
Joseph N Keating- Doctor of Philosophy
- Research Associate at University of Bristol
Joseph N Keating
- Doctor of Philosophy
- Research Associate at University of Bristol
About
34
Publications
18,883
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
571
Citations
Introduction
Current institution
Additional affiliations
October 2012 - September 2016
Publications
Publications (34)
Teeth are a key vertebrate innovation; their evolution is generally associated with the origin of jawed vertebrates. However, tooth-like structures already occur in jawless stem-gnathostomes; heterostracans bear denticles and morphologically distinct tubercles on their oral plates. We analysed the histology of the heterostracan denticles and plates...
Open Palaeontology is a new diamond open access (DOA) journal for publishing academic research on all aspects of palaeontology. Open Palaeontology, or OPal, is founded on the principles of academic rigour, accessibility, transparency, and innovation. As a diamond open access (DOA) online-only journal, Open Palaeontology is free for authors to publi...
Feathers are a key novelty underpinning the evolutionary success of birds, yet the origin of feathers remains poorly understood. Debates about feather evolution hinge upon whether filamentous integument has evolved once or multiple time independently on the lineage leading to modern birds. These contradictory results stem from subjective methodolog...
Sponges (Porifera) are highly effective ecosystem engineers, playing a critical role in global biogeochemical processes, including the nitrogen, carbon, and silica cycles. Because of that, they have been closely linked to the evolution of Earth's environments. However, determining the evolutionary history of sponges has posed challenges. Molecular...
The Phenoscape project has developed ontology-based tools and a knowledge base that enables the integration and discovery of phenotypes across species from the scientific literature. The Phenoscape TraitFest 2023 event aimed to promote innovative applications that adopt the capabilities supported by the data in the Phenoscape Knowledgebase and its...
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to...
Ancestral state estimation is a formal phylogenetic method for inferring the nature of ancestors and performing tests of character evolution. As such, it is among the most important tools available to evolutionary biologists. However, there are a profusion of methods available, the accuracy of which remains unclear. Here I use a simulation approach...
Morphology and molecules are important data sources for estimating evolutionary relationships. Modern studies often utilise morphological and molecular partitions alongside each other in combined analyses. However, the effect of combining phenomic and genomic partitions is unclear. This is exacerbated by their size imbalance, and conflict over the...
The amniotic egg with its complex fetal membranes was a key innovation in vertebrate evolution that enabled the great diversification of reptiles, birds and mammals. It is debated whether these fetal membranes evolved in eggs on land as an adaptation to the terrestrial environment or to control antagonistic fetal–maternal interaction in association...
The fossil record of non-biomineralizing, soft-bodied taxa is our only direct evidence of the early history of vertebrates. A robust reconstruction of the affinities of these taxa is critical to unlocking vertebrate origins and understanding the evolution of skeletal tissues, but these taxa invariably have unstable and poorly supported phylogenetic...
Whole genome duplications (WGDs) are major events that drastically reshape genome architecture and are causally associated with organismal innovations and radiations. The 2R Hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the veracity and timing of the 2R event relative to the divergence of g...
Whole genome duplications (WGDs) are major events that drastically reshape genome architecture and are causally associated with organismal innovations and radiations ¹ . The 2R Hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution 2,3 . However, the veracity and timing of the 2R event relative to the diverge...
Paired fins are a major innovation1,2 that evolved in the jawed vertebrate lineage after divergence from living jawless vertebrates³. Extinct jawless armoured stem gnathostomes show a diversity of paired body-wall extensions, ranging from skeletal processes to simple flaps⁴. By contrast, osteostracans (a sister group to jawed vertebrates) are inter...
The armoured jawless fishes (ostracoderms) are major and widespread components of middle Palaeozoic ecosystems. As successive plesia on the gnathostome lineage, they reveal the early sequences of vertebrate evolution, including the assembly of the vertebrate skeleton. This is predicated however, on understanding of their diversity and interrelation...
Ray-finned fishes (Actinopterygii) are the largest and most diverse group of vertebrates, comprising over half of all living vertebrate species. Phylogenetic relationships between ray-finned fishes have historically pivoted on the study of morphology, which has notoriously failed to resolve higher order relationships, such as within the percomorphs...
We resolve debate over the evolution of vertebrate hypermineralized tissues through analyses of matrix protein-encoding secretory calcium-binding phosphoprotein (SCPP) genes and phylogenetic inference of hypermineralized tissues. Among these genes, AMBN and ENAM are found in both sarcopterygians and actinopterygians, while AMEL and SCPP5 are found...
Ancient biomolecule analyses are proving increasingly useful in the study of evolutionary patterns, including extinct organisms. Proteomic sequencing techniques complement genomic approaches, having the potential to examine lineages further back in time than achievable using ancient DNA, given the less stringent preservation requirements. In this s...
Ancient biomolecule analyses are proving increasingly useful in the study of evolutionary patterns, including extinct organisms. Proteomic sequencing techniques complement genomic approaches, having the potential to examine lineages further back in time than achievable using ancient DNA, given the less stringent preservation requirements. In this s...
Evolutionary inferences require reliable phylogenies. Morphological data has traditionally been analysed using maximum parsimony, but recent simulation studies have suggested that Bayesian analyses yield more accurate trees. This debate is ongoing, in part, because of ambiguity over modes of morphological evolution and a lack of appropriate models....
Osteostracans are the closest jawless relatives of jawed vertebrates, informing the gradual assembly of the vertebrate mineralised skeleton. Conflicting interpretations of their dermal skeletal histology arise from failure to account for topological variation, obscuring their significance in elucidating vertebrate skeletal evolution. To resolve thi...
Bone is the key innovation underpinning the evolution of the vertebrate skeleton, yet its origin is mired by debate over interpretation of the most primitive bone-like tissue, aspidin. This has variously been interpreted as cellular bone, acellular bone, dentine or an intermediate of dentine and bone. The crux of the controversy is the nature of un...
Reconstructing evolutionary histories requires accurate phylogenetic trees. Recent simulation studies suggest that probabilistic phylogenetic analyses of morphological data are more accurate than traditional parsimony techniques. Here, we use empirical data to compare Bayesian and parsimony phylogenies in terms of their congruence with the distribu...
The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the...
Cover illustration. The vertebrate mineralized skeleton and its canonical cell and tissue types are among the most formative innovations in vertebrate evolutionary history. Their origins, however, are poorly understood because living vertebrates either lack or possess all of the component mineralized skeletal systems in their entirety. In this issu...
Debate over the origin and evolution of vertebrates has occupied biologists and palaeontologists alike for centuries. This debate has been refined by molecular phylogenetics, which has resolved the place of vertebrates among their invertebrate chordate relatives, and that of chordates among their deuterostome relatives. The origin of vertebrates is...
The Osteostraci are a morphologically diverse group of jawless fishes considered as sister taxon to jawed vertebrates. Fossil Osteostraci therefore have wide-reaching ramifications for our understanding of the origin and evolution of gnathostomes. Their utility in this context is currently impeded by rudimentary taxonomy of faunas from the United K...