Publication I

© 1993 IEEE.

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Aalto University School’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all provisions of the copyright laws protecting it.
Development of Geophysical Retrieval Algorithms for the MIMR
Jouni Pulliainen, Juha-Petri Kärnä, and Martti Hallikainen, Fellow, IEEE

Abstract—Results from a study concerning the feasibility of spaceborne microwave radiometry to retrieval of geophysical parameters are described. The study concentrates on the development of inversion techniques for multichannel spaceborne radiometers, especially the statistical inversion approach. The basic tool in this study was the developed simulation/inversion software. Especially, the applications of the planned MIMR instrument (Multi-Frequency Imaging Microwave Radiometer) are discussed. The employed inversion algorithms are 1) conventional algorithms for different applications and 2) the statistical inversion approach (maximum likelihood inverse solver). Comparisons between results from different inversion algorithms have also been carried out. The statistical inversion approach has been found to give promising parameter retrieval accuracies and is a potential tool to improve the operational use of passive spaceborne remote sensing. Additionally, sensitivity analysis of the radiometer apparent temperature to different geophysical parameters and the statistical behavior of the atmospheric transmissivity are presented.

Keywords—Spaceborne radiometry, passive microwave remote sensing, simulation software, inversion algorithm.

I. INTRODUCTION

THE European Space Agency (ESA) develops the Multi-Frequency Imaging Microwave Radiometer (MIMR) for global research of the Earth’s surface and atmosphere, scheduled for launch in the late 1990’s. The MIMR will operate at six frequencies between 6.8 and 89 GHz, Table I [1]. The swath width is 1400 km, and the incidence angle is 50° off nadir. In order to fully employ the capabilities of the MIMR in Earth observation, dedicated inversion algorithms have to be developed.

The brightness temperature of a target depends on its physical temperature, surface geometry, and dielectric and extinction properties. Retrieval of a geophysical quantity from spaceborne radiometer data is possible if the effects of other parameters to the brightness temperature can be eliminated. When frequencies above 5 GHz are used, even the atmospheric effects have to be considered. In addition to target parameters, a variety of instrument parameters strongly affect the brightness temperature. These parameters include frequency, polarization, and angle of incidence.

The main applications discussed in this paper are retrieval of 1) ocean surface parameters (sea surface temperature, wind speed, sea ice concentration), and 2) land parameters (snow extent, snow water equivalent, soil moisture). The retrieval methods are applicable to the MIMR. The main emphasis is on the statistical inversion approach, in which the inverse solution of the model representing the actual measurement is searched [2], [3]. The inverse solution is the one having the maximum likelihood of all the possible solutions.

TABLE I

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Pixel size (km \times km)</th>
<th>Accuracy (K)</th>
<th>Sensitivity (K)</th>
<th>Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>60 \times 60</td>
<td>1.0</td>
<td>0.2</td>
<td>vertical, horizontal</td>
</tr>
<tr>
<td>10.65</td>
<td>38 \times 38</td>
<td>1.0</td>
<td>0.4</td>
<td>vertical, horizontal</td>
</tr>
<tr>
<td>18.7</td>
<td>22 \times 22</td>
<td>1.5</td>
<td>0.5</td>
<td>vertical, horizontal</td>
</tr>
<tr>
<td>23.8</td>
<td>20 \times 20</td>
<td>1.5</td>
<td>0.5</td>
<td>vertical, horizontal</td>
</tr>
<tr>
<td>36.5</td>
<td>11.6 \times 11.6</td>
<td>1.5</td>
<td>0.5</td>
<td>vertical, horizontal</td>
</tr>
<tr>
<td>89</td>
<td>4.9 \times 4.9</td>
<td>1.5</td>
<td>0.7</td>
<td>vertical, horizontal</td>
</tr>
</tbody>
</table>

The basic equation for calculating the apparent temperature observed from space is

\[T_a(f, \theta) = e_{s,p}(f, \theta)T_s(f, \theta) + T_{a,\text{atmos}} \uparrow + T_{a,\text{atmos}} \downarrow (1 - e_{s,p}(f, \theta)) t(f, \theta) + 2.7(t(f, \theta))^2 (1 - e_{s,p}(f, \theta)) \]

where

- \(e_{s,p} \) = surface emissivity,
- \(T_s \) = temperature of the surface,
- \(T_{a,\text{atmos}} \uparrow \) = up-welling atmospheric apparent temperature,
- \(T_{a,\text{atmos}} \downarrow \) = down-welling atmospheric apparent temperature,
- \(t \) = transmissivity of atmosphere,
- \(p \) = polarization,
- \(\theta \) = angle of incidence, and
- \(f \) = frequency.

A simulation/inversion software of a spaceborne radiometer sensor is a system that a) calculates the apparent temperatures according to (1) at the instrument’s frequencies of operation,
and b) employs specific inversion algorithms for the retrieval of geophysical parameters of interest. It can be utilized in the development and testing of inversion algorithms and, additionally, in the analysis of sensitivities of apparent temperatures for different geophysical parameters. Thus, a simulation/inversion software is a basic tool for the prelaunch evaluation of a spaceborne radiometer system.

The developed software simulates the microwave emission from the ocean, sea ice, snow-covered, and vegetation-covered land at the frequencies of the MIMR instrument. It uses theoretical, semi-empirical and empirical emission models.

A. Surface Emissivities

The following emission models were selected for the simulation of surface emissivity, $e_{s,p}(f,\theta)$ in (1):

- Pandey’s model [4] for ocean surface,
- HUT (Helsinki University of Technology) model [5] for snow-covered land,
- Kerr’s model [6] for vegetation-covered land,
- constant emissivity values for different ice types [7].

The current emission models for ocean surface work rather well in their specific validity area. The empirical Pandey’s model was selected because of its simple mathematical formulation which makes it suitable for the statistical inversion method. The main restriction of the model, when compared, e.g., with Wilheit’s model [8], is the frequency range of operation, which only extends up to 37 GHz.

Most snow models lack validation, due to difficulties in snow modeling, including 1) influence of numerous parameters on the microwave behavior of the snow layer, and 2) rapid changes of the values of these parameters with time and weather. The used emission model for snow is the semi-empirical HUT (Helsinki University of Technology) model which relies on experimental data from ground-based radiometer measurements with extensive ground truth. Kerr’s semi-empirical model for vegetation land takes into account the effects of all relevant surface and vegetation layer (grass or corn) parameters. These parameters are: soil moisture, soil roughness, soil type, soil temperature, vegetation water content, vegetation albedo, canopy type, fractional coverage of vegetation, and vegetation effective temperature. The main limitation of the model is that it works well only up to 10 GHz. At higher frequencies the effect of surface roughness is not known. The dielectric constant of soil is calculated using the equations of Hallikainen et al. [9]. Additionally, the effect of forest canopy cover can be simulated by using surface emissivity correction coefficients that are based on experimental data [10].

None of the existing models, neither theoretical nor empirical, provide good accuracy for sea ice emissivity. Therefore, constant empirical values for the emissivity of different ice types are employed, Table II. The fundamental problem is the complex and relatively rapidly changing medium. Additionally, some of the physical parameters that have a major effect on the emissivity behavior, may vary considerably within the same ice type (locally or with time). Therefore, the behavior of parameters needed for sea ice microwave models is not well known. Especially, the statistical properties of the surface roughness and correlation length are almost totally uninvestigated. Presently, only the dielectric properties are known to some extent [11], [12].

B. Atmospheric Emissivity and Transmissivity

Lieber’s MPM [13], [14] model for the atmospheric absorption and extinction coefficients has been found to be the most suitable of the present microwave models to be used in the radiative transfer equation of the atmosphere [15]. It works well, especially at higher millimeter wave frequencies (up to 1000 GHz). The basic problem with all atmosphere models is validation. The current extinction and absorption coefficient models are semi-empirical, since the nature of continuum nonresonant absorption of gases is not fully understood [2].

Atmospheric emissivities and transmissivity, $T_{a\text{atmos}}(\theta)$ and $t(f, \theta)$ in Equation (1), are simulated by employing Liebe’s model. Alternatively, the atmospheric parameters can be determined by using statistical transmissivity values. The following equations (2), (3), and (7)–(9) determine atmospheric emissivities and transmissivity when Liebe’s model is employed, and (4)–(6) determine these parameters when statistical transmissivity values are used in the apparent temperature simulation.

The apparent temperature of the atmosphere seen from space at the altitude H is

$$T_{a\text{atmos}}(H, \theta) = \sec \theta \int_0^H \kappa_a(z) T(z) e^{-\kappa_a(z,H) \sec \theta} dz$$

(2)

where κ_a is the absorption coefficient and $T(z)$ is the physical temperature of the atmosphere at height z. An analogous notation can be written for the down-welling temperature. The extinction term $\kappa_a(z,H)$ is

$$\kappa_a(z,H) = \int_z^H \kappa_a(z') dz'$$

(3)

The up-welling apparent temperature can also be written as

$$T_{a\text{atmos}} = \alpha_1 T_s (1 - t)$$

(4)

and an analogous notation can be written for the down-welling temperature. α_1 is the approximate atmospheric profile factor.
for determining the effective up-welling temperature αT_w of the atmosphere [16]:

$$\alpha = -0.073t^2 + 0.101t + 0.918.$$

(5)

Respectively, the profile factor for the downwelling temperature αT_w is [16]

$$\alpha = -0.035t^2 + 0.014t + 0.967.$$

(6)

The extinction coefficient κ_e is related to the transmissivity t by

$$t = e^{-\kappa_e H_w} \int_0^H n_e(z)dz.$$

(7)

In order to calculate the absorption coefficients at different heights, the temperature and pressure profiles of the atmosphere are needed. The pressure profile used is [17]

$$p(z) = p_0 e^{-z/H_p},$$

(8)

where $p_0 = \text{pressure at the ground level}$,

$H_p = \text{pressure scale height (7.7 km)}$.

The temperature profile used in this paper is for the standard Finnish atmosphere. It is a linear model in which the atmosphere is divided into three layers. In the pressure and water vapor models the values of the scale height of the standard Finnish atmosphere are used. Similar models for atmospheric temperature and pressure profiles for different latitude zones can be found in Damosso et al. [18].

The density of water vapor is assumed to decrease exponentially with the scale height H_{wv} (2.35 km according to the standard Finnish atmosphere), as

$$\rho(z) = \rho_0 e^{-z/H_{wv}},$$

(9)

where ρ_0 is the ground level density.

The statistical values of the atmospheric transmissivity were retrieved from the propagation studies of Salonen et al. [15]. It gives the distribution of the atmospheric attenuation at 20, 30, 40, and 50 GHz. From these values the atmospheric transmissivities to be achieved for certain percentages of time have been calculated for the frequency band of 6 to 100 GHz using the Liebe’s model, Fig. 1. The weather dependent statistical behavior of the apparent temperature is simulated by applying these values to (1) and (4)-(6).

An example of the program output of the emission calculation is in Fig. 2, which depicts a workstation screen during a program run. Separate lines represent different atmospheric transmissivities showing the effect of different atmospheric conditions. The effect of lower transmissivity on the higher frequency channels 4 (23.8 GHz), 5 (36.5 GHz), and 6 (89 GHz) can be clearly seen.

III. INVERSION ALGORITHMS

A. Algorithms from Literature

Inversion algorithms for the above-mentioned atmospheric, ocean, snow, sea ice, and vegetation applications have been obtained from the literature. These algorithms are used in the developed simulation/inversion software, and their accuracy and confidence level have been tested. The algorithms are based on measurements or simulated data, using, e.g., the statistical multiple regression, and they are mathematically rather simple. The most usual forms are linear and logarithmic algorithms. Linear algorithms are valid if the atmospheric opacity is expected to be much less than one, i.e., the transmissivity value is near one. A logarithmic algorithm, in which the logarithm is taken from the subtraction of the apparent temperature and the surface temperature, takes the atmospheric conditions into account in a more advanced way [17]. Thus, it can be used for larger opacities.

The inversion algorithms implemented are:

- Miller’s algorithm [19] for ocean surface wind speed,
- Wilheit’s algorithm [20] for rain rate over the ocean,
- SPD algorithm [16] and Künzi’s [21] algorithm for snow water equivalent,
- Swift’s algorithm [22] for sea ice concentration,

For soil moisture there are presently no advanced algorithms applicable to the MIMR. A low frequency channel (around 1.4 GHz) is desirable for soil moisture retrieval.

B. Statistical Inversion

Our development of inversion algorithms was concentrated on the so called statistical inversion approach (applied to the MIMR). The statistical inversion approach involves an algorithm based on the search of an inverse solution for the model representing the actual measurement [2], [3]. The used maximum likelihood inverse solver uses a nonlinear least-squares fitting method (Levenberg–Marquard) for fitting the model into the results of multichannel measurements. The minimizing problem is
Fig. 2. Program screen showing emission calculation using statistical atmosphere and a subsequent inversion. Apparent temperatures are calculated for sea ice at horizontal and vertical polarizations using the statistical atmosphere model. On both polarizations there are ten separate apparent temperature vectors corresponding to ten separate atmosphere transmissivity conditions. The word “worst” denotes the lowest transmissivity condition.

\[
\text{Minimize } \sum_{i=1}^{12} \frac{1}{2\lambda_i^2} (g_i(x_1, x_2, \ldots, x_n) - (T_{a_i}))^2 + \sum_{j=1}^{n} \frac{1}{2\lambda_j^2} (\hat{x}_j - \hat{x}_j)^2, \tag{10}
\]

where

\(g_i \) = model representing the apparent temperature at the ith channel according to (1),

\((T_{a_i})_i\) = apparent temperature at the ith channel, measured from space,

\(x_1, \ldots, x_n \) = model parameters, which include the geophysical parameters of interest,

\(\hat{x}_j \) = average value of the jth model parameter (a priori information),

\(\lambda_j \) = standard deviation of the jth model parameter (a priori information),

\(\sigma \) = standard deviation of (Gaussian) measurement noise.

The initial values for the model parameters, \(x_1, x_2, \ldots, x_n \), are obtained from previously mentioned inversion algorithms or, in case no algorithm exists, they are set to default values (expected values according to a priori information). It is also possible to use absolute limits for certain model parameters, e.g., wind speed \(\geq 0 \) m/s, etc.

The developed technique is a unified method for retrieval of the geophysical parameters of any surface type. The algorithm solves a parameter set containing all the parameters relevant for the apparent temperature measured from space.

The surface emissivity is defined by empirical or theoretical emission models (see Section II). The method allows the utilization of a priori information on any parameter related to the radiometer measurement. The additional sum term in (10) takes into account a priori information on a Gaussian distributed parameter.

For the atmospheric transmissivity, a statistical principal component model is utilized. This model was developed for the MIMR frequencies by employing the curves of Fig. 1. The principal component model allows the reduction of the
TABLE III

<table>
<thead>
<tr>
<th>Freq. (GHz)</th>
<th>6.8</th>
<th>10.65</th>
<th>18.7</th>
<th>23.8</th>
<th>36.5</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_i^2)</td>
<td>0.9851</td>
<td>0.9795</td>
<td>0.9390</td>
<td>0.8637</td>
<td>0.8731</td>
<td>0.6813</td>
</tr>
<tr>
<td>(t_i^2)</td>
<td>0.0088</td>
<td>0.0275</td>
<td>0.1582</td>
<td>0.3851</td>
<td>0.2652</td>
<td>0.8692</td>
</tr>
<tr>
<td>(r_i^2)</td>
<td>0.0178</td>
<td>0.0124</td>
<td>-0.2456</td>
<td>-0.8753</td>
<td>0.0733</td>
<td>0.4096</td>
</tr>
</tbody>
</table>

statistical atmospheric transmissivity behavior in the model representing the measurement into only one free parameter (a six-component vector according to six frequencies of the MIMR). Thus, (10) can be expressed (when a priori information is excluded for convenience) as

\[
\text{Minimize } \sum_{i=1}^{12} \frac{1}{2\sigma_i^2} (g_i(x_1, \ldots, x_n, \alpha, \gamma^1) - (T_{au})_i)^2
\]

where

\(\alpha \) = atmospheric profile factor that contains information about the pressure, water content, etc. of the atmosphere; and

\(\gamma^1 \) = scalar variable (value of the first atmospheric transmissivity principal component).

The factor \(\alpha \) is assumed to be the same in both upward and downward direction, which is a fair approximation (refer to (5) and (6)). According to (1) the emission model \(g \) may be written

\[
g_i(x_1, \ldots, x_n, \alpha, \gamma^1) = e_i(x_1, \ldots, x_n)T_{uk}(\gamma^1)
+ \alpha T_{uk}(1 - t_k(\gamma^1))
+ \alpha T_{uk}(1 - e_i(x_1, \ldots, x_n))t_k(\gamma^1)(1 - t_k(\gamma^1))
+ 2.7(1 - e_i(x_1, \ldots, x_n))t_k(\gamma^1)^2
\]

where \(t_k \) is the atmospheric transmissivity at the 6th frequency obtained by the statistical principal component model:

\[
t_k(\gamma^1) = t_k^0 + \gamma^1 t_k^1, \quad k = 1, \ldots, 6
\]

where

\(t_k^0 \) = average atmospheric transmissivity vector (average values at the six MIMR frequencies),

\(\gamma^1 \) = a scalar variable and

\(t_k^1 \) = the first principal component of the atmospheric transmissivity vector:

\[
t_k^1 = (t_k^1, t_k^2, \ldots, t_k^6)^T.
\]

The principal components of the atmospheric transmissivity have been retrieved by principal component regression for the transmissivity values of Fig. 1 [25], [2]. The basic idea is to find the orthonormal system optimally in the sense that only the first few components are needed to approximate the atmospheric transmissivity behavior satisfactorily in the square mean sense (the first one is sufficient in this case). Table III gives the obtained atmospheric transmissivity components \(t_k^1, t_k^2 \) and, additionally, the second principal component \(t_k^2 \) for southern Finland.

IV. SOFTWARE IMPLEMENTATION

The software was implemented in the UNIX environment using C language and X Window System for the graphics output. The software was also ported to MS-DOS environment.

The software includes emission simulation and inversion modules. The emission calculation can also be entirely skipped by reading the apparent temperature values from a file in order to use measured data. The inversion module employs either conventional algorithms or the statistical inversion. In the statistical inversion, Levenberg–Marquardt method [26] is used for solving the minimizing problem.

The software allows one to investigate the sensitivity of the inversion algorithms to the system noise by using the Monte Carlo noise simulation. In this method random noise is added to the apparent temperature values, after which inversion is performed.

Fig. 2 depicts a snapshot of the workstation screen which has windows showing the apparent temperature values and inversion result histograms.

The user can change both the frequencies and the number of channels in order to use the software for simulating other radiometers as well, keeping in mind the validity area of the emission models and inversion algorithms.

V. SENSITIVITY OF THE APPARENT TEMPERATURE TO GEOPHYSICAL PARAMETERS

A. Mathematical Basis for Sensitivity Analysis

Sensitivity analysis of the apparent temperature reveals the quantitative effects of different parameters affecting the measurement, i.e., the effects of the parameters of interest and the disturbing parameters. Therefore, it is an essential part of developing inversion techniques and necessary for the selection of instrument characteristics. Sensitivity is defined as

\[
S = \frac{\partial T_{au}}{\partial x}
\]

where \(T_{au} \) is the apparent temperature and \(x \) is an affecting parameter.

The sensitivity analysis discussed below was performed by using (1) to (9). The microwave parameters \(e_x \) and \(t \) in (1) and (4)–(6) were determined from the models and statistical transmissivity data discussed in Section II. Additionally, the exact radiative transfer model given in (2) and (3), and a similar formula for the down-welling temperature, both applied to (1), were employed.

B. Examples of Results

The sensitivity of the apparent temperature to the near surface wind speed (at the height of 20 m above sea level, incidence angle 50°) is illustrated in Fig. 3. The sensitivity is obtained from

\[
\frac{dT_{au}}{dW} = \frac{de_x}{dW}(T_{us} - \alpha_1 T_{au}(1 - t) - 2.7t^2)
\]

where \(W \) is the wind speed. The surface emissivity \(e_x \) is a function of wind speed and is given by Pandey’s model [4].
The results are shown for three transmissivities exceeded 15\%, 55\%, and 95\% of time. The results show clearly the increasing effect of atmospheric disturbance when the frequency exceeds 15 GHz and thus the application of the four highest MIMR frequencies for determining the wind speed becomes questionable. The transmissivity values, used in the analysis, apply to northern latitudes (50°–70°) [15].

A similar approach has been used in Fig. 4, which shows the change of the apparent temperature when the observed surface changes from multiyear ice to first-year ice. The emissivities used for the ice types are depicted in Table II. The figure indicates the potential capability of the 89 GHz channels for distinguishing multiyear ice from first-year ice. However, the graphs also demonstrate that in order to acquire reliable results at 89 GHz the atmospheric effects should be properly eliminated.

The sensitivity of the apparent temperature to the grain size is presented in Fig. 5. The sensitivity (\(S_d \), [K/mm]) is calculated using the HUT snow model and the following equation:

\[
S_d = \frac{T_{\text{al}}(d = 0.4\,\text{mm}) - T_{\text{al}}(d = 1.2\,\text{mm})}{(0.4 - 1.2)\,\text{mm}}
\]

(17)

The following assumptions are used in the calculations:
- emissivities of ground at different frequencies are those presented in [24] for frozen ground
- temperature of ground = −1°C
- grain diameter \(d = 0.8 \) mm
- density of snow = 0.24 g/cm³
- snow surface roughness = 0.0 mm
- no vegetation is present
- the transmissivity and the brightness temperature of the atmosphere have been calculated using Liebe’s model for (2) and (3). The standard atmosphere measured at Jokioinen in southern Finland in January and the following surface parameters are used:
 - pressure = 1013 mbar
 - temperature = −5°C
 - humidity = 80%.

The results for snow show the strong dependence of the apparent temperature to the grain size at 18.7 GHz, 36.5 GHz and also at 89 GHz (when the water equivalent is smaller than 20 mm). The high sensitivity deteriorates the accuracy of snow water equivalent retrieval when the grain size cannot be estimated properly. The results also indicate the potential of the 89 GHz channels for determining the snow extent. Recent experimental results on SSM/I 85 GHz channel are encouraging [27].

C. Summary of the Sensitivities

Table IV summarizes the quantitative effects of different surface parameters to the apparent temperature observed by a spaceborne sensor. The table shows the change of the apparent temperature caused by a change in a single parameter value. The other parameters remain constant (same as those used in Figs. 3–5). The used parameter value ranges are close...
to retrieval accuracies required by end users. The apparent
temperature changes are divided into three categories: weak
(change is smaller than 2K), moderate (between 2K and 8K)
and strong (more than 8K). For comparison, the magnitude of
atmospheric disturbance is presented. The disturbance level is
the change of the apparent temperature caused by the change of
the atmospheric transmissivity value from the value exceeded
95% of time to the value exceeded 15% of time (see Fig.
1). Comparison of atmospheric disturbance level with the
sensitivity to each target parameter in Table IV shows that in
several cases atmospheric effects are stronger than the effects
of the target parameters.

VI. COMPARISON OF INVERSION ALGORITHMS

The evaluated inversion algorithms include (1) the sta-
tistical inversion approach and (2) the conventional algorithms
described in Section III.

The apparent temperatures at MIMR channels have been
simulated by the developed simulation/inversion software. For
the surface parameter algorithm testing the simulations have
been carried out using both 1) precisely defined average
atmospheric conditions (and Liebe’s model); and 2) statistical
atmosphere parameters according to Fig. 1. Table V shows

<table>
<thead>
<tr>
<th>Application</th>
<th>run</th>
<th>Convolutional algorithm</th>
<th>Statistical inversion</th>
</tr>
</thead>
</table>
| Ocean surface wind speed [m/s] 1-4 (M/s) <2 (<2) 1 1
| Ocean surface temperature [°C] 10-20 (°C) 10-20 1-2
| Total ice concentration [%] 4-5 4-5 0-1
| Multiyear ice concentration [%] 10-25 (°C) 10-25 5-50
| Snow water equivalent [cm] 3-50 (cm) 3-50 (*), 3-50

(*) Typical values from Smith’s algorithm according to [7].

VI. COMPARISON OF INVERSION ALGORITHMS

The evaluated inversion algorithms include (1) the sta-
tistical inversion approach and (2) the conventional algorithms
described in Section III.

The apparent temperatures at MIMR channels have been
simulated by the developed simulation/inversion software. For
the surface parameter algorithm testing the simulations have
been carried out using both 1) precisely defined average
atmospheric conditions (and Liebe’s model); and 2) statistical
atmosphere parameters according to Fig. 1. Table V shows

<table>
<thead>
<tr>
<th>Application</th>
<th>run</th>
<th>Convolutional algorithm</th>
<th>Statistical inversion</th>
</tr>
</thead>
</table>
| Ocean surface wind speed [m/s] 1-4 (M/s) <2 (<2) 1 1
| Ocean surface temperature [°C] 10-20 (°C) 10-20 1-2
| Total ice concentration [%] 4-5 4-5 0-1
| Multiyear ice concentration [%] 10-25 (°C) 10-25 5-50
| Snow water equivalent [cm] 3-50 (cm) 3-50 (*), 3-50

(*) Typical values from Smith’s algorithm according to [7].

VI. COMPARISON OF INVERSION ALGORITHMS

The evaluated inversion algorithms include (1) the sta-
tistical inversion approach and (2) the conventional algorithms
described in Section III.

The apparent temperatures at MIMR channels have been
simulated by the developed simulation/inversion software. For
the surface parameter algorithm testing the simulations have
been carried out using both 1) precisely defined average
atmospheric conditions (and Liebe’s model); and 2) statistical
atmosphere parameters according to Fig. 1. Table V shows

<table>
<thead>
<tr>
<th>Application</th>
<th>run</th>
<th>Convolutional algorithm</th>
<th>Statistical inversion</th>
</tr>
</thead>
</table>
| Ocean surface wind speed [m/s] 1-4 (M/s) <2 (<2) 1 1
| Ocean surface temperature [°C] 10-20 (°C) 10-20 1-2
| Total ice concentration [%] 4-5 4-5 0-1
| Multiyear ice concentration [%] 10-25 (°C) 10-25 5-50
| Snow water equivalent [cm] 3-50 (cm) 3-50 (*), 3-50

(*) Typical values from Smith’s algorithm according to [7].

VI. COMPARISON OF INVERSION ALGORITHMS

The evaluated inversion algorithms include (1) the sta-
tistical inversion approach and (2) the conventional algorithms
described in Section III.

The apparent temperatures at MIMR channels have been
simulated by the developed simulation/inversion software. For
the surface parameter algorithm testing the simulations have
been carried out using both 1) precisely defined average
atmospheric conditions (and Liebe’s model); and 2) statistical
atmosphere parameters according to Fig. 1. Table V shows

<table>
<thead>
<tr>
<th>Application</th>
<th>run</th>
<th>Convolutional algorithm</th>
<th>Statistical inversion</th>
</tr>
</thead>
</table>
| Ocean surface wind speed [m/s] 1-4 (M/s) <2 (<2) 1 1
| Ocean surface temperature [°C] 10-20 (°C) 10-20 1-2
| Total ice concentration [%] 4-5 4-5 0-1
| Multiyear ice concentration [%] 10-25 (°C) 10-25 5-50
| Snow water equivalent [cm] 3-50 (cm) 3-50 (*), 3-50

(*) Typical values from Smith’s algorithm according to [7].

VI. COMPARISON OF INVERSION ALGORITHMS

The evaluated inversion algorithms include (1) the sta-
tistical inversion approach and (2) the conventional algorithms
described in Section III.

The apparent temperatures at MIMR channels have been
simulated by the developed simulation/inversion software. For
the surface parameter algorithm testing the simulations have
been carried out using both 1) precisely defined average
atmospheric conditions (and Liebe’s model); and 2) statistical
atmosphere parameters according to Fig. 1. Table V shows

<table>
<thead>
<tr>
<th>Application</th>
<th>run</th>
<th>Convolutional algorithm</th>
<th>Statistical inversion</th>
</tr>
</thead>
</table>
| Ocean surface wind speed [m/s] 1-4 (M/s) <2 (<2) 1 1
| Ocean surface temperature [°C] 10-20 (°C) 10-20 1-2
| Total ice concentration [%] 4-5 4-5 0-1
| Multiyear ice concentration [%] 10-25 (°C) 10-25 5-50
| Snow water equivalent [cm] 3-50 (cm) 3-50 (*), 3-50

(*) Typical values from Smith’s algorithm according to [7].
Fig. 6. Effect of Gaussian noise to retrieval accuracy of wind speed (statistical inversion approach).

Fig. 7. Inversion error distributions for wind speed retrieval (statistical inversion approach) at different levels of Gaussian noise. The distributions are determined by Monte Carlo noise simulation. a) Noise deviation 1 K. b) Noise deviation 2.5 K. c) Noise deviation 4 K.

the test runs was from 0 to 20 m/s, and the temperature range was from 0 to 20°C.

Swift’s algorithm appears to be the most suitable conventional algorithm for mapping ice type concentration [7]. The conclusion from the comparison between Swift’s algorithm and the statistical inversion approach is that the statistical method seems to be more accurate for sea ice applications (Table V). See also Table VI for total ice concentration retrieval error distribution for statistical inversion approach under different conditions. However, comparison and testing of the algorithms using experimental data with proper ground truth data is needed. These data can be obtained with airborne or spaceborne instruments.

The two conventional algorithms, SPD and Künzi’s algorithm [16], [21], gave relatively good retrieval results in the conducted test runs for snow water equivalent retrieval, the smallest rms errors being about 10 mm (Table V). However, this accuracy is not realistic for satellite-borne measurements, mainly due to the poor spatial resolution of a spaceborne instrument. Test runs of the statistical inversion approach were carried out both using and without using a priori information on grain size (diameter mean values with 0.2 mm maximum offset and 0.2 mm standard deviation, (19)). The following conclusions can be drawn from the test run results of the statistical inversion approach applied to snow cover:

1) With appropriate a priori information the statistical approach gives good accuracy (better than the conventional algorithms).

2) If no a priori information is available or if a priori information is not accurate enough, the statistical approach may give poor results.

The snow water equivalent range used in test runs was from 25 to 100 mm. This corresponds to regular snow conditions in southern Finland.

The statistical inversion approach was the only available method to be used for vegetated land. Its basic problem is the large number of parameters involved in the emission behavior. Especially, the effect of the soil surface roughness tends to handicap the determination of soil moisture. The effect of other parameters is smaller, since errors in the vegetation water content and vegetation cover fraction may compensate each other, and effects of clay and sand content fractions are minimal. Therefore, prior information on the surface roughness should be available in order to get reliable estimates for the soil moisture.

A. Conclusions on the Statistical Inversion Approach

The used statistical inversion method gives accurate estimates when the number of parameters contributing to the emission behavior is small (see (10)–(12)). When the parameter set is large the method may give poor results. In practice, vegetated or snow-covered land belongs to the latter class, whereas ocean and ice-covered sea belong to the former category.

In ocean and sea ice applications the number of model parameters is 2 or 3, plus one atmosphere parameter σ (atmospheric profile factor α of (12) has been set to a constant value). The parameters for open sea are wind speed and temperature (the effect of salinity is negligible) and for sea ice they are temperature, total ice concentration, and multiyear ice fraction. The conducted test runs show that in this case the statistical method gives more accurate results than the conventional methods.
In land applications the number of important surface parameters is 6 to 8. For snow-covered terrain they include snow water equivalent, snow density, grain size, snow temperature, surface roughness, and forest cover fraction (and forest type). For snow-free terrain they include soil moisture, soil temperature, canopy cover fraction, vegetation water content, vegetation temperature, and surface roughness. Most of these parameters are variables to be determined with the algorithm, and some of them are treated with constant default values. The test runs indicate that a large number of affecting parameters decreases the accuracy of the method. However, if statistical a priori information on the parameters is available, the statistical approach works better. Furthermore, if studies concerning the (statistical) relations of different effective parameters were undertaken, the number of parameters could be reduced, and thus, the accuracy would increase.

The effect of measurement noise to the statistical inversion algorithm is demonstrated in Figs. 6 and 7. These figures are calculated for the case of wind speed retrieval, but the behavior is similar also for other applications. The figures imply that the sensitivity of statistical inversion to the Gaussian measurement noise is not drastic with the practical measurement accuracies of spaceborne sensors. This is an expected result, since all the channels sensitive to different geophysical parameters are employed.

The benefits of the used statistical inversion method, and the aspects that make it a unified inversion technique are the following:

- It can be used for any application area (if there is a modeling approach for the measurements: theoretical, empirical or statistical).
- It can be used with any set of channels (polarizations or frequencies).
- Multiple instrument approach can be adopted easily.
- Statistical a priori information can be employed.
- Range limits for parameter values can be easily set.
- Atmospheric effects (disturbances) have been reduced into one free parameter (by a statistical principal component model), which increases the method’s reliability of resolving the surface parameters of interest.

The major limitations of the used statistical inversion system include the following viewpoints:

- The current system was not implemented for atmospheric applications.
- In land surface applications the number of important parameters is large and their statistical behavior is poorly known; the same applies to the relations between the individual parameters. Thus, the applicability of the current system for land surfaces is relatively poor.
- Misleading a priori information (wrong mean value of a parameter assumed to be known) may cause a large error, refer to rms error values for snow given in Table V.

VII. CONCLUSIONS

The performed sensitivity analysis of the apparent temperature implies the potential of the 89 GHz channels of the MIMR especially for improving discrimination of first-year ice from multiyear ice. That frequency can also be beneficial for snow applications, especially for eliminating grain size effects and detecting shallow snow. Additionally, our sensitivity analysis shows the atmospheric disturbance levels for different applications and their statistical distributions. These aspects have been taken into account insufficiently in most of the present inversion algorithms. The statistical distributions were determined using the transmissivity statistics obtained for conditions of southern Finland.

The development and testing of inversion algorithms (all applicable for the MIMR) was concentrated on a unified statistical inversion approach. An advantage of this approach is the use of all measured information at various channels. A novel feature of our algorithm is the reduction of the number of atmospheric parameters with a statistical model developed for the MIMR frequencies. This improves the accuracy of the method, since the number of affecting parameters is a critical factor. The statistical inversion approach has been shown to be promising particularly for ocean and sea ice applications. For land applications the accuracies needed by the end users are difficult to obtain with the statistical approach as well as with the conventional algorithms. That is mainly due to the large number of parameters influencing the emission behavior.

ACKNOWLEDGMENT

The ESA technical management of the project has been under Maurice Borgeaud. The authors wish also thank Ville Jäskeläinen for Fig. 5 and Erkki Somersalo for his contribution in the development of the statistical inversion approach.

REFERENCES

Jouni T. Pulliainen was born in Imatra, Finland, in 1964. He received the M.Sc. degree and the Licentiate in Technology degree from the Helsinki University of Technology, Faculty of Electrical Engineering, in 1988 and 1991, respectively. He is a research scientist at the Helsinki University of Technology, Laboratory of Space Technology. His research interests include microwave remote sensing applications and technology. Recently, his work has been emphasized on the active remote sensing of forests.

Juha-Petri Kärnä was born in Helsinki, Finland, in 1965. He received the M.Sc. degree from the Helsinki University of Technology, Faculty of Electrical Engineering, in 1990. He is currently a research scientist with the Technical Research Centre of Finland, Instrument Laboratory, Section for Remote Sensing. His research interests include microwave remote sensing, analysis of remotely sensed images and software engineering.

Marti Hallikainen (M'83-SM'85-F'93), for a photograph and biography, please see page 168 of this issue of the TRANSACTIONS.