
Echidna: Effective, Usable, and Fast Fuzzing for Smart Contracts
Gustavo Grieco
Trail of Bits, USA

Will Song
Trail of Bits, USA

Artur Cygan
Trail of Bits, USA

Josselin Feist
Trail of Bits, USA

Alex Groce
Northern Arizona University, USA

ABSTRACT
Ethereum smart contracts—autonomous programs that run on a
blockchain—often control transactions of financial and intellectual
property. Because of the critical role they play, smart contracts need
complete, comprehensive, and effective test generation. This paper
introduces an open-source smart contract fuzzer called Echidna that
makes it easy to automatically generate tests to detect violations in
assertions and custom properties. Echidna is easy to install and does
not require a complex configuration or deployment of contracts
to a local blockchain. It offers responsive feedback, captures many
property violations, and its default settings are calibrated based on
experimental data. To date, Echidna has been used in more than
10 large paid security audits, and feedback from those audits has
driven the features and user experience of Echidna, both in terms of
practical usability (e.g., smart contract frameworks like Truffle and
Embark) and test generation strategies. Echidna aims to be good at
finding real bugs in smart contracts, with minimal user effort and
maximal speed.

CCS CONCEPTS
• Software and its engineering → Dynamic analysis; Soft-
ware testing and debugging.

KEYWORDS
smart contracts, fuzzing, test generation
ACM Reference Format:
Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.
2020. Echidna: Effective, Usable, and Fast Fuzzing for Smart Contracts. In
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’20), July 18–22, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3395363.3404366

1 INTRODUCTION
Smart contracts for the Ethereum blockchain [5], usually written
in the Solidity language [25], facilitate and verify high-value finan-
cial transactions, as well as track physical goods and intellectual
property. Thus, it is essential that these programs be correct and
secure, which is not always the case [4]. Recent work surveying
and categorizing flaws in critical contracts [11] established that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3404366

fuzzing using custom user-defined properties might detect up to
63% of the most severe and exploitable flaws in contracts. This sug-
gests an important need for high-quality, easy-to-use fuzzing for
smart contract developers and security auditors. Echidna [23] is an
open-source Ethereum smart contract fuzzer. Rather than relying
on a fixed set of pre-defined bug oracles to detect vulnerabilities
during fuzzing campaigns, Echidna supports three types of proper-
ties: (1) user-defined properties (for property-based testing [7]), (2)
assertion checking, and (3) gas use estimation. Currently, Echidna
can test both Solidity and Vyper smart contracts, and supports most
contract development frameworks, including Truffle and Embark.
Echidna has been used by Trail of Bits for numerous code audits
[11, 24]. The use of Echidna in internal audits is a key driver in
three primary design goals for Echidna. Echidna must (1) be easy
to use and configure; (2) produce good coverage of the contract or
blockchain state; and (3) be fast and produce results quickly.

The third design goal is essential for supporting the first two
design goals. Tools that are easy to run and produce quick results
are more likely to be integrated by engineers during the develop-
ment process. This is why most property-based testing tools have
a small default run-time or number of tests. Speed also makes use
of a tool in continuous integration (CI) (e.g., https://crytic.io) more
practical. Finally, a fast fuzzer is more amenable to experimental
techniques like mutation testing [21] or using a large set of bench-
mark contracts. The size of the statistical basis for decision-making
and parameter choices explored is directly limited by the speed of
the tool. Of course, Echidna supports lengthy testing campaigns as
well: there is no upper bound on how long Echidna can run, and
with coverage-based feedback there is a long-term improvement
in test generation quality. Nonetheless, the goal of Echidna is to
reveal issues to the user in less than 5 minutes.

Fuzzing smart contracts introduces some challenges that are un-
usual for fuzzer development. First, a large amount of engineering
effort is required to represent the semantics of blockchain execution;
this is a different challenge than executing instrumented native
binaries. Second, since Ethereum smart contracts compute using
transactions rather than arbitrary byte buffers, the core problem is
one of transaction sequence generation, more akin to the problem
of unit test generation [20] than traditional fuzzing. This makes it
important to choose parameters such as the length of sequences
[3] that are not normally as important in fuzzing or in single-value-
generation as in Haskell’s QuickCheck [7]. Finally, finding smart
contract inputs that cause pathological execution times is not an
exotic, unusual concern, as in traditional fuzzing [17]. Execution on
the Ethereum blockchain requires use of gas, which has a price in
cryptocurrency. Inefficiency can be costly, and malicious inputs can
lock a contract by making all transactions require more gas than
a transaction is allowed to use. Therefore producing quantitative

https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://crytic.io

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce

Figure 1: The Echidna architecture.

output of maximum gas usage is an important fuzzer feature, along-
side more traditional correctness checks. Echidna incorporates a
worst-case gas estimator into a general-purpose fuzzer, rather than
forcing users to add a special-purpose gas-estimation tool [2, 18]
to their workflow.

2 ARCHITECTURE AND DESIGN
2.1 Echidna Architecture
Figure 1 shows the Echidna architecture divided into two steps:
pre-processing and the fuzzing campaign. Our tool starts with a
set of provided contracts, plus properties integrated into one of the
contracts. As a first step, Echidna leverages Slither [10], our smart
contract static analysis framework, to compile the contracts and
analyze them to identify useful constants and functions that handle
Ether (ETH) directly. In the second step, the fuzzing campaign starts.
This iterative process generates random transactions using the ap-
plication binary interface (ABI) provided by the contract, important
constants defined in the contract, and any previously collected sets
of transactions from the corpus. When a property violation is de-
tected, a counterexample is automatically minimized to report the
smallest and simplest sequence of transactions that triggers the
failure. Optionally, Echidna can output a set of transactions that
maximize coverage over all the contracts.

2.2 Continuous Improvement
A key element of Echidna’s design is to make continuous improve-
ment of functionality sustainable. Echidna has an extensive test
suite (that checks detection of seeded faults, not just proper execu-
tion) to ensure that existing features are not degraded by improve-
ments, and uses Haskell language features to maximize abstraction
and applicability of code to new testing approaches.

Tuning Parameters. Echidna provides a large number of config-
urable parameters that control various aspects of testing. There are
currently more than 30 settings, controlled by providing Echidna
with a YAML configuration file. However, to avoid overwhelming
users with complexity and to make the out-of-the-box experience
as smooth as possible, these settings are assigned carefully chosen
default values. Default settings with a significant impact on test
generation are occasionally re-checked via mutation testing [12] or
benchmark examples to maintain acceptable performance. This, like
other maintenance, is required because other functionality changes
may impact defaults. For example, changes in which functions are
called (e.g., removing view/pure functions with no assertions) may
necessitate using a different default sequence length. Parameter
tuning can produce some surprises with major impact on users:
e.g., the dictionary of mined constants was initially only used infre-
quently in transaction generation, but we found that mean coverage

on benchmarks could be improved significantly by using constants
a full 40% of the time.

3 USAGE
Before starting Echidna, the smart contract to test should have
either explicit echidna_ properties (public methods that return a
Boolean have no arguments) or use Solidity’s assert to express
properties. For instance, Figure 2a shows a contract with a property
that tests a simple invariant. After defining the properties to test,
running Echidna is often as simple as installing it or using the
provided Docker image and then typing:

$ echidna − t e s t Con t r a c t . s o l −− c o n t r a c t TEST

An optional YAML configuration file overriding default settings
can be provided using the –config option. Additionally, if a path
to a directory is used instead of a file, Echidna will auto-detect the
framework used (e.g. Truffle) and start the fuzzing campaign.

By default, Echidna uses a dashboard output similar to AFL’s as
shown in Figure 2b. However, a command line option or a config
file can change this to output plaintext or JSON. The config file
also controls various properties of test generation, such as the
maximum length of generated transaction sequences, the frequency
with which mined constants are used, whether coverage driven
feedback is applied, whether maximum gas usage is computed, and
any functions to blacklist from the fuzzing campaign.

4 EXPERIMENTAL EVALUATION
4.1 Setup
We compared Echidna’s performance to the MythX platform [9],
accessed via the solfuzz [19] interface, on a set of reachability tar-
gets. Our experiments are produced by insertion of assert(false)
statements, on a set of benchmark contracts [1] produced for the
VeriSmart safety-checker [22]. To our knowledge, MythX is the only
comparable fuzzer that supports arbitrary reachability targets (via
supporting assertion-checking). Comparing with a fuzzer that only
supports a custom set of built-in detectors, such as ContractFuzzer
[16], which does not support arbitrary assertions in Solidity code,
is difficult to do objectively, as any differences are likely to be due
to specification semantics, not exploration capability. MythX is a
commercial SaaS platform for analyzing smart contracts. It offers a
free tier of access (limited to 5 runs/month, however) and can easily
run assertion checking on contracts via solfuzz, which provides
an interface similiar to Echidna’s. MythX analyzes the submitted
contracts using the Mythril symbolic execution tool [8] and the Har-
vey fuzzer [26]. Harvey is a state-of-the-art closed-source tool, with
a research paper describing its design and implementation in ICSE
2020 [26]. We also attempted to compare to the ChainFuzz [6] tool;
unfortunately, it is not maintained, and failed to analyze contracts,
producing an error reported in a GitHub issue submitted in April
of 2019 (https://github.com/ChainSecurity/ChainFuzz/issues/2).

4.2 Datasets
VeriSmart. To compare MythX and Echidna, we first analyzed

the contracts in the VeriSmart benchmark [1] and identified all con-
tracts such that 1) both tools ran on the contract and 2) neither tool

https://github.com/ChainSecurity/ChainFuzz/issues/2

Echidna: Effective, Usable, and Fast Fuzzing for Smart Contracts ISSTA ’20, July 18–22, 2020, Virtual Event, USA

contract TEST {

bool flag0; bool flag1;

function set0(int val) public returns (bool) {

if (val % 100 == 23) { flag0 = true; } }

function set1(int val) public returns (bool) {

if (val % 10 == 5 && flag0) { flag1 = true; } }

function echidna_flag () public returns (bool) {

return (!flag1); }

}

(a) A contract with an echidna property. (b) A screenshot of the UI with the result of a fuzzing campaign

Figure 2: Using Echidna to test a smart contract

reported any issues with the contract. This left us with 12 clean con-
tracts to compare the tools’ ability to explore behavior. We inserted
assert(false) statements into each of these contracts, after ev-
ery statement, resulting in 459 contracts representing reachability
targets. We discarded 44 of these, as the assert was unconditionally
executed in the contract’s constructor, so no behavior exploration
was required to reach it.

Tether. For a larger, more realistic example, we modified the
actual blockchain code for the TetherToken contract1, and again
inserted assert(false) targets to investigate reachability of the
code. Tether is one of the most famous “stablecoins”, a cryptocur-
rency pegged to a real-world currency, in this case the US dollar, and
has a market cap of approximately 6 billion dollars. The contract
has been involved in more than 23 million blockchain transactions.

4.3 Results
We then ran solfuzz’s default quick check and Echidna with a
2-minute timeout on 40 randomly selected targets. Echidna was
able to produce a transaction sequence reaching the assert for 19 of
the 40 targets, and solfuzz/MythX generated a reaching sequence
for 15 of the 40, all of which were also reached by Echidna. While
the time to reach the assertion was usually close to 2 minutes with
solfuzz, Echidna needed a maximum of only 52 seconds to hit the
hardest target; the mean time required was 13.9 seconds, and the
median time was only 6.9 seconds. We manually examined the
targets not detected by either tool, and believe them all to repre-
sent unreachable targets, usually due to being inserted after an
unavoidable return statement, or being inserted in the SafeMath
contract, which redefines assert. Of the reachable targets, Echidna
was able to produce sequences for 100%, and solfuzz/MythX for
78.9%. For Echidna, we repeated each experiment 10 more times,
and Echidna always reached each target. Due to the limit on MythX
runs, even under a developer license (500 executions/month), we
were unable to statistically determine the stability of its results to
the same degree, but can confirm that for two of the targets, a sec-
ond run succeeded, and for two of the targets three additional runs
still failed to reach the assert. Running solfuzz with the –mode
standard argument (not available to free accounts) did detect all
four, but it required at least 15 minutes of analysis time in each

1https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

case. Figure 4 shows the key part of the code for one of the four
targets Echidna, but not solfuzz/MythX (even with additional runs),
was able to reach. The assert can only be executed when a call
has been made to the approve function, allowing the sender of
the transferFrom call to send an amount greater than or equal to
_amount, and when the contract from which transfer is to be made
has a token balance greater than _amount. Generating a sequence
with the proper set of functions called and the proper relationships
between variables is a difficult problem, but Echidna’s heuristic
use of small numeric values in arguments and heuristic repetition
of addresses in arguments and as message senders is able to navi-
gate the set of constraints easily. A similar set of constraints over
allowances and/or senders and function arguments is involved in
two of the other four targets where Echidna performs better.

When using the Tether contract, we again randomly selected 40
targets, and ran two minutes of testing on each with solfuzz and
Echidna. Echidna was able to reach 28 of the 40 targets, with mean
andmedian runtimes of 24 and 15 seconds, respectively. The longest
run required 103 seconds. On the other hand, solfuzz/MythX was
unable to reach any of the targets using the default search. MythX/-
solfuzz was able to all detect the targets Echidna detected using
the standard search, and detected one additional target. The mean
time required for detection, however, was almost 16 minutes. The
additional target reached by solfuzz involves adding an address
to a blacklist, then destroying the funds of that address. Because
an address can also be removed from a blacklist, there is no simple
coverage-feedback to encourage avoiding this, and there are many
functions to test, Echidna has trouble generating such a sequence.
However, using a prototype of a swarm testing [13] mode not yet
included in the public release of Echidna, but briefly discussed in
the conclusion below, we were able to produce such a sequence
in less than five minutes. Even without swarm testing, we were
able to detect the problem in between 10 and 12 minutes, using a
branch (to be merged in the near future) that incorporates more
information from Slither, and uses some novel mutation strategies.
Of the 11 targets hit by neither tool, we manually determined that
all but two are clearly actually unreachable.

As a separate set of experiments, we measured the average cov-
erage obtained on the VeriSmart and Tether token contracts, with
various settings for the length of transaction sequences, ranging
from very short (length 10) to very long (length 500) for runs of 2,

https://etherscan.io/ address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce

(a) TetherToken (b) VeriSmart (avg)

Figure 3: Coverage obtained given short runs (2, 5 and 10
minutes) with different transaction sequence lengths.

if (balances[_from] >= _amount

&& allowed[_from][msg.sender] >= _amount

&& _amount > 0

&& balances[_to] + _amount > balances[_to]) {

balances[_from] -= _amount;

allowed[_from][msg.sender] -= _amount;

assert(false);

Figure 4: Code for a difficult reachabilility target.

5, and 10 minutes each. Figures 3a and 3b show that the current
default value used by Echidna (100) is a reasonable compromise
to maximize coverage in short fuzzing campaigns. Each run was
repeated 10 times to reduce the variability of such short campaigns.

5 RELATEDWORK
Echidna inherits concepts from property-based fuzzing, first pop-
ularized by the QuickCheck tool [7] and from coverage-driven
fuzzing, perhaps best known via the American Fuzzy Lop tool [27].
Other fuzzers for Ethereum smart contracts include Harvey [26],
ContractFuzzer [16], and ChainFuzz [6]. We were unable to get Con-
tractFuzzer to produce useful output within a four hour timeout,
and ChainFuzz no longer appears to work. Harvey is closed-source,
but is usable via the MythX [9] CI platform and the solfuzz [19]
tool. Echidna uses information from the Slither static analysis tool
[10] to improve the creation of Ethereum transactions.

6 CONCLUSIONS AND FUTUREWORK
Echidna is an effective, easy-to-use, and fast fuzzer for Ethereum
blockchain smart contracts. Echidna provides a potent out-of-the-
box fuzzing experience with little setup or preparation, but allows
for considerable customization. Echidna supports assertion check-
ing, custom property-checking, and estimation of maximum gas
usage—a core feature set based on experience with security audits
of contracts. The default test generation parameters of Echidna
have been calibrated using real-world experience in commercial
audits and via benchmark experiments and mutation analysis. In
our experiments, Echidna outperformed a comparable fuzzer using
sophisticated techniques: Echidna detected, in less than 2 minutes,
many reachability targets that required 15 or more minutes with
solfuzz, on both benchmark contracts and the real-world Tether
token. Echidna is under heavy active development. Recently added

or in-progress features include gas estimation, test corpus collec-
tion, integration of Slither static analysis information, and improved
mutation for feedback-driven fuzzing. One future work will add
a driver mode, similar to the swarm tool [14] for the SPIN model
checker [15], to make better use of configuration diversity, includ-
ing swarm testing [13], in order to fully exploit multicore machines.
In particular, this mode will enable Echidna to produce even more
accurate maximum gas usage estimates.

REFERENCES
[1] VeriSmart benchmark. https://github.com/kupl/VeriSmart-benchmarks.
[2] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert

Rubio. Gasol: Gas analysis and optimization for ethereum smart contracts, 2019.
[3] James H. Andrews, Alex Groce, Melissa Weston, and Ru-Gang Xu. Random test

run length and effectiveness. In Automated Software Engineering, pages 19–28,
2008.

[4] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
Ethereum smart contracts SoK. In International Conference on Principles of Security
and Trust, pages 164–186, 2017.

[5] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized
application platform. https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

[6] Chain Security. https://github.com/ChainSecurity/ChainFuzz.
[7] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random test-

ing of Haskell programs. In International Conference on Functional Programming
(ICFP), pages 268–279, 2000.

[8] ConsenSys. Mythril: a security analysis tool for ethereum smart contracts.
https://github.com/ConsenSys/mythril-classic, 2017.

[9] Consensys Diligence. https://mythx.io/.
[10] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: A static analysis frame-

work for smart contracts. In International Workshop on Emerging Trends in
Software Engineering for Blockchain, 2019.

[11] Alex Groce, Josselin Feist, Gustavo Grieco, and Michael Colburn. What are
the actual flaws in important smart contracts (and how can we find them)? In
International Conference on Financial Cryptography and Data Security, 2020.

[12] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
An extensible, regular-expression-based tool for multi-language mutant genera-
tion. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE ’18, pages 25–28, New York, NY, USA, 2018. ACM.

[13] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm
testing. In International Symposium on Software Testing and Analysis, pages 78–88,
2012.

[14] Gerard Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification techniques.
IEEE Transactions on Software Engineering, 37(6):845–857, 2011.

[15] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

[16] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing smart contracts for vul-
nerability detection. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pages 259–269, 2018.

[17] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz: Auto-
matically generating pathological inputs. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 254–265, 2018.

[18] Fuchen Ma, Ying Fu, Meng Ren, Wanting Sun, Zhe Liu, Yu Jiang, Jun Sun, and
Jiaguang Sun. Gasfuzz: Generating high gas consumption inputs to avoid out-of-
gas vulnerability, 2019.

[19] Bernhard Mueller. https://github.com/b-mueller/solfuzz.
[20] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-

directed random test generation. In International Conference on Software Engi-
neering, pages 75–84, 2007.

[21] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. Mutation testing advances: an analysis and survey. In Advances in
Computers, volume 112, pages 275–378. Elsevier, 2019.

[22] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. VeriSmart: A
highly precise safety verifier for ethereum smart contracts. In IEEE Symposium
on Security & Privacy, 2020.

[23] Trail of Bits. Echidna: Ethereum fuzz testing framework. https://github.com/
crytic/echidna, 2018.

[24] Trail of Bits. Trail of bits security reviews. https://github.com/trailofbits/
publications#security-reviews, 2019.

[25] Gavin Wood. Ethereum: a secure decentralised generalised transaction ledger.
http://gavwood.com/paper.pdf, 2014.

[26] Valentin Wüstholz and Maria Christakis. Targeted greybox fuzzing with static
lookahead analysis. In International Conference on Software Engineering, 2020.

[27] Michal Zalewski. american fuzzy lop (2.35b). http://lcamtuf.coredump.cx/afl/.
Accessed December 20, 2016.

https://github.com/kupl/VeriSmart-benchmarks
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ChainSecurity/ChainFuzz
https://github.com/ConsenSys/mythril-classic
https://mythx.io/
https://github.com/b-mueller/solfuzz
https://github.com/crytic/echidna
https://github.com/crytic/echidna
https://github.com/trailofbits/publications#security-reviews
https://github.com/trailofbits/publications#security-reviews
http://gavwood.com/paper.pdf
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Architecture and Design
	2.1 Echidna Architecture
	2.2 Continuous Improvement

	3 Usage
	4 Experimental Evaluation
	4.1 Setup
	4.2 Datasets
	4.3 Results

	5 Related Work
	6 Conclusions and Future Work
	References

