Josep M Gasol

Josep M Gasol
Institut de Ciències del Mar · Biologia Marina i Oceanografia

PhD in Biology

About

548
Publications
129,954
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
25,798
Citations
Citations since 2017
119 Research Items
13040 Citations
201720182019202020212022202305001,0001,5002,0002,500
201720182019202020212022202305001,0001,5002,0002,500
201720182019202020212022202305001,0001,5002,0002,500
201720182019202020212022202305001,0001,5002,0002,500
Additional affiliations
April 2018 - September 2019
Edith Cowan University
Position
  • Professor (Associate)
May 2012 - October 2012
Université du Québec à Montréal
Position
  • Sabbatical researcher
August 2000 - present
Institut de Ciències del Mar
Position
  • Professor

Publications

Publications (548)
Preprint
Full-text available
Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the ecological mechanisms shaping their biogeography are partially understood. Comprehending whether these microorganisms are structured by niche vs. neutral processes is highly relevant in the context of global change. The ecological drivers structuring pi...
Preprint
Full-text available
Studies based on protein-coding genes are essential to describe the diversity within bacterial functional groups. In the case of the aerobic anoxygenic phototrophic (AAP) bacteria, the pufM gene has been established as the genetic marker for this particular functional group, although available primers are known to have amplification biases. We revi...
Article
Full-text available
On a standard oceanographic cruise, flow cytometry data are usually collected sparsely through a bottle-based sampling and with stations separated by kilometers leading to a fragmented view of the ecosystem; to improve the resolution of the datasets produced by this technique here it is proposed the application of an automatic method of sampling an...
Preprint
Full-text available
Traditional culture techniques usually retrieve only a small fraction of the environmental marine microbial diversity, which mainly belong to the so-called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we examined the fraction of heterotrophic bacterial communities in photic a...
Article
Full-text available
Background Ocean microbes constitute ~ 70% of the marine biomass, are responsible for ~ 50% of the Earth’s primary production and are crucial for global biogeochemical cycles. Marine microbiotas include core taxa that are usually key for ecosystem function. Despite their importance, core marine microbes are relatively unknown, which reflects the la...
Article
Full-text available
Coastal ecosystems deteriorate globally due to human-induced stress factors, like nutrient loading and pollution. Bacteria are critical to marine ecosystems, e.g., by regulating nutrient cycles, synthesizing vitamins, or degrading pollutants, thereby providing essential ecosystem services ultimately affecting economic activities. Yet, until now bac...
Preprint
Viruses play important roles on the biogeochemical cycles that take place in the ocean.Yet, deep ocean viruses are one of the most under-explored fractions of the global biosphere. Little is known about the environmental factors that control the composition and functioning of their communities, or how they interact with their free-living or particl...
Article
Subterranean estuaries are biogeochemically active coastal sites resulting from the underground mixing of fresh aquifer groundwater and seawater. In these systems, microbial activity can largely transform the chemical elements that may reach the sea through submarine groundwater discharge (SGD), but little is known about the microorganisms thriving...
Article
Dispersal and environmental gradients shape marine microbial communities, yet the relative importance of these factors across taxa with distinct sizes and dispersal capacity in different ocean layers is unknown. Here, we report a comparative analysis of surface and deep ocean microbial beta diversity and examine how these patterns are tied to ocean...
Article
Full-text available
Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of...
Article
Full-text available
The Northern Adriatic Sea is a key area of the Mediterranean Sea, strongly affected by freshwater inputs, mainly from the Po River, which bring high amounts of nutrients as well as organic and inorganic particles. Free-living and particle-attached prokaryotes were characterized by 16S rRNA gene amplicon sequencing of size-fractionated samples colle...
Article
Full-text available
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacte...
Article
The aerobic anoxygenic phototrophic (AAP) bacteria are common in most marine environments but their global diversity and biogeography remain poorly characterized. Here, we analyzed AAP communities across 113 globally-distributed surface ocean stations sampled during the Malaspina Expedition in the tropical and subtropical ocean. By means of amplico...
Article
Full-text available
Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are gel-like particles, ubiquitous in the ocean, that affect important biogeochemical processes including organic carbon cycling by planktonic food webs. Despite much research on both groups of particles (especially TEP) over many years, whether they exist as distinctly...
Article
Full-text available
COVID-19 has led to global population lockdowns that have had indirect effects on terrestrial and marine fauna, yet little is known on their effects on marine planktonic communities. We analysed the effect of the spring 2020 lockdown in a marine coastal area in Blanes Bay, NW Mediterranean. We compared a set of 23 oceanographic, microbial and bioge...
Article
Full-text available
The Mediterranean Sea is a miniature ocean divided by the Sicily Strait into two basins with a marked west to east trophic gradient and separated of the nearby eastern Atlantic Ocean by the Strait of Gibraltar. Here, we test the hypothesis that these physical and environmental barriers favor the development of specific prokaryotic assemblages, lead...
Chapter
Full-text available
Oceans are no longer inaccessible places for data acquisition. High-throughput technological advances applied to marine sciences ( from genes to global current patterns ) are generating Big Data sets at unprecedented rates. How to manage, store, analyse, use and transform this data deluge into knowledge is now a fundamental challenge for ocean scie...
Preprint
Full-text available
Background Microbial interactions are fundamental for Earth’s ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predicting microbial interactions through the statistical inference of single (static) association networks. Yet, microbial intera...
Preprint
Full-text available
Although microbial interactions underpin ocean ecosystem functions, they remain barely known. Different studies have analyzed microbial interactions using static association networks based on omics-data. However, microbial associations are dynamic and can change across physicochemical gradients and spatial scales, which needs to be considered to un...
Article
Full-text available
Bacteria display dynamic abundance fluctuations over time in marine environments, where they play key biogeochemical roles. Here, we characterized the seasonal dynamics of marine bacteria in a coastal oligotrophic time series station, tested how similar the temporal niche of closely related taxa is, and what are the environmental parameters modulat...
Preprint
Full-text available
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Phytoplankton communities are generally studied by PCR amplification of bacterial (16S), nuc...
Article
Full-text available
The deep sea, the largest ocean’s compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles d...
Preprint
Full-text available
The bathypelagic ocean (1000-4000 m depth) is the largest aquatic biome on Earth but it is still largely unexplored. Due to its prevalent low dissolved organic carbon concentrations, most of the prokaryotic metabolic activity is assumed to be associated to particles. The role of free-living prokaryotes has thus been mostly ignored, except that of s...
Article
Full-text available
Previous studies conducted in summer in the lakes at Hope Bay (Antarctic Peninsula) between 1991 and 2007 showed a large numerical contribution of flagellated Chrysophyceae to the phytoplankton communities, particularly in the oligotrophic lakes, as evidenced by light microscopy observations and molecular fingerprinting. Given the ecological releva...
Article
Full-text available
Anthropogenic carbon emissions are causing changes in seawater carbonate chemistry including a decline in the pH of the oceans. While its aftermath for calcifying microbes has been widely studied, the effect of ocean acidification (OA) on marine viruses and their microbial hosts is controversial, and even more in combination with another anthropoge...
Preprint
Full-text available
Microbial interactions are fundamental for Earth’s ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. The omics-based censuses are helpful to predict microbial interactions through the inference of static association networks. However, since microbial interactions are highly dyn...
Preprint
Full-text available
Bacteria are highly dynamic in marine environments, where they play key biogeochemical roles. Here, we tested how similar the niche of closely related marine bacteria is and what are the environmental parameters modulating their ecological responses in a coastal oligotrophic time series. We further explored how conserved the niche is at broader tax...
Article
The Variability of chlorophyll-specific phytoplankton light absorption [a*ph (λ)] was examined over depth and time in stratified offshore waters of the North-Western Mediterranean Sea. Coherent water patches were tracked with Lagrangian drifters during two oceanographic cruises in September (late summer) and May (post-spring bloom phase). By simult...
Article
Full-text available
Estimation of prokaryotic growth rates is critical to understand the ecological role and contribution of different microbes to marine biogeochemical cycles. However, there is a general lack of knowledge on what factors control the growth rates of different prokaryotic groups and how these vary between sites and along seasons at a given site. We car...
Article
Different factors affect the way dissolved organic matter (DOM) is processed in the ocean water column, including environmental conditions and the functional capabilities of the communities. Recent studies have shown that bathypelagic prokaryotes are metabolically flexible, but whether this versatility translates into a higher ability to process DO...
Article
High-throughput sequencing of microbial assemblages has been proposed as an alternative methodology to the traditional ones used in marine monitoring and environmental assessment. Here, we evaluated pico- and nanoplankton diversity as ecological indicators in NW Mediterranean coastal waters by comparing their diversity in samples subjected to varyi...
Preprint
Full-text available
Estimates of marine plastic stocks, a major threat to marine life (1), are far lower than expected from exponentially-increasing litter inputs, suggesting important loss factors (2, 3). These may involve microbial degradation, as the plastic-degrading polyethylene terephthalate enzyme (PETase) has been reported in marine microbial communities (4)....
Article
Full-text available
Massive metagenomic sequencing combined with gene prediction methods were previously used to compile the gene catalogue of ocean and host‐associated microbes. Global expeditions conducted over the past 15 years have sampled to ocean to build a catalogue of genes from pelagic microbes. Here we undertook a large sequencing effort of a perturbed Red S...
Article
Full-text available
Microbes associated with sinking marine particles play key roles in carbon sequestration in the ocean. The sampling of particle-attached microorganisms is often done with sediment traps or by filtration of water collected with oceanographic bottles, both involving a certain time lapse between collection and processing of samples that may result in...
Article
Full-text available
Background: Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a sta...
Article
Full-text available
Seasonal dynamics of ocean prokaryotic communities in the free-living fraction have been widely described, but less is known about the seasonality of prokaryotes inhabiting marine particles. We describe the seasonality of bacterial communities in the particulate matter continuum by sampling monthly over two years in a temperate oligotrophic coastal...
Article
Full-text available
Prokaryotes play a fundamental role in decomposing organic matter in the ocean, but little is known about how microbial metabolic capabilities vary at the global ocean scale and what are the drivers causing this variation. We aimed at obtaining the first global exploration of the functional capabilities of prokaryotes in the ocean, with emphasis on...
Preprint
Full-text available
Oceans connect all life and affect climate worldwide, and interestingly, the ocean’s smallest residents have a huge role in this process. The ocean microbiota modulates global biogeochemical cycles, which influences energy balance in the atmosphere. Unfortunately, the underlying factors structuring the ocean microbiota are unclear, and better under...
Article
Full-text available
Background: The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tro...
Article
Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep‐sea physico‐chemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atla...
Preprint
Full-text available
Background Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a stand...
Article
Full-text available
Bacterial candidate phylum PAUC34f was originally discovered in marine sponges and is widely considered to be composed of sponge symbionts. Here, we report 21 single amplified genomes (SAGs) of PAUC34f from a variety of environments, including the dark ocean, lake sediments, and a terrestrial aquifer. The diverse origins of the SAGs and the results...
Preprint
Full-text available
Background: Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a stan...
Preprint
Full-text available
Background The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have largescale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here we investigate how fundamental ecological mechanisms ( selection , dispersal and ecological drift ) shape the smallest members of the tro...
Article
Full-text available
Global ocean expeditions have provided minimum estimates of ocean’s prokaryote diversity, supported by apparent asymptotes in the number of prokaryotes with sampling effort, of about 40,000 species, representing <1% of the species cataloged in the Earth Microbiome Project, despite being the largest habitat in the biosphere. Here we demonstrate that...
Article
Recent developments in community and single-cell genomic approaches have provided an unprecedented amount of information on the ecology of microbes in the aquatic environment. However, linkages between each specific microbe's identity and their in situ level of activity (be it growth, division or just metabolic activity) are much more scarce. The u...
Article
The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity...
Preprint
Full-text available
Background The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have largescale consequences. Yet, the underlaying ecological mechanisms structuring it are unclear. Here we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tropi...
Article
Full-text available
Microbial eukaryotes are key components of the ocean plankton. Yet, our understanding of their community composition and activity in different water layers of the ocean is limited, particularly for picoeukaryotes (0.2-3 µm cell size). Here, we examined the picoeukaryotic communities inhabiting different vertical zones of the tropical and subtropica...
Preprint
Full-text available
Nowadays, there is a significant gap in the knowledge of the diversity and patterns for marine heterotrophic culturable microorganisms. In addition, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have isolated 1561 bacterial strains covering both photic (817) and aphotic layers (744...
Conference Paper
Estuaries are among the most productive ecosystems in the world. They are considered as changing environments because the interaction of freshwater and seawater leads to the formation of specific conditions strongly influenced by a combination of physical, chemical and biological drivers. Nicoya´s gulf is a tropical estuary located in the Pacific c...
Article
Full-text available
The role of macroalgae in Blue Carbon assessments has been controversial, partially due to uncertainties about the fate of exported macroalgae. Available evidence suggests that macroalgae are exported to reach the open ocean and the deep sea. Nevertheless, this evidence lacks systematic assessment. Here, we provide robust evidence of macroalgal exp...
Poster
The Deep Chlorophyll Maximum (DCM) is a sub surface layer enriched in chlorophyll. In the Mediterranean Sea is a seasonal phenomenon and a very dynamic feature that may have associated a broad variety of microbial niches. Previous studies have used Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH) to show that dominant ph...
Article
Full-text available
All known phototrophic metabolisms on Earth rely on one of three categories of energy-converting pigments: chlorophyll- a (rarely - d ), bacteriochlorophyll- a (rarely - b ), and retinal, which is the chromophore in rhodopsins. While the significance of chlorophylls in solar energy capture has been studied for decades, the contribution of retinal-b...
Preprint
Full-text available
The deep sea, the largest compartment of the ocean, is an essential component of the Earth system, but the functional exploration of its microbial communities lags far behind that of other marine realms. Here we analyze 58 bathypelagic microbial metagenomes from the Atlantic, Indian, and Pacific Oceans in an unprecedented sampling effort from the M...
Article
Full-text available
Experiments with bacteria in culture have shown that they often display ´feast and famine´ strategies that allow them to respond with fast growth upon pulses in resource availability, and enter a growth-arrest state when resources are limiting. Although feast responses have been observed in natural communities upon enrichment, it is unknown whether...
Article
Organic pollutants are continuously being introduced in seawater with uncharacterized impacts on the engines of the marine biogeochemical cycles, the microorganisms. The effects on marine microbial communities were assessed for perfluoroalkyl substances, organophosphate esters flame retardants and plasticizers, polycyclic aromatic hydrocarbons, and...
Article
The impact of grazing, resource competition and light on prokaryotic growth and taxonomic composition in subtropical and tropical surface waters was studied through 10 microcosm experiments conducted between 30°N and 30°S in the Atlantic, Pacific and Indian oceans. Under natural sunlight conditions, significant changes in taxonomic composition were...
Article
Full-text available
Transparent exopolymer particles (TEP) play a key role in ocean carbon export and structuring microbial habitats, but information on their distribution across different ocean basins and depths is scarce, particularly in the dark ocean. We measured TEP vertical distribution from the surface to bathypelagic waters in an east-to-west transect across t...
Article
Full-text available
Bacteroidetes is one of the dominant phyla of ocean bacterioplankton, yet its diversity and population structure is poorly understood. To advance in the delineation of ecologically meaningful units within this group, we constructed near full‐length 16S rRNA gene clone libraries from contrasting marine environments in the NW Mediterranean. Based on...