Josh Tycko

Josh Tycko
Stanford University | SU · Department of Genetics

About

21
Publications
3,933
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,005
Citations
Introduction
Josh Tycko currently works at the Department of Genetics, Stanford University. Josh does research in chromatin regulation, genome editing, and development of high-throughput technologies.

Publications

Publications (21)
Preprint
Recent microbial genome sequencing efforts have revealed a vast reservoir of mobile genetic elements containing integrases that could be useful genome engineering tools. Large serine recombinases (LSRs), such as Bxb1 and PhiC31, are bacteriophage-encoded integrases that can facilitate the insertion of phage DNA into bacterial genomes. However, only...
Preprint
Full-text available
CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. While much effort has been spent developing gene drives in mosquitoes, gene drive technology in molluscs has received little attention despite the role of freshwater snails a...
Preprint
The skin color is one of the most diverse human traits and is determined by the quantity, type and distribution of melanin. Here, we leverage light scattering properties of melanin to conduct a genome-wide CRISPR-Cas9 screen for novel regulators of melanogenesis. We identify functionally diverse genes converging on melanosome biogenesis, endosomal...
Article
Infants and older adults are especially vulnerable to infection by respiratory syncytial virus (RSV), which can cause significant illness and irreparable damage to the lower respiratory tract and for which an effective vaccine is not readily available. Palivizumab, a recombinant monoclonal antibody (mAb), is an approved therapeutic for RSV infectio...
Preprint
Full-text available
Detecting and mitigating off-target activity is critical to the practical application of CRISPR-mediated genome and epigenome editing. While numerous methods have been developed to map Cas9 binding specificity genome-wide, they are generally time-consuming and/or expensive, and not applicable to catalytically dead CRISPR enzymes. We have developed...
Article
Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands...
Preprint
Full-text available
Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit - a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousand...
Article
Full-text available
Schistosomiasis is one of the most important and widespread neglected tropical diseases (NTD), with over 200 million people infected in more than 70 countries; the disease has nearly 800 million people at risk in endemic areas. Although mass drug administration is a cost-effective approach to reduce occurrence, extent, and severity of the disease,...
Article
Full-text available
Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the large...
Article
Full-text available
Considerable effort has been devoted to developing a comprehensive understanding of CRISPR nuclease specificity. In silico predictions and multiple genome-wide cellular and biochemical approaches have revealed a basic understanding of the Cas9 specificity profile. However, none of these approaches has delivered a model that allows accurate predicti...
Preprint
Full-text available
Pooled CRISPR-Cas9 screens have recently emerged as a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we conducted a genome-scale screen for essential CTCF loop anchors in the K562 leukemia cell line. Surprisingly,...
Article
Full-text available
Therapeutic genome editing with Staphylococcus aureus Cas9 (SaCas9) requires a rigorous understanding of its potential off-target activity in the human genome. Here we report a high-throughput screening approach to measure SaCas9 genome editing variation in human cells across a large repertoire of 88,692 single guide RNAs (sgRNAs) paired with match...
Preprint
Full-text available
We report a high-throughput screening approach to measure Staphylococcus aureus Cas9 (SaCas9) genome editing variation in human cells across a large repertoire of 88,692 single guide RNAs (sgRNAs) paired with matched or mismatched target sites in a synthetic cassette. We incorporated randomized barcodes that enable ‘whitelisting’ of correctly synth...
Article
Full-text available
The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helpe...
Article
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair an...
Preprint
Full-text available
The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here, we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naïve T cells to T helper...
Article
Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing...
Article
Full-text available
Duchenne muscular dystrophy (DMD) is a recessive X-linked neuromuscular disorder that results in progressive muscle degeneration and premature death. Most patients have exonic deletions in the dystrophin gene that result in a frameshift and nonfunctional protein. In contrast, Becker muscular dystrophy (BMD) patients carry a range of exonic deletion...
Article
We report a toolbox for exploring the modular tuning of genetic circuits, which has been specifically optimized for widespread deployment in STEM environments through a combination of bacterial strain engineering and distributable hardware development. The transfer functions of sixteen genetic switches, programmed to express a GFP reporter under th...
Article
Bryant and colleagues follow the development of Glybera (alipogene tiparvovec), the first gene therapy product approved in the European Union, from early preclinical studies through the approval process. They review key data from human and animal studies with an emphasis on issues that will be critical to other gene therapy products. The article co...

Network

Cited By