
Microbial processes for ascorbic acid 
biosynthesis: a review 

J, B O U D R A N T  

C N R S - E N S A I A ,  V a n d o e u v r e - l e s - N a n c y ,  France  

L-Ascorbic acid is an important product currently made using the Reichstein process, which is mainly 
chemical. Recently, bacteria have been identified that are able to transform in a very eJficient way 
glucose to 2,5-keto-D-gluconic acid and this product to 2-keto-L-idonic acid, precursor o f  L-ascorbic 
acid. When the corresponding strains are used toegther, it is possible to get 2-keto-L-idonic acid directly 
from glucose. Moreover, new strains have been constructed by introducing a gene from a strain 
responsible for  the second step into a strain responsible for  the first step. By using one o f  the new 
strains, the transformation can be performed in a single step with only one strain. However, the classical 
process still remains the most competitive. 
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Introduction 

L-Ascorbic acid finds its use mainly in the food indus- 
try, being a vitamin as well as possessing antioxidizing 
characteristics. During the last 20 years this product  
has steadily increased (the doubling time is about 6 
years) and in 1984 world production reached 35,000 
tons.J L-Ascorbic acid, initially isolated from citrus, 
was first chemically synthesized by the Reichstein pro- 
cedure. 2 Some processes using bioconversions have 
been described, 3 but until now, due to low yields 
obtained, they have not been developed. One of the 
most recent processes involves a mixed fermentation 
with two steps including the application of genetic engi- 
neering. These latter techniques suggest the develop- 
ment of promising new processes able to compete with 
the Reichstein procedure.  

The Reichstein process 

In this process,  the substrate (glucose) is transformed 
in five steps as follows (Figure 1): 

1. The reduction of glucose to sorbitol using a nickel 
catalyst. 

2. The oxidation of L-sorbitol to L-sorbose, which 
may be performed by B a c t e r i u m  xy l i num (also named 
A c e t o b a c t e r  xy l i num)  or by A c e t o b a c t e r  suboxydans .  
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3. The production of diacetone-sorbose or 2,3 : 4,6- 
di-isopropylidene-L-xylo-2-hexofuranose after treat- 
ment with acetone and sulfuric acid. 

4. An oxidation of this product  to 2-keto-L-gulonic 
acid using platinium as catalyst. 

5. Enolization and internal lactonization of this 2- 
keto-L-gulonic acid to L-ascorbic acid. 

The first industrial trials using this five-step process 
allowed a yield of 15-18% conversion of  sorbitol to L- 
ascorbic acid. Until now, this has remained the method 
of choice due to the cheap availability of  the glucose 
substrate, the chemical stability of the intermediates 
(especially diacetone-sorbitol),  and the improvements  
introduced into the procedure.  

Theoretically, one molecule of glucose (MW 180) 
produces one molecule of L-ascorbic acid (MW 176). 
In the most favorable hypothesis,  the yield can reach 
98%. In fact, because of molecular rearrangement,  it is 
observed that three hydrogen atoms and one to four 
oxygen atoms cannot be derived from the glucose mole- 
cule. Thus, the maximum yield cannot  be more than 
87%. 

At the moment,  with the acquired improvements ,  
the practical yield of  this chemical process is thought 
to be around 50%. 

Bacterial fermentation processes 

At present there are six bacterial fermentat ion pro- 
cesses for vitamin C production. However ,  all of  these 
processes give as a direct precursor  of  L-ascorbic acid, 
2-keto-e-gulonic acid, which is also called 2-keto-L- 
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Figure 1 Scheme indicating the reactions used in the synthesis 
of L-ascorbic acid according to the Reichstein process. This figure 
indicates the formulae of the main intermediate products, the 
type of transformation, either oxidation (Ox) or reduction (Red), 
and the yields obtained 

idonic acid. The different pathways, named after one of 
their main metabolic intermediates, are the following: 

1. Sorbitol pathway; 
2. L-idonic acid pathway; 
3. L-gulonic acid pathway; 
4. 2-keto-D-gluconic acid pathway; 
5. 2-5-diketo-D-gluconic acid pathway; 
6. 2-keto-L-gulonic acid pathway. 

These are summarized in Figure 2 and explained below. 

Sorb i to l  p a t h w a y  

This biosynthesis was described for the first time by 
Motizuki et al. 4 Sorbitol is transformed by fermentation 
to 2-keto-L-gulonic acid. Transformation is performed 
by several strains of the genus Pseudomonas and 
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Acetobacter,  but details of the metabolic pathway 
are not known. 

The yield of transformation of sorbitol to 2-keto- 
gulonic acid does not normally exceed 10%, although 
a yield of 70% (since disputed 5) has been recorded for 
one strain of Acetobacter  cerenusote. 

This transformation has also been described by sev- 
eral other authors. 6,7 Beside 2-keto-L-gulonic acid, 
some other products are also formed. 8,90kazaki et al. 9 
suggested the following biosynthesis pathway: 

sorbitol 

e-sorbose 
+ 

L-idose 

L-idonic acid 
$ 

2-keto-L-gulonic acid 

L-Idonic  p a t h w a y  

The biosynthesis using e-idonic acid as an intermediate 
is a multistep transformation. The actual known meta- 
bolic intermediates are D-gluconic acid, 5-keto-D-glu- 
conic (or 5-keto-L-idonic) acid, L-idonic acid, and 2- 
keto-e-idonic (or 2-keto-L-gulonic) acid. 

The first oxidation step, transformation of D-glucose 
to D-gluconic acid, is not detailed here, and only infor- 
mation concerning the three following reaction steps is 
given. 

Oxidation of D-gluconic acid. The first known oxidation 
of D-gluconic acid to 5-keto-D-gluconic acid was per- 
formed by Boutroux ~°-12 using Bacterium oblungus. 
This transformation has also been carried out using 
Acetobacter rnelanogenurn, 13 Acetobacter  suboxy- 
dans, r~-3° Bacterium spp., 3z-34 Pseudomonas  spp., 35 
and others. 17,36 Among the cited microorganisms, 
Acetobacter suboxydans appears to be the most effi- 
cient, with transformation yields of glucose to 5-keto- 
D-gluconic acid of about 90%. 2°,3°,37 

Reduction of 5-keto-D-gluconic acid. Several processes 
allowing the reduction of 5-keto-D-gluconic acid to L- 
idonic acid have been described. 3s,39,42 Note that the 
process proposed by Sonoyama et al. 39 mentions the 
extraction of an enzymatic system from Fusarium 
oxysporum able to perform this transformation with a 
yield of 80%. However, this reaction is not completely 
direct. There is a loss of efficiency due to recycling 
of 5-keto-D-gluconic acid to D-gluconic acid. 43,44 The 
series of reactions is summarized below. 

(glucose) 
$ 

; D-gluconic acid 

5-keto-D-gluconic acid 

L-idonic acid 

2-keto-L-idonic acid 
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Figure 2 Diagram representing the different pathways for the transformation of glucose to 2-keto-L-gulonic acid also named 2-keto- 
L-idonic acid, direct precursor of L-ascorbic acid. This figure indicates the formulae of the intermediate products, and the types of 
transformation, either oxidation (Ox) or reduction (Red). Dotted lines indicate minor reactions 

This transformation is also performed by Acetobacter 
suboxydans, 45 Bacterium glucunicum, 31"32 Pseudomo- 
nas spp.,35 and Acetobacter  spp. 

Oxidation of L-idonic acid. The first microorganism 
known to perform this transformation is Pseudomo- 
nas mildenbergii, with a measured yield of 80%. 43 
Other microorganisms having that property were also 
identified: Acetobacter  s p p . ,  46 Cyanococcus chro- 
mospirans, 47 Micrococcus auriantacus, 48 Pseudomo- 
has aeruginosa, 49 Ps. fluorescens, 5°-56 and Ps. 2- 
ketogulonicum.57 With Ps. fluorescens, transformation 
yields of 90% have been mentioned. 5j-54 High yield 
values have also been found by Liebster et al. 58 using 
Pseudomonas chromospirans and by Fujisawa et al. 59 
using Pseudomonas fluorescens. 

L-Gulonic  ac id  p a t h w a y  
(ox ida t ion  o f  L-gulonic  acid)  

The L-gulonic acid pathway has in common with the 
L-idonic pathway the two first steps of that pathway 

(oxidation of o-gluconic acid and reduction of 5-keto- 
o-gluconic acid). But this last reaction leads to the 
formation of L-gulonic acid, the precursor of 2-keto-I_- 
idonic acid (Figure 2). The first two steps have already 
been described. Details concerning the oxidation of L- 
gulonic acid are given by Kita. 6° According to Kita, 
the transformation of 5-keto-o-gluconic acid can be 
performed using Xanthomonas  transluscens, with a 
yield of 90% and a final concentration of 100 g 1-l,J or 
Xanthomonas  trifolii (Erwinia lahyri). 61,62 

2-Keto-D-gluconic acid pathway 

Three main steps constitute this pathway: 

Oxidation of D-gluconic acid. A large number of micro- 
organisms can transform D-gluconic acid using this 
pathway. 3 The transformation of o-glucose to 2,5-di- 
keto-gulonic acid was identified first by Katznelson et 
al. 63 in Acetobacter melanogenum and later in Pseu- 
domonas albosesamae. 

It should be also noted that Acetobacter  suboxy- 
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clans, known for synthetizing 5-keto-D-gluconic acid 
from D-gluconic acid, can synthetize 2-keto-D-gluconic 
acid. 16,18,64,65 

In addition, in 1982, Sonoyama et al .  66 mentioned 
for the first time the ability of Erwinia spp. to accumu- 
late D-gluconic and 2-keto-D-gluconic acids. 

Oxidation of 2-keto-D-gluconic acid. This oxidation 
may be carried out by Bacterium hoshigaki 67 and 
Bacterium glucunicum16, T M  with 2,5-D-diketo-D-glu- 
conic acid as product. This is also biosynthetized by 
Acetobacter spp. especially A. melanogenum. 32"67,69-71 
This illustrates the bioconversion of glucose with D- 
gluconic and 2-keto-D-gluconic acids as intermedi- 
ates. 72 A process that directly transforms D-glucose 
into 2,5-diketo-D-gluconic acid using either Aceto- 
bacter fragum 73 or Acetomonas albosesamae 74-75 has 
also been published. 

Reduction of 2,5-diketo-D-gluconic acid. This is the step 
that has been the most studied. In 1975, Sonoyama et 
al. described a process producing 2-keto-L-gulonic acid 
from 2,5-kieto-D-gluconic acid. 76"77 The mentioned 
strains are of the genus Brevibacterium, Arthrobacter, 
Micrococcus, Staphylococcus, Pseudomonas, and 
Bacillus. 

With Brevibacterium ketosporum the yield can reach 
15% even when initial substrate concentration is 50 g 
1- i. With the other microorganisms, yields are not more 
than 1%. 

The use of Corynebacterium has been suggested 
since 1976, first assays giving a 2-keto-L-gulonic acid 
production yield of about 10%. Present-day perfor- 
mances are reported to be near 80%. 76 

Another process should also be mentioned that em- 
ploys Citrobacter strains. However, these strains cata- 
lyse only the transformation of 2-5-diketo-D-gulonic 
acid, and one preliminary step performed with Aceto- 
bacter cerenus is necessary. With such microorgan- 
isms, yields of about 30% are mentioned, with initial 
substrate concentration of I00 g 1-1.7s 

2,5-Diketo-D-gluconic acid pa thway  

Processes allowing the production of 2,5-diketo-D-glu- 
conic acid in a single step have been set up. The genus 
Erwinia already mentioned (see Oxidation of D-glu- 
conic acid) is also noted for this transformation, v9 The 
given descriptions mention a concentration in glucose 
of 200 g 1-1 and fermentation time of 20 h producing 
yields of about 75%. 

Moreover, it has been noted that interesting perfor- 
mances have been obtained simply by maintaining con- 
tact of glucose with cell debris. Fermentation proce- 
dures using Acetobacter cerenus allowing yields of 
about 90% have been described. 8°41 

2-Keto-L-gulonic acid pa thway  

As shown in Figure 2, this pathway is apparently direct, 
and allows the production of 2-keto-L-gulonic acid, di- 
rect precursor of L-ascorbic acid from glucose. How- 
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ever, this pathway has been made possible only with 
the advent of recent developments. Among these, the 
main ones are: 

1. Two-stage or mixed cultures; 
2. Mutant selection; 
3. Isolation of 2,5-diketo-D-gluconic acid reductase 

in Corynebacterium; 
4. Gene transfer of 2,5-diketo-D-gluconic acid re- 

ductase of Corynebacterium into Erwinia. 

Two-stage and mixed cultures. The realization of two- 
stage cultures for the preparation of 2-keto-L-gulonic 
acid was first described by Sonoyama. s2 This progress 
resulted from the observation that Erwinia has the abil- 
ity to transform glucose into 2,5-diketo-D-gluconic 
acid, 66 while Brevibacterium transforms this latter 
product to 2-keto-L-gulonic acid. 76'83 

Mixed staged cultures were also first described by 
Sonoyama et al. 84 These allow the production of 2- 
keto-k-gulonic acid from glucose. Two strains are used. 
The first strain is: Acetomonas, Acetobacter, Glucono- 
bacter, or Erwinia85; the second is Brevibacterium. The 
first strain transforms glucose into 2,5-diketo-D-glu- 
conic acid, and the second transforms this product into 
2-keto-L-gulonic acid. 

This two-step process may support certain varia- 
tions, but generally the initial glucose concentration is 
such that the 2,5-diketo-D-gulonic acid concentration 
in the medium reaches about 25 g 1 ~ (with yields of 
about 10-15%). 

This process is interesting because 2-keto-D-glu- 
conic acid is not present in the medium. In fact, this 
last product, which is metabolized by the first strain, 
is normally difficult to separate from its optical isomer, 
which is the desired product. 

Mixed staged cultures using mutants. The improvement 
of this process has been initiated with mutants of Cory- 
nebacterium replacing Brevibacterium as the second 
strain, s6 The mutants employed have the following 
characteristics: 

First, they are unable to metabolize 5-keto-D-glu- 
conic acid from 2,5-diketo-D-gluconic acid (this being 
a normal characteristic of the Corynebacterium genus). 

Second, the reduction of 2,5-diketo-D-gluconic acid 
to 2-keto-e-gulonic acid is made more efficient in the 
presence of hydrogen donors or nitrate salts which 
permit the use of carbohydrates or organic acids as 
hydrogen donors. 

Another aspect of this process is the use of a surfac- 
tant, such as sodium dodecyl sulfate, which kills the 
first strain at the end of the first phase of growth without 
inhibiting growth of the second. With such improve- 
ments, yields of transformation of 2,5-diketo-D-glu- 
conic acid to 2-keto-L-idonic acid can reach 93%. 

Thus, the transformation of glucose to 2-keto-L-gu- 
Ionic acid using a mixed staged culture with Aceto- 
bacter and Corynebacterium mutants can reach values 
of 80%. These values are quite compatible with those 
theoretically obtainable with the Reischtein process, 
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indicating the growing importance of biotechnological 
processes. 

Existence of the 2,5-diketo-o-reductase activity in 
Corynebacterium. The enzyme responsible for the re- 
duction of 2,5-diketo-o-gluconic acid to 2-keto-L-gu- 
Ionic acid by Corynebacterium has been identified and 
characterized by Sonoyama et al. 87 This enzyme is 
intracellular and requires a cofactor. Its optimum pH 
is 6-7, its molecular weight is 29,000 and its isoelectric 
point is 4.4. Oxalate ions and glyceraldehyde are potent 
inhibitors. Beside the previous reaction, this enzyme 
also catalyses the reduction of 5-keto-fructose to L- 
sorbose. 

Application of genetic engineering. The transformation 
of glucose to 2-keto-k-gulonic acid is performed in two 
steps, a fermentation followed by a biotransformation. 
The use of genetic engineering techniques allows the 
insertion of the gene responsible for the biosynthesis 
of the enzyme catalysing the second transformation 
into a microorganism performing the initial transforma- 
tion. ss'89 For such ends, a vector containing the enzyme 
gene has been constructed and introduced into Erwinia 
herbicola allowing the expression of 2,5-diketo-o- 
gulonic reductase of Corynebacterium. Thus, using 
such engineered microorganisms, it is possible now 
to transform glucose directly into the precursor of e- 
ascorbic acid, 2-keto-L-guionic acid. Transformation 
yields of glucose can reach 30%, values that seem to 
be much less than those obtained with the two-step 
assays. 

Preparation o f  ascorbic acid 

Each of the previous pathways leads to 2-keto-L-idonic 
acid (also called 2-keto-L-gulonic acid; see Figures 1 
and 2), the stable direct precursor of L-ascorbic acid. 
To date, the transformation of the first product into 
the second is chemically performed in very acidic and 
alcoholic conditions. For example, one process in- 
volves methyl-2-keto-L-idonate. 9° Generally, the yields 
from transformation reach values of about 7 5 % .  91-93 

Yeast fermentation process 

Yeasts are known to exhibit two main characteristics 
as regards L-ascorbic acid biosynthesis. 

First, yeasts constitutively produce the enzyme L- 
galacto-y-lactone oxidase, which is able to catalyse the 
transformation of L-gulono-T-lactone into L-ascorbic 
acid. 94-96 Yeasts can also produce enediol analogs of L- 
ascorbic acid from D-glucose. 97 

There is doubt as to the usefulness of yeast for a 
process in which bacteria are well established. The 
main problem is that yeast can catalyse only one of 
the seven steps of biotransformation required. This 
particular series of reactions is not encountered in bac- 
teria but might be present in plant and animal liver 
cells. This series is summarized below: 

glucose 

glucose-6-phosphate 
$ 

UDP-glucose 

UDP-D-glucuronic acid 

D-glucuronic acid 

e-gutonic acid 
$ 

k-gulono-y-lactone 

k-ascorbic acid 

Second, yeasts produce o-erythroascorbic acid, 
analog of k-ascorbic acid, from sucrose, hexoses, and 
pentoses. 9s-j°° The enzyme responsible for this trans- 
formation is located in mitochondria.~°° Many species 
are mentioned: Candida, Hansenula, Klyuveromyces, 
Torulopsis, etc. Among these, Candida appears to be 
the most proficient, especially if selected after mutation 
as a function of their acid production. 

Discussion 

The overall pathways and reactions allowing the prepa- 
ration of L-ascorbic acid from glucose have been de- 
scribed. 

Yeasts and eukaryotic cells have not been studied 
extensively, and for the moment they were found con- 
stitutive in only one reaction of the seven-step 
pathway. 

Bacteria appear to be the most analyzed microorgan- 
isms, and apparently are the most efficient. This bio- 
transformation requires five reactions and there are six 
possible pathways. One, two, or four intermediates 
may be necessary, with 2-keto-L-gulonic acid being the 
direct precursor of k-ascorbic acid. The transformation 
of this last compound was up to now chemically per- 
formed. These pathways are summarized in Figure 3, 
in which the most representative microorganisms per- 
forming the different steps with corresponding yields 
of transformation have been indicated. 

The main characteristics of these bacterial transfor- 
mations are the following: 

The sorbitol pathway has sorbitol as the unique in- 
termediate. Its yield does not exceed 8%. 

The L-idonic acid pathway utilizes three microorgan- 
isms (Acetobaeter suboxydans, Fusarium oxysporum, 
Pseudomonas spp.). With such a transformation, the 
overall yield can reach 65%. 

The e-gulonic acid pathway is analog to the previ- 
ous. However, the transformation of 5-keto-o-gluconic 
acid into k-gulonic acid does not appear to occur. 

The 2-keto-D-gluconic acid pathway requires three 
steps, each performed preferentially the first with Er- 
winia, the second with Acetobacter, and the third with 
Brevibacterium or Corynebacterium. In this case, the 
overall yield cannot exceed 65%. The 2,5-diketo-D- 
gluconic acid pathway is performed in two steps, the 
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Figure 3 Diagram representing the different pathways for the transformation of glucose to 2-keto+-gulonic acid, also called 2-keto- 
L-idonic acid, direct precursor of L-ascorbic acid. This figure shows the main microorganisms which are known to perform these 
transformations. Percentage values in parentheses are transformation yields obtained with the indicated microorganism 

first by Erwinia or Acetobacter cerenus, the second by 
Brevibacterium or Corynebacterium. The overall yield 
can reach 75%. 

The 2-keto-L-gulonic acid pathway involves a two- 
stage process or a mixed culture fermentation of Er- 
winia with Corynebacterium or Brevibacterium mu- 
tants. The yield now reaches 90%. With the use of 
genetic engineering techniques, this pathway can be 
performed in one step but apparently with lower perfor- 
mances (about 30% yield). 

During recent years, available information indicates 
that L-ascorbic acid has been produced essentially by 
the Reichstein method. It is known that in this process 
four steps, one biochemical and three chemical, are 
necessary to transform sorbitol into ascorbic acid (see 
Figure I). If the hydrogenation of glucose, necessary 
for obtaining sorbitol, is included, there are thus five 
steps and the overall yield is now around 50%. 

The most significant developments in the use of mi- 
croorganisms for the production of L-ascorbic acid are 
those of Sonoyama et a1.8246 and of Estell et al.x7-88 
The former, using mixed staged cultures with special 
mutants, allow global yields of the same order of magni- 

tude as those obtained with the Reichstein process; the 
latter, using genetically engineered microorganisms, 
reach performances of 22%. However, information on 
optimization of genetic modification of the bacteria 
host is at this time incomplete or unpublished. 

It would seem that the most promising biochemical 
process competitive with the Reichstein procedure 
would have only one biotransformation step. Thus, it 
is necessary that the bacterial pathway includes the 
last transformation (2-keto-L-gulonic acid to L-ascorbic 
acid). This implies further genetic modifications of the 
engineered bacterial cell. It has been seen that the last 
step allows the conversion of the formula C6H,007 (2- 
keto-r_-gulonic acid) to the formula C6H806 (r-ascorbic 
acid, Figure 2). Thus it corresponds to one reduction 
and one oxidoreduction. At least two enzymes are re- 
quired, signifying the transfer of at least two more 
genes into the bacterial host. In order to get a single- 
step fermentation process able to produce L-ascorbic 
acid from glucose, it is necessary to introduce a total 
of at least six enzymatic activities into bacteria, while 
according to recent progress, only four might be 
present. 
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Conclusion 

In summary, in order to obtain in one step L-ascorbic 
acid from glucose, an ideal bacterium requires at least 
six enzymatic activities. Compared with what is pres- 
ent in yeast (seven enzymes), this number appears not 
very different. Although until now, most work has been 
carried out using prokaryotic cells, it is not evident that 
bacteria are the best hosts for this kind of fermentation. 
At present, genetically modified bacteria with four en- 
zyme activities have been produced as compared to the 
single activity known to be carried by certain yeasts. 
It is this comparison which makes bacteria apparently 
preferable. However, only additional research will 
allow determination of the best host cell. In any case, 
to have a successful direct biological process for t.- 
ascorbic acid production, research will lead to a multi- 
genetically engineered ceil. As for L-ascorbic acid prep- 
aration, up to now bacteria remain the best candidate. 
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