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Dengue virus (DENV) is currently among the most important human pathogens and affects

millions of people throughout the tropical and subtropical regions of the world. Although it has

been a World Health Organization priority for several years, there is still no efficient vaccine

available to prevent infection. The envelope glycoprotein (E), exposed on the surface on infective

viral particles, is the main target of neutralizing antibodies. For this reason it has been used as the

antigen of choice for vaccine development efforts. Here we show a detailed analysis of factors

involved in the expression, secretion and folding of E ectodomain from all four DENV serotypes in

mammalian cells, and how this affects their ability to induce neutralizing antibody responses in

DNA-vaccinated mice. Proper folding of E domain II (DII) is essential for efficient E ectodomain

secretion, with DIII playing a significant role in stabilizing soluble dimers. We also show that the

level of protein secreted from transfected cells determines the strength and efficiency of antibody

responses in the context of DNA vaccination and should be considered a pivotal feature for the

development of E-based DNA vaccines against DENV.
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INTRODUCTION

Dengue disease is a mosquito-borne viral infection caused
by dengue virus (DENV), one of the most important
human pathogens affecting millions throughout the tropical
and subtropical regions of the world (Murray et al., 2013;
WHO, 2009). DENV infection produces a systemic disease
with manifestations that range from non-symptomatic or
mild flu-like syndrome (dengue fever) to severe and poten-
tially fatal haemorrhagic manifestations (dengue haemor-
rhagic fever and dengue shock syndrome) (Gulland, 2013;
Naish et al., 2014; WHO, 2009).

DENV belongs to the family Flaviviridae and is composed
of four closely related serotypes: DENV1, DENV2, DENV3
and DENV4 (Bäck & Lundkvist, 2013; Weaver & Vasilakis,
2009). Like all flaviviruses, DENV is an enveloped virus
with a positive sense ssRNA genome of approximately
11 kb that encodes ten viral proteins: seven non-structural
proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5)
and three structural ones (C, Pr-M and E) (Ninth Report
of the International Committee on Taxonomy of Viruses,
2012; Simmons et al., 2012). Of these, the envelope glyco-
protein (E), a class II viral membrane fusion protein, is the

major constituent of the viral particle (Ge & Zhou, 2014;
Modis, 2014; Schibli & Weissenhorn, 2004). E is approxi-
mately 500 aa in length and fulfils essential functions
regarding host range, tropism, virus–cell attachment, cellu-
lar entry and viral assembly (Butrapet et al., 2011;
Lindenbach et al., 2007). E folds into an elongated rod-
like structure forming antiparallel homo-dimers, organized
in a herringbone-like configuration on the viral surface
(Mukhopadhyay et al., 2005; Zhang et al., 2003).

The E ectodomain, also termed soluble E (sE), involves
approximately the first 400 aa and comprises three different
structural domains named domain I (DI), DII and DIII
(Rey et al., 1995; Rouvinski et al., 2015; Zhang et al.,
2004). While DIII is encoded in a single genomic sequence
within the viral genome, DI and DII (DI/DII) are discon-
tinuous with respect to the protein and encoded in interca-
lated genomic segments (three for DI, two for DII) (Modis,
2014). DI folds into a b-barrel structure with an axis par-
allel to the viral membrane and occupies a central position
in the mature monomer (Modis et al., 2005; Rey et al.,
1995). DII forms an elongated finger-like structure with a
stable core that expands distally in two loops (Rey et al.,
1995; Zhang et al., 2004); the most distal one carries a
hydrophobic glycine-rich sequence that serves as the
internal fusion loop during fusion to host cell membranes

Four supplementary figures are available with the online Supplementary
Material.
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(Allison et al., 2001). Additionally, DII provides the surface
where the main interactions for E dimerization occur
(Modis et al., 2005; Rey et al., 1995). The C-terminal
DIII domain has an Ig-like b-barrel structure with a hydro-
phobic inner surface in a pocket that accommodates the
fusion loop of the opposing monomer (Allison et al.,
2001; Erb et al., 2010). DIII is also believed to contain
the receptor-binding sites to the host cell (Erb et al.,
2010; Mukhopadhyay et al., 2005) and has been implicated
in determining host range, tropism and virulence (Linden-
bach et al., 2007). A hinge region formed by the four
strands that span between the different DI and DII
coding segments provides the flexibility for E confor-
mational changes during virus maturation (Butrapet
et al., 2011; Monath et al., 2002), while a linker of 11 aa
connects DI to DIII and is fundamental for proper E fold-
ing (de Wispelaere & Yang, 2012).

E protein is the main target of the antibody immune
response during infection (Rothman, 2011; Wahala & Silva,
2011). While neutralizing epitopes have been found on all
three domains and on the dimer interface (Dejnirattisai
et al., 2015; Rothman, 2011; Rouvinski et al., 2015;
Sukupolvi-Petty et al., 2010), antibodies against the upper
lateral surface of DIII are described as the ones with the
highest neutralizing capacity (Crill & Roehrig, 2001;
Gromowski et al., 2008; Lok et al., 2008; Matsui et al.,
2009). We have recently shown that DNA vaccination
with DIII-based constructs of all four serotypes results in
highly serotype-specific neutralizing responses without
induction of antibody-dependent enhancement of infection
(Poggianella et al., 2015).

Genetic vaccination is a simple and efficient technique with
high safety standards, low costs of production, excellent
stability and capable of inducing robust antibody responses
(Khan, 2013; Shedlock & Weiner, 2000; Vaughn et al.,
2008). In this approach, delivery of plasmid DNA encoding
the antigen of choice results in antigen expression by cells
of the host (Khan, 2013).

Here we present a detailed biochemical analysis of
expression, secretion and folding of sE from all four
DENV serotypes in mammalian cells, and how this affects
their ability to induce antibody responses in DNA vac-
cinated mice. We show that DII plays a pivotal role in sE
secretion, while DIII is responsible for stabilizing sE
dimers. We also show that the sE secretion levels determine
the strength of the antibody response, an important feature
for the development of E-based DNA vaccines.

RESULTS

Secretion of E ectodomain depends on DII

Secretion of DENV recombinant sE from mammalian cells
was investigated by overexpressing DNA constructs encoding
the first 416 (for DENV1, DENV2 and DENV4) or 414 (for
DENV3) amino acids of E proteins from the four different

serotypes with a signal leader peptide at the N terminus. The
SV5 tag was included at the C terminus for detection. Sche-
matics of the constructs used are shown in Fig. 1(a) and the
corresponding sE amino acid sequences in Fig. S1 (available
in the online Supplementary Material). sE secretion was
analysed by Western blotting (WB) of cellular extracts
and supernatants of transfected HEK293T cells. Clear
differences in the secretory phenotypes of the distinct
sE serotypes were observed (Fig. 1b). While sE from
serotypes 1 (1sE) and 2 (2sE) were poorly secreted and
accumulated in the cellular extracts (see Fig. 1b long-
exposure), sE from serotypes 3 (3sE) and 4 (4sE) were
better secreted. These secretory phenotypes were inde-
pendent of the mammalian cell line used (Fig. S2).

To investigate whether the poor-secretion phenotype of
1sE and 2sE was dependent on DI/DII or DIII, we inde-
pendently tested constructs encoding these two parts for
all serotypes. Fig. 1(c) shows that DI/DII of serotypes 1
and 2 (1DI/DII and 2DI/DII) were not efficiently secreted,
resembling phenotypes of the corresponding sE proteins.
In contrast, DI/DII of serotypes 3 and 4 (3DI/DII and
4DI/DII) were both secreted, as their homologous sE.
On the other hand, DIII was secreted, albeit in low
amounts, in serotypes 1 and 3. Thus, secretion of sE
appeared to be determined by DI/DII.

This was confirmed with sE chimeras that contained DI/
DII and DIII from different serotypes. Four chimeric con-
structs were obtained: (i) DI/DII of the poor-secretory
serotypes (serotype 1 and serotype 2) and DIII from sero-
type 3 [1sE(3DIII) and 2sE(3DIII), respectively]; (ii) DI/
DII from serotype 3 and DIII from serotype 2
[3sE(2DIII)]; and (iii) DI/DII from serotype 4 and DIII
from serotype 3 [4sE(3DIII)]. As shown in Fig. 1(d), the
two chimeric sE containing DI/DII from the poor-secretory
serotypes 1 and 2 were not efficiently secreted. In contrast,
DI/DII from serotype 3 allowed secretion of the 2DIII-con-
taining sE chimera. The 4sE(3DIII) chimera served as a
secretory chimeric control that was secreted, as expected.
Thus, DI/DII determines sE secretion.

To further map the secretory phenotype, we tested DI/DII
chimeras where the hinge regions between the two domains
belonged to the same serotype as DI. The 2DI/3DII chimera
was well secreted, while 3DI/2DII was not, suggesting that the
poor-secretory phenotype was exclusively dependent on DII
(Fig. 2a). This was confirmed by analysing DI and DII sE chi-
meras. Grafting DI from serotype 3 into a 2sE [2sE(3DI)] did
not improve secretion, while grafting of 3DII [2sE(3DII)] did
(Fig. 2b, lanes 3–6). Conversely, grafting DI from serotype 2
into a 3sE [3sE(2DI)] did not affect secretion, while grafting
of 2DII [3sE(2DII)] reduced it to near-undetectable levels.
In these chimeras, the hinge regions between DI and DII
belonged to the DI serotype (Fig. 2b, lanes 9–12). The sE
secretory phenotype was therefore dependent on DII.

We then probed the folding state of the different proteins
using mAb 4G2, which recognizes a DII conformational
epitope on the fusion loop of all serotypes (Henchal
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et al., 1985; Lin et al., 2012). 4G2 recognized secreted DI/
DII and sE proteins from DENV3 and DENV4, as well as
the secreted chimeras 2DI/3DII and 2sE(3DII) (Fig. 3a).
The same proteins were not recognized upon denaturation,
confirming the conformational nature of the epitope.
In contrast, DI/DII and sE from the poor-secretory
DENV1 and DENV2, and chimeras 3DI/2DII and
3sE(2DII), were mostly not recognized by 4G2, in contrast

to positive controls 3DI/DII and 3sE (Fig. 3b). These results
indicate a correlation of the secretory phenotype with the
folding state of the protein. This was further confirmed
with the non-glycosylated mutants (N67Q and N153Q)
of serotype 3 DI/DII and sE that, in contrast to the glyco-
sylated proteins, showed impaired secretion (Fig. 3c).
As expected, the two poor-secretory proteins were not
recognized by 4G2 (Fig. 3d).
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Fig. 1. Serotype dependent sE secretory phenotypes from mammalian cells. (a) Schematic of constructs and their products;
sec corresponds to a signal leader peptide and SV5 (green) to the C-terminal tag. DI/DII are indicated in blue and DIII in
grey. (b) WB of cellular extracts (E) and supernatants (S) of HEK293T cells transfected with sE constructs of the indicated
serotypes. Short and long exposures are indicated. (c) WB of cells transfected with sE, DI/DII and DIII constructs of the indi-
cated serotypes. (d) WB of cells transfected with the indicated DI/DII–DIII chimeras. For comparison, the corresponding sE
and DI/DII proteins were analysed in parallel. Anti-tubulin was used as a loading control. Filled, open and grey arrowheads
indicate sE, DI/DII and DIII proteins, respectively.
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Interestingly, the DI/DII secretory phenotype was only
temperature-dependent for serotype 2. Transfected cells
were maintained at 37 uC for 16 h and shifted to 28 uC
for the next 24 h. Total cell extracts and supernatants

were then analysed by WB (Fig. S3a). 2DI/DII was
secreted at 28 uC but not at 37 uC, while secretion of
the control 3DI/DII was not affected (Fig. S3b).
As expected, 2DI/DII produced at 28 uC, but not the
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one produced at 37 uC, was recognized by 4G2, consist-
ent with secretion being associated to proper DII folding
(Fig. S3c). However, despite recognition by 4G2, 2sE

produced at 28 uC was still poorly secreted, thus indicat-
ing that other factors restrict its secretion in these con-
ditions (Fig. S3c).
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sE dimerization

We next tested the ability of the secreted sE and DI/DII to
dimerize. We developed a cell-based assay to detect dimers
by cytofluorimetry (Fig. 4a). 3sE was displayed on the cell
membrane by fusing it to the trans-membrane and cyto-
plasmic domains of the human MHC-Ia chain (3sE-mem)
(Fig. 4b) and co-expressed with SV5-tagged secretory ver-
sions of 3sE or 3DI/DII. If secretory proteins were forming
a hetero-dimer with the membrane-bound 3sE-mem, cells
should stain positive for SV5. Indeed, cells became strongly
positive for anti-SV5 only when co-transfected with con-
structs encoding the membrane-bound and secretory 3sE,
but not when transfected with each construct alone
(Fig. 4c). DI/DII-SV5 was also detected on the cell mem-
brane when co-expressed with 3sE-mem (Fig. 4d) indicating
that, despite the lack of DIII, DI/DII was still able to form a
stable hetero-dimer with sE. These results were confirmed by
immunofluorescence (Fig. 4e).

sE dimerization of the secretory 3sE, 4sE and the 2sE(3DII)
chimera was further confirmed by co-immunoprecipita-
tion. Cells were co-transfected with two sE constructs con-
taining different C-terminal tags: SV5 or BAP (a 15 aa long

tag that is biotinylated in vivo by co-expression with an
engineered biotin-ligase BirA active in the endoplasmic
reticulum lumen; Predonzani et al., 2008). Cell extracts
were immunoprecipitated with anti-SV5 and analysed by
WB with HRP-conjugated streptavidin (StrAv). All three
sE were able to co-immunoprecipitate the BAP-tagged
partner from both extracts (Fig. 5a) and supernatants
(Fig. 5b). Although DI/DII from serotype 3 was found
dimerized intracellularly (Fig. 5c), it was not similarly
found in the supernatants (Fig. 5d), suggesting low stability
of DI/DII dimers after secretion.

Indeed, DIII plays an important role in dimer stabilization.
Secreted material in dimeric form was observed for 3sE
homo-dimers (which contain two DIII) and for sE and
DI/DII hetero-dimers (which contain a single DIII), but
not for DI/DII homo-dimers (with no DIII) (Fig. 6a).
In the case of sE and DI/DII hetero-dimers, the same
result was obtained when pull-down was performed on
sE or DI/DII (Fig. 6a, lanes 6 and 7). However, the
amount of co-immunoprecipitated partner from hetero-
dimers between sE and DI/DII was reduced around fourfold
(approximately 5 %) compared with the sE homo-dimers
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(approximately 20 %), indicating that a single DIII stabil-
izes dimers to a lower extent than two of them (Fig. 6b).
The specificity of this interaction was further confirmed
by anti-SV5 immunoprecipitations of cell extracts from
[35S]methionine-labelled cells co-expressing 3sE (SV5-
tagged) and 3DI/DII (roTag-tagged). 3DI/DII was co-
immunoprecipitated with anti-SV5 only when co-expressed
with 3sE (Fig. 6c).

Secretion and the immune response

It is expected that antigen secretion from transfected cells is
an essential step for induction of antibody responses in
DNA vaccines (Hon et al., 2005; Shedlock & Weiner,
2000). Therefore, sE constructs with well-established
secretory phenotypes would be preferred in order to opti-
mize antigen availability and antibody responses as we
have recently shown with DIII-based vaccines (Poggianella
et al., 2015). This hypothesis was confirmed by gene-gun
DNA immunization of mice using two sets of constructs
coding for sE with the same DIII but with different
secretory phenotypes: (i) 3sE (secreted) and 3sE(2DII)
(poorly secreted); and (ii) 2sE (poorly secreted) and
2sE(3DII) (secreted). Antibody titres against DIII were
then determined by ELISA using recombinant DIII of sero-
types 2 and 3 for coating. Mice immunized with the
secretory 3sE construct had a titre against 3DIII above
2000, while those immunized with the poorly secretory
3sE(2DII) were negative at 1 : 100 dilution (Fig. 7a).

Cross-reactivity of 3sE sera against 2DIII was very poor
(Fig. 7b). For constructs expressing 2DIII, the more effi-
ciently secreted 2sE(3DII) induced a titre against 2DIII ten-
fold higher than the poorly secretory 2sE (Fig. 7c), while
none of them showed significant reactivity against 3DIII
(Fig. 7d). Antibody titres against the homologous DIII
are summarized in Fig. 7(e) and underline the importance
of antigen secretion and availability to induce strong anti-
body responses. The differences in responses to 2DIII and
3DIII are likely the consequence of the intrinsic immuno-
genicity of each antigen (Poggianella et al., 2015). Immuno-
fluorescence microscopy revealed that antibodies induced
with 2sE, 2sE(3DII) and 3sE were able to recognize protein
E in virus-infected cells (Fig. 7f), indicating reactivity against
the mature viral protein.

Collectively, the data shown indicate that the secretory chi-
mera 2sE(3DII) represents a valid construct to induce
strong antibody responses against serotype 2 DIII upon
DNA-immunization with sE constructs. Indeed, antibodies
induced with 2sE(3DII) showed high neutralizing activity
against serotype 2 (w1 : 300) and much lower against sero-
type 3 (approximately 1 : 50) (Fig. 8a), a characteristic
linked to the high specificity of serotype 2 anti-DIII
responses (Poggianella et al., 2015). As expected, antibodies
induced with 2sE showed very low neutralizing activity
against serotype 2 and no activity against serotype 3
(Fig. 8b), while those induced with 3sE neutralized sero-
type 3 but not serotype 2 (Fig. 8c). The poorly secretory
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chimera 3sE(2DII) did not have any neutralization activity
(Fig. 8d) in agreement with the ELISA and immunofluor-
escence results. Antibody neutralization titres for the

homologous DIII serotype are summarized in Fig. 8(e).
We then compared the avidity indexes of sera from mice
immunized with constructs 2sE and 2sE(3DII) against
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2DIII. Interestingly, in addition to differences in antibody
titres, and despite the fact that both sera are mainly
directed towards conformational epitopes (Fig. 8f), anti-
bodies derived from the secretory 2sE(3DIII) showed a
significantly higher avidity index than those obtained
from 2sE (Fig. 8g).

DISCUSSION

Although the use of DIII alone as an antigen for DENV
vaccine development has been proved to induce antibodies
against neutralizing E epitopes (Pierson et al., 2008;
Poggianella et al., 2015), recent data have demonstrated
the presence of broadly neutralizing antibodies directed
against epitopes on DI and DII (Sukupolvi-Petty et al.,
2010; Wahala et al., 2009; Williams et al., 2012), and on
E dimers (envelope dimer epitopes) that are reactive with
all four serotypes (Dejnirattisai et al., 2015; Rouvinski
et al., 2015).

Here we investigated the expression of E ectodomains from
all DENV serotypes in mammalian cells to understand their
secretory characteristics for implementation in DNA-based
vaccines. We showed that efficient antigen secretion from
transfected cells was required for an appropriate immune
response in a DNA-immunization context.

Our data show that sE from different serotypes have dis-
tinct characteristics in relation to their secretory phenotype
from mammalian cells. sE of serotypes 1 and 2 were not
efficiently secreted, while those from serotypes 3 and 4
were. The poorly secretory phenotype of serotypes 1 and
2 was mapped to DII and was directly associated to the
lack of proper DII folding, which in the case of serotype
2 was temperature dependent. Folding of DII was probed
with mAb 4G2, which recognizes a conformational epitope
comprising the highly conserved fusion loop that depends
on several other loops and b-strands throughout DI/DII for
proper folding and is instrumental for E dimerization
(Allison et al., 2001).

Despite mapping the sE secretory phenotype to DII, both
DI and DII show high amino acid identity when comparing
the poorly secretory with the secretory phenotypes (71 %
for DI and 75 % for DII when comparing serotypes 2
and 3). Thus, a clear indication of possible DII residues
that could explain the differences in folding and secretion
was not apparent, suggesting that the compromised folding
of the poorly secretory proteins probably involves cumula-
tive effects of different residues distributed throughout the
domain. It is unlikely, although not totally ruled out, that
the secretory phenotypes described were dependent on
the virus strains used since the E amino acid sequences
are rather conserved within each serotype with an amino
acid diversity equally distributed among the different
domains (Fig. S4).

In virus-infected cells proper E folding and assembly into
viral infective particles could be dependent on cellular

factors or viral proteins. For instance, the viral Pr-M pro-
tein has been described to assist E folding in a chaper-
one-like manner (Li et al., 2008; Zheng et al., 2010).
However, the inclusion of Pr-M in subunit vaccines has
been questioned, since recent evidence indicates that
anti-Pr antibodies can enhance infection by promoting
internalization of immature viruses (Dejnirattisai et al.,
2010; Rodenhuis-Zybert et al., 2010). Also, the stem and
anchor regions of E were shown to affect E expression in
the absence of viral infection (Klein et al., 2013).

Since most of neutralizing epitopes on E appear to be con-
formational in nature (Sukupolvi-Petty et al., 2010),
obtaining the E protein in its native conformation is critical
for the development of an efficient vaccine against DENV
(Tsai et al., 2012). Several C-terminal truncated versions
of E, in which the stem and the transmembrane anchor
of the protein have been removed, have been developed
for DNA and protein subunit immunizations (Coller
et al., 2011; Guzmán et al., 2003; Mani et al., 2013;
Ocazionez Jimenez & Lopes da Fonseca, 2000). However,
few studies have analysed production and secretion of
such proteins from mammalian cells for DNA vaccination
purposes. A previous study comparing the use of different
full-length and truncated versions of E from DENV1 in the
context of DNA vaccination (Raviprakash et al., 2000)
revealed that truncated proteins were poorly secreted and
their secretion was not improved by co-expression with
other viral proteins. Poor secretion of a DENV2 truncated
ectodomain from BHK-21 cells was also recently shown to
induce low neutralization titres in DNA vaccinated mice
(Azevedo et al., 2011), which resemble the anti-2sE
responses shown here. Conversely, a recent work on a
series of C-terminal truncated constructs of DENV4 E pro-
tein concluded that this protein could achieve proper fold-
ing and secretion by itself (Hsieh et al., 2014; Tsai et al.,
2012). While these observations are in agreement with
our data on secretory and poorly secretory phenotypes,
contrasting data on the secretion analysis of sE from all ser-
otypes in an AAV-based genetic vaccine model was recently
reported, showing that only sE from DENV1 was secreted
(Li et al., 2012), indicating that some undefined factors
may also play a role in secretion. Regardless of the secretory
phenotype described by these studies, the available data
further highlight the importance of detailed analysis of
the antigen for genetic vaccines.

The recent description of E dimer-dependent epitopes
located on a serotype-invariant site at the E-dimer interface
(Rouvinski et al., 2015) highlights the importance of ensur-
ing proper E folding and dimerization in E-based immuno-
gens, in particular for DNA vaccines. In addition, antigens
presented in a dimeric structure were shown to have
enhanced abilities to bind and activate relevant receptors
on the surface of immune cells, including B-cells, which
could be important for inducing stronger immune
responses (Saenz et al., 2014). When analysing dimeriza-
tion properties of sE and DI/DII proteins, we found that
secretory sE (serotypes 3 and 4) were capable of forming
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stable dimers (approximately 20 % of secreted sE), in
agreement with previous reports (Rouvinski et al., 2015).
Interestingly, dimer stability was found to be dependent
on DIII, as secreted hetero-dimers between sE and DI/
DII were less abundant than sE–sE homo-dimers, and
those between DI/DII totally absent. This role of DIII in
dimer stabilization has been previously suggested (Liao
et al., 2010; Zheng et al., 2010).

Since the first human clinical trial for a DNA vaccine
against human immunodeficiency virus (MacGregor
et al., 1998), several other candidates have been developed
and tested in Phase 1 studies against a wide variety of
infectious diseases (Graham et al., 2006; Ledgerwood
et al., 2011; Martin et al., 2006, 2007; Sarwar et al.,
2015). Although there are a number of studies describing
DNA vaccines against dengue (Apt et al., 2006; Azevedo
et al., 2011; Galula et al., 2014; Khanam et al., 2006;
Konishi et al., 2006; Li et al., 2012; Ocazionez Jimenez
& Lopes da Fonseca, 2000; Prompetchara et al., 2014;
Ramanathan et al., 2009; Raviprakash et al., 2001,
2006), to date there has been only one human clinical
trial for a dengue DNA vaccine involving a Phase 1
study of a plasmid expressing the PrM and E proteins
of DENV1 (Beckett et al., 2011). In all cases, these vac-
cines have been proved to be safe and well-tolerated in
humans, although low immunogenicity is still a concern
associated with genetic vaccines in general (Coban
et al., 2011; Danko et al., 2011). DNA immunization
with constructs displaying the same antigenic determi-
nants but different secretory capacity allowed us to
demonstrate that antigen secretion is indeed an import-
ant characteristic to take into consideration for the
design of efficient genetic vaccines. This could explain
the poor immunological performances of many con-
structs so far tested (De Paula et al., 2008; Konishi
et al., 2006; Lima et al., 2011; Raviprakash et al., 2000).
We show that strategies based on chimerism could be
used to enhance the antibody response against epitopes
that are otherwise poorly secreted. For example, the
response against DIII of serotype 2 was significantly
improved in terms of antibody titres, neutralization and
overall avidity with a chimera containing 3DII that con-
ferred a secretory phenotype. Similarly, DI/DII chimeras
can be used to promote secretion of otherwise non-
secretory DI.

We have provided compelling evidence that proper
design of E-based antigens is crucial to achieve efficient
antibody responses against DENV following DNA
immunization.

METHODS

Cell lines and viruses. HEK293, HEK293T/17, Vero, U-2OS and
HeLa cells (ATCC, identifications CRL-1573, CRL-11268, CCL-81,
HTB-96, CCL-2, respectively) were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Life Technologies) supplemented with 10 %
heat-inactivated FCS (Life Technologies), 50 mg ml21 gentamicin and

2 mM L-glutamine. Vero FM cells were maintained in the same con-
ditions with 1 % non-essential amino acids. Cell cultures were grown
at 37 uC (or 28 uC) with 5 % CO2. DENV2 NGC strain and DENV3
3140/09 isolate were propagated in Vero (DENV2) or Vero FM cells
(DENV3) and used for PRNT.

Plasmid DNA constructs. Sequences coding for the envelope ecto-
domains were obtained from strains: DENV1 Nauru Island, DENV2
New Guinea C, DENV3 H87 and DENV4 Dominica (GenBank
accession numbers U88535.1; AF038403; M93130; AF326573). Codon
optimized sE sequences of all DENV serotypes were obtained as
synthetic fragments from GenScript. Each sE sequence was fused to an
immunoglobulin leader sequence (sec) at the N terminus (Li et al.,
1997) and the SV5 tag (GKPIPNPLLGLD) (Hanke et al., 1992) at the
C terminus, and cloned into a pcDNA3 vector (sE-SV5). The DI/DII-
SV5 and DIII-SV5 constructs were derived by deleting DIII or DI/DII
coding regions, respectively (Fig. S1). Chimeric constructs were
obtained as synthetic fragments from GenScript. The sE, DI/DII or
chimeric constructs tagged with BAP (biotin acceptor peptide,
GLNDIFEAQKIEWHE) or roTag were obtained by cloning into the
corresponding vectors as previously reported (Beckett et al., 1999;
Petris et al., 2014; Predonzani et al., 2008). 3sE-mem construct was
derived from the 3sE-SV5 plasmid after replacing the SV5 tag with the
transmembrane and cytoplasmic domains of the human MHC-Ia
chain.

Expression of recombinant dengue molecules. Transfections of
HEK293T/17 cells were performed with the standard calcium phos-
phate method (Sambrook et al., 1989), while transfections of HeLa,
U-2OS and Vero cells were performed using Lipofectamine LTX (Life
Technologies). Cellular extracts were prepared in 100 ml of TNN lysis
buffer (100 mM Tris/HCl, pH 8, 250 mM NaCl, 0.5 % NP-40) at
4 uC, supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich).
Recombinant biotinylated DIII-eCH4-BAP from DV2 and DV3 were
obtained as previously reported (Poggianella et al., 2015).

Antibodies and reagents. HRP-conjugated goat anti-mouse IgG,
HRP-conjugated streptavidin and Alexa488-conjugated goat anti-
mouse IgG were purchased from Jackson ImmunoResearch. mAb
anti-tubulin (clone DM1A) and mAb 4G2 were from Millipore and
HRP-conjugated mAb anti-actin (clone AC-15) was from Sigma-
Aldrich.

Western blot and slot blot analyses. Samples were separated by
10 % SDS-PAGE, transferred onto PVDF membranes (Millipore) and
probed with anti-SV5 (1 : 10 000) followed by HRP-linked goat anti-
mouse IgG. For biotinylated proteins, membranes were incubated
with HRP-linked streptavidin (1 : 20 000). Signals were visualized by
ECL (Thermo-Pierce). Unless otherwise indicated, equivalent
amounts of cellular extracts and culture supernatant samples where
used in each experiment. For slot blots, normalized samples were
blotted onto PVDF membranes using the Bio-Dot SF Apparatus
(Bio-Rad). Denatured samples were boiled with 2 % mercaptoethanol
(Sigma-Aldrich) before blotting. Incubation with anti-SV5 or 4G2
(1 : 1500) was followed by HRP-conjugated goat anti-mouse IgG
(1 : 5000).

Co-immunoprecipitations. Immunoprecipitations with anti-SV5
(1 : 500) and protein A agarose (Repligen) were performed for 2h at
4 uC, loaded onto Micro Bio-spin columns (Bio-Rad) and washed
with TNN buffer followed by RIPA buffer (50 mM Tris/HCl, pH 7.4,
150 mM NaCl, 0.5 % sodium deoxycholate, 0.1 % SDS, 1 % NP-40,
1 mM EDTA). SDS-PAGE sample buffer was used for elution. Bands
were quantified using ImageJ 1.47v software (National Institute of
Health).
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Radioactive labelling. Transfected cells were incubated for 30 min
in DMEM without L-methionine and L-cysteine, supplemented with
dialysed FCS. A [35S]-methionine and [35S]-cysteine mix (Expre35S;
Perkin Elmer) was added (200 mCi ml21) and incubated for 15 min.
Cells were then lysed in TNN buffer and cell extracts immunopre-
cipitated for 2 h at 4 uC with anti-SV5 antibody and Protein A-
agarose. Immunoprecipitated proteins were eluted from agarose
beads with reducing SDS-PAGE sample buffer, separated on 10 %
SDS-PAGE, and developed by autoradiography on Kodak BioMax
XAR films (Carestream Health).

Animal immunizations. Groups of six female BALB/c mice of 5–6
weeks old (Harlan) were immunized three times at 15 day intervals
(days 1, 15 and 30) by biolistic delivery of 1 mm gold particles coated
with 1 mg of DNA using Gene Gun technology (Bio-Rad) (Benvenuti
& Burrone, 2001; Cesco-Gaspere et al., 2005); blood samples were
collected at days 45 and 60 by submandibular puncture. All animal
procedures were performed in compliance to laws and policies
established in the legislation (D. L.vo 26/2014 of the Italian Gov-
ernment, protocol DGSAF0024706).

Cytofluorimetry and immunofluorescence. For cytofluorimetry,
cells were washed and resuspended in PBS containing 3 % BSA and
5 mM EDTA, incubated with anti-SV5 (1 : 2000) for 1 h at room
temperature followed by Alexa488-conjugated goat anti-mouse IgG
(1 : 1000) and analysed in a FACSCalibur (BD Biosciences). For
immunofluorescence, transfected HEK293T cells plated on poly-
lysine (Sigma-Aldrich) coated slides, or Vero cells infected with
DENV2 and DENV3 (m.o.i. of 0.1) for 36 h, were fixed with 3.7 %
paraformaldehyde in PBS, quenched with 100 mM PBS glycine and
incubated with anti-SV5 (1 : 2000) or anti-2sE, anti-2sE(3DII), anti-
3sE and anti-3sE(2DII) and control sera (1 : 100) followed by
Alexa488-conjugated goat anti-mouse IgG (1 : 1000). For permeabi-
lization, cells were treated with 1 % Triton (Sigma-Aldrich) in PBS.
Images were acquired using a Zeiss LSM510 confocal microscope.

ELISA and avidity assay. ELISA IgG titres were determined as
previously described (Poggianella et al., 2015) and expressed as the
reciprocal of the dilution at which the OD450 was three times higher
than that of the control serum (pre-immune serum or serum from
animals immunized with empty vector). The avidity assay was carried
out as previously described (de Souza et al., 2004; Zompi et al., 2012)
and indexes were calculated as the ratio between the OD450 obtained
following washings with and without 6M urea, multiplied by 100.

Plaque reduction neutralization test (PRNT). PRNT assays were
carried out as previously described (Poggianella et al., 2015). Briefly,
de-complemented mouse sera samples were twofold serially diluted
and incubated for 1.5h at 36 uC with an equal volume of DMEM
containing 50 p.f.u. of dengue virus. Vero cells were infected in
duplicate for 1 h at 36 uC; the viral inoculum was then removed and
cells incubated at 36u C for 7 days. After fixing (paraformaldehyde
3.7 %) and staining with 1 % crystal violet for 30 min, plaques were
counted and the percentage of plaque reduction against control serum
was calculated. Neutralizing antibody titres were expressed as the
serum dilution yielding a 50 % plaque number reduction (PRNT50).

Statistical analysis. All data shown were calculated from at least
four independent experiments performed in duplicate or triplicate.
All data are shown as arithmetic means+SD and were analysed using
GraphPad Prism (version 6.0) software (GraphPad Software).
Unpaired two-tailed t-test and one-way ANOVA test were used to
analyse the data; P values v0.05 were considered significant in
both cases.
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