise-related back temps were lower than 

respective control measures: mean diff ± SEM control/sauna (-0.48 ± 0.12
o
C, 95% C.I.: - 

0.17 to - 0.79, p=0.002) at 30 min and 45 min; and greater differences comparing 

control/exercise (-0.84 ± 0.12
o
C, 95% C.I.: - 0.53 to – 1.15, p<0.001) at all time points. (Fig. 

3)  Post-hoc differences were also detected comparing sauna/exercise (- 0.36 ± 0.11
o
C, 95% 

C.I.: - 0.07 to – 0.66, p=0.012), with exercise back temps lower than sauna, but only at 15 

min.   
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34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

oC 

baseline  15 min   30 min   45 min   

Ttymp - Control 

34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

baseline  15 min*   30 min*   45 min* 

Ttymp - IR Sauna* 

p < 0.0005 
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Figure 3 (in colour)  

Tympanic temperature measurements (
o
C) 

Measurements in subjects (n = 10) taken over time with control, infrared sauna and exercise interventions, 

color-coded by individual. Color-participant designations in Trellis graphs are maintained across all the figures. 

*Mean diff ± SEM were significant between infrared sauna and control = +1.05
o
C ± 0.12

 o
C, 95% C.I.: 0.73 – 

1.36, p < 0.0005) and between infrared sauna and exercise = +0.79
o
C ± 0.12

 o
C, 95% C.I.: 0.49 – 1.08, p < 

0.0005), at time points 15 min, 30 min, 45min, but not between exercise and control. 

 

34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

baseline  15 min   30 min    45 min   

Ttymp -Exercise 
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34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

baseline 15 min 30 min  45 min

oC 

Back Temp - Control 

34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

baseline 15 min 30 min* 45 min*

Back Temp - IR Sauna* 
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Figure 4 (in colour) 

Skin temperature measurements at the back (
o
C) 

Measurements taken at the back in subjects (n = 10) over time with control, infrared sauna and exercise 

interventions, colour-coded by individual.  * Mean differences ± SEM were significant between exercise and 

control (-0.84
o
C ± 0.12

o
C, 95% C.I.: - 0.53 to – 1.15, p < 0.001) and between sauna and control (-0.48

o
C ± 

0.12
o
C, 95% C.I.: - 0.17 to - 0.79, p = 0.002) at indicated time points, as shown by an asterisk on the axis label.  

Post-hoc differences between sauna and exercise (- 0.36
o
C ± 0.11

o
C, 95% C.I.: - 0.07 to – 0.66, p = 0.012) 

were detected, but only at the 15-min time point. 

 

3.2 Respiratory responses – RR and O2sat 

Respiratory rate (RR) and O2 saturation (O2 sat) measurements were obtained at time points 

(T0 – T3) as detailed above, with the same two participants missing control-T3 data. An 

additional participant is missing sauna-T2 data (Supplementary Table 3) due to equipment 

difficulties.  Significant time-by-intervention differences were found with RR (Wilks’ 

Lambda = 0.381, F(6,44) = 4.541, p=0.001, multivariate partial η
2
 = 0.382) but not with O2 

sat.  Post-hoc comparisons revealed increased RR at 15 min, 30 min and 45 min with exercise 

as compared to both control (mean diff = +7.66 ± SEM 1.37 breaths/min, 95% C.I.: 4.09–
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11.23, p<0.0005) and sauna (+6.66 ± 1.33 breaths/min, 95% C.I.: 3.2–10.11, p<0.0005).  No 

differences in RR were detected with sauna/control comparison (+1.01 ± 1.41 breaths/min, 

95% C.I.: - 2.65 – 4.66, p=1.000). (Fig.4) 
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Figure 5 (in colour) 

Respiratory rate (RR) in breaths/min. 

Measurements taken in subjects (n = 10) over time points with control, infrared sauna and exercise 

interventions, color-coded by individual *Mean differences in RR were significant across time between exercise 

and control interventions (mean diff = +7.66 breaths/min ± SEM 1.37 breaths/min, 95% C.I.: 4.09 – 11.23, p < 

0.0005) and between exercise and infrared sauna (+6.66 breaths/min ± 1.33 breaths/min, 95% C.I.: 3.20 – 

10.11, p < 0.0005) at specified time points*.   

 

3.3 Basic cardiovascular responses: HR, SBP, DBP, MAP 

Measurements of HR, SBP/DBP and MAP were obtained at baseline (T0), post intervention 

(T3), and during recovery (T4).  Two participants are missing control-T4 data due to early 

adjustments made to the clinical protocol. 

Consistent with the study design, HR significantly changed over time-intervention: (Wilks’ 

Lambda = 0.383, F(4,48) = 7.389, p<0.0005, multivariate partial η
2
 = 0.381).  Post-hoc 

analysis indicated increased HR with exercise/control comparisons (mean diff = +17.5 bpm ± 

SEM 4.7 bpm, 95% C.I.: 5.5–29.4, p=0.003) at post intervention and at recovery, but not with 

exercise/sauna (-7.9 ± 4.4 bpm, 95% C.I.: – 19.1 – 3.41, p=0.257), nor with sauna/control 

(+9.6 ± 4.7 bpm, 95% C.I.: -2.4–21.6, p=0.151).   

Of the blood pressures, only systolic blood pressure (SBP) demonstrated a downwards trend 

over time with both sauna and exercise as compared to control (Wilks’ Lambda = 0.635, 

F(4,48) = 3.060, p=0.025, multivariate partial η
2
 = 0.203).  However, these trends were not 

demonstrated with post-hoc analysis at any of the three timepoints. (Supplementary Fig.1) 

3.4 Pulse Wave Analysis (PWA) responses 

Both indices of arterial stiffness derived from the SphygmoCor XCEL PWA system - Central 

Augmented Pressure (AugPress) and Augmentation Index (AIx75) - were measured pre/post 

interventions (T0, T3) and during recovery (T4).  Two participants are missing control-T4 

data due to the early adjustments in the clinical protocol.  Trends were detected across 
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time/intervention in the repeated measures of AIx75 (Wilks’ Lambda = 0.549, F(4,48) = 

4.201, p=0.005, multivariate partial η
2
 = 0.259), however none were demonstrated 

statistically with post-hoc testing (mean diff ± SEM) : -4.5 ± 7.9 %mmHg, 95% C.I.: – 24.7 – 

15.7, p = 1.000 (exercise/control); -6.7 ± 7.9 %mmHg, 95% C.I.: – 26.9 – 13.6, p = 1.000 

(sauna/control), and +2.2 ± 7.4 %mmHg, 95% C.I.: – 16.9 – 21.2, p = 1.000 (exercise/sauna).  

(Supplementary Fig.2)  Inspection of estimated marginal means plots (not shown) suggested 

higher arterial stiffness trended with exercise and sauna (both compared to control) at post 

intervention (T3) but resolved by recovery (T4).  No differences were detected with repeated 

measures of AugPress: Wilks’ Lambda = 0.728, F(4,48) = 2.068, p=0.100, multivariate 

partial η
2
 = 0.147).  (Supplementary Fig.2) 

3.5 HRV responses 

Two key indices of HRV, namely RRMSD and LF/HF ratio, were calculated pre (T0) and 

post (T3) intervention.  Missing data included the control-T3-RRMSD value for participant 8 

and the control- and sauna-T0-LF/HF values for participant 2 due to inadequate capture of 

data from the Zephyr™ device and/or difficulties transforming the data with the external 

software package.  No differences in pre/post HRV responses between control, sauna and/or 

exercise were demonstrated (MANOVA - Wilks’ Lambda = 0.793, F(4,22) = 0.678, p=0.615, 

multivariate partial η
2
 = 0.110).  (Supplementary Fig.3) 

3.6 Adverse Events 

Three participants experienced adverse events during the study sessions, none of whom 

required medical intervention.  One participant experienced a brief episode of nausea and 

dizziness immediately following the exercise intervention.  Another participant complained 

of bicycle seat irritation during the first 15 minutes of the exercise intervention, but this 

resolved promptly with adjustment of the bicycle seat.  The third participant experienced mild 

dizziness after completing the infrared sauna intervention.  At follow up, she reported 
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developing a migraine headache later that same day, which resolved with rest and without the 

use of any medications.   

4. Discussion 

We report physiological findings whereby ten healthy women underwent sessions of infrared 

sauna (IR) as compared to moderate-intensity exercise and control resting sessions, utilising a 

crossover design.  Significantly higher Ttymp responses during and immediately after IR were 

experienced by the women, as compared to exercise and control. These women also 

responded with higher RR during and immediately after exercise as compared to IR and 

control. Contrary to our expectations, no significant differences in the measures of blood 

pressures, arterial stiffness or HRV were demonstrated. 

The rise in Ttymp with IR vs control (+1.05 ± 0.12
 o

C, p<0.0005) was expected.  Other studies 

have demonstrated similarly elevated core body temperatures in both men and women with 

other forms of passive heating such as Finnish/traditional saunas (15–30 min exposures at 

73–100
o
C, 5-40% RH)

27, 55-58
 or warm water immersions (1-hr exposures at 39–40

o
C 

water).
59, 60

  Only studies involving healthy athletic men and/or participants with medical 

conditions (CHF, depression, fibromyalgia) have reported such findings with infrared sources 

of whole-body heat, which generally involve lower ambient temperatures than traditional 

Finnish saunas.
61-66

  Our findings confirm these thermal relationships with infrared sauna use 

in healthy women, despite our participants being at various stages of their menstrual cycle 

during data collections, as recorded in Table 1.  This is noteworthy since premenopausal 

women are understood to have more variable body temperatures, depending upon their 

menstrual phase.
67-69

  This also suggests infrared sauna and traditional Finnish sauna 

activities may involve similar hormesis-type physiological responses, crossing 

thermoregulatory thresholds at different points along a theorized U-shaped response pattern.
70
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In measures of surface skin temperatures, we found contrasting results (as compared to 

tympanic temperatures) of lower skin temperatures at the back (Fig.4), wrists and forehead, 

most markedly with exercise.  Participants were also noted to sweat more profusely during 

the sauna vs exercise interventions, and regionally more at the back compared to the forehead 

and wrists.  The functional cooling effects of sweating plausibly explain these findings.  

These observations are consistent with studies of sweat distribution documented around 

exercise in both men and women.
71

  

The higher sauna-associated Ttymp compared to matched levels of exercising (+ 0.79 ± 

0.12
o
C, p<0.0005) is intriguing.  This concurs with findings of a study in male athletes that 

demonstrated higher core body temperatures with passive heating (infrared whole-body 

capsules at 65˚C - 80˚C) as compared to a matched group engaging in similar timing of 

exercise (interval training).
62

  This may have implications for better understanding sauna 

bathing’s purported pain-relieving and anti-inflammatory effects, similar to exercise.   

Recent discussions in the literature suggest the skeletal muscle ‘heat’ generated with exercise 

and the resultant thermoregulatory and immune-mediated responses via myokines might be 

responsible for its anti-inflammatory benefits.
60, 72

  Exercise-associated mechanisms proposed 

to support this hypothesis include the upregulation of heat shock proteins (i.e., HSP70, 

HSP72, HSP 90)
73

, altered levels of various interleukins (IL-6, IL-10, IL-1 receptor 

antagonists)
72, 74-76

 and improvements in cutaneous microvascular function via increased 

nitric oxide-dependent vasodilation,
77-80

 which have all been demonstrated to occur to the 

same degree or more with passive heat exposure.
9, 81, 82

  Distinguishing the mechanisms 

during acute engagement (i.e., our study) versus adaptive responses of habitual exposures of 

either passive heat and/or exercise, complicates comparisons and requires further study. 

The marked rise in participants’ breathing rates with exercise compared to control (+7.66 ± 

1.37 breaths/min, p<0.0005) was expected; however, absence of this during sauna compared 
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to control (+1.01 ± 1.41 breaths/min, p=1.000) is worth highlighting.  Given the rise in Ttymp 

with sauna vs control (+1.05 ± 0.12
o
C, p<0.0005), it was expected that evidence of thermal-

induced hyperpnea would be observed, as has been previously reported in the literature.
83

  

This increased respiratory drive with exercise but not sauna hints towards differences in not 

just thermoregulatory mechanisms but also differential O2 metabolism perturbations on a 

cellular (mitochondrial) or more pleotropic level, potentially involving the greater production 

of damaging reactive oxygenated species (ROS) with exercise.
84-86

   

Based on numerous prior studies, beneficial cardiovascular responses such as decreases in 

SBP/DBP and arterial stiffness were expected to be observed with the sauna and exercise 

activities.
32, 40, 55, 87-89

  Of note, these referenced studies were conducted predominantly with 

men and often involved CVD risk-afflicted populations.
32, 40, 55, 87, 88

  Yet the blood pressure 

and arterial stiffness responses of our female participants were not significantly different 

across all three interventions, including control.  However, we did not measure BPs during 

the interventions (only at baseline, immediately afterwards and post-recovery), unlike a 

recent study which tracked increases in HR and BP during a 25-min session of Finnish-style 

sauna (93
o
C, 13% RH), followed by sustained decreases in BP afterwards.

40
   

Several possibilities might explain the absence of BP and arterial stiffness differences in this 

study.  Firstly, the intensities of both the infrared heat exposure and the bicycling may have 

been too mild to induce the necessary levels of physiological stress required to modulate 

arterial compliance.  Many of the interventional studies reporting passive heat exposures 

reducing arterial stiffness (measured using multiple techniques which is a confounder) 

employed the use of traditional saunas, hot water immersions or water-immersion suits, 

representing higher thermoregulatory loads than infrared saunas.
10, 21, 23

  Secondly, the control 

activity might have resulted in unintended beneficial modulations of arterial stiffness, similar 

in degree to the effects of the sauna and exercise.  Thirdly, these results might reflect 
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differences in study populations.  The infrared sauna-based studies reporting vascular 

outcomes generally involved non-healthy populations and repeated treatments.
24, 90-93

  

Likewise, the studies demonstrating exercise-induced changes in arterial compliance involved 

athletes or the opposite spectrum – metabolically challenged populations.  This interrelates 

with findings of other studies suggesting the magnitude of heat-induced or exercise-induced 

improvements is mediated more by baseline stiffness measures (the higher the baseline 

arterial stiffness, the better the improvements) as opposed to the intensity level of 

heat/exercise.
94, 95

  These findings may also be influenced by gender, as indicated by a recent 

study demonstrating healthy young men display greater changes in arterial stiffness to aerobic 

exercise interventions than matched healthy young women.
96

   

Similar explanations may apply to our study’s unremarkable HRV findings.  We found 

minimal change (in RRMSD) or confoundingly multidirectional changes (in LF/HF ratio) 

both intra- and inter-individually.  (Supplementary Fig.3)  In the literature, episodic bouts of 

either aerobic exercise or intense heat in healthy individuals (mostly men) have been 

associated with decreased (↓) parasympathetic and increased (↑) sympathetic responses 

during the performance of these activities, as detected by HRV measurements and ANS-

blocking drug studies.
97-99

  When combined in a single session, exercise and heat stress can 

result in even greater vagal withdrawal (↓RRMSD).
100

  What happens to HRV after these 

activities (single session or repeated) in the recovery period is more controversial: ↓LF/HF 

ratio after repeated Waon infrared therapy and predominantly in men
101, 102

; ↑LF/HF ratio 

during and after Finnish sauna 
29, 30, 33, 103

; or ↑LF/HF/ ↓RRMSD during a Finnish sauna, 

followed by ↓LF/HF/ ↑RRMSD in the recovery
25

; or no changes in pre/post LF/HF ratio but 

↑RRMSD after a combination sauna (Finnish, steam and warm water immersion).
32

   

Results of other studies are difficult to compare to ours due to variations in sauna protocols 

(types/ temp/ humidity/ exposure times/ timing of outcome measures) and inconsistencies 
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with the use of control groups.  It can also be argued HRV may not be an accurate way to 

measure cardiac ANS responses due to its overly interdependent relationship with HR.
104

   

4.1 Strengths and Limitations 

Despite the small sample size, prematurely limited by COVID-19 pandemic restrictions, the 

strength of this study was its robust crossover design with participants serving as their own 

controls in outcome comparisons.  This is important since clinically validated ‘normal range’ 

values for the specialised outcome measures of arterial stiffness and HRV are still in 

development. 

We acknowledge several study limitations.  Conducting the crossover trial over 8 months 

presents the risk of overlooking seasonal effects, with outdoor temperatures in Brisbane 

ranging 13
o
C – 27

o
C over the study period.  Indoor temperature settings were catered to the 

individual participant; however, humidity levels were not so easily manipulated (range: 30 – 

75% RH) and could have impacted thermoregulatory responses.  The minimum washout 

period of 48 hours was sufficient to avoid crossover effects (by most of our statistical 

findings) yet the lack of a consistent washout period across all participants introduced 

potential time period differences.  A circadian bias was associated with conducting the 

experimental procedures in the mornings.  Although many people exercise first thing in the 

morning, fewer are known to typically engage in infrared sauna activities at this time of 

day.
36

  Another limitation was incorporating so few post-interventional time points for 

outcome assessment.  On hindsight, such omission prevented capturing the full extent (i.e., 

estimated to be hours) of physiological end-effects resulting from various ‘stress’-related 

gene expressions, as suggested by researchers studying the transcriptomic responses of blood-

based mononuclear cells, obtained from healthy volunteers passively exposed to a 15-min 

Finnish sauna session.
82

  Interestingly, the Saudi Arabian participants of this referenced study 

were reported as perceiving the sauna session as a nocebo intervention.  Even though our 
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study was conducted in a warm climate, all participants reported perceiving the sauna as a 

favorable activity, which may reflect cultural bias and placebo effects.  As well, the same 

researcher collected all the data, which might have unintendingly incorporated bias.   

4.2 Future Considerations 

The infrared sauna exposure of our study reproduced some of the thermoregulatory but not all 

the hemodynamic or ANS-associated results found with other passive heat studies.  This 

highlights the need for a more nuanced approach to evaluating clinical studies of passive 

heat, by not assuming all forms of thermal heat therapy will have equivalent cardiovascular 

or metabolic effects, especially regarding women.
57, 105

  Measuring metabolic and enzymatic 

parameters along with sweating rate and other systemic physiological measurements in 

clinical studies will also guide further understanding of mechanistic differences.  Clarifying 

such distinctions in the future will help to determine which passive heat activities are most 

beneficial for specific health-related outcomes, especially CVD-related outcomes. 

4.3 Conclusions 

The results of this study suggest the health effects of infrared sauna are driven by 

thermoregulatory adaptations, more so than exercise-mimetic hemodynamic, respiratory, or 

cardiac ANS responses.  
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Highlights 

 Physiological responses to infrared sauna and exercise were compared in women. 

 Tympanic temperatures with infrared sauna were higher compared to moderate 

exercise. 

 Exercise reduced back skin-surface temperatures more than sauna. 

 Unlike exercise, infrared sauna use did not increase breathing rates. 

 Blood pressure, arterial stiffness and HRV responses were similar.   
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