

The PDF files
contained in this volume are to be published in future issues of the journal.
Please be aware that during the production process errors may be discovered which could affect the content.

All legal disclaimers that apply to the journal pertain.

Submitted: June $11^{\text {th }}, 2015$ - Accepted: November 29 ${ }^{\text {th }}, 2015$

To link and cite this article:
doi: 10.5710/AMGH.29.11.2015.2928
http://zoobank.org/F8E1456A-8404-4045-8E42-58D12FE1F1F8

[^0]
Abstract

The systematics of the Late Cretaceous non-aristonectine elasmosaurids from Argentinean Patagonia are poorly known as there is no valid species currently recognized. Here a new non-aristonectine elasmosaurid: Kawanectes lafquenianum nov. comb. from the late Campanian-early Maastrichtian Allen Formation is diagnosed. Kawanectes lafquenianum is a distinctively small-bodied sized non-aristonectine elasmosaurid characterized by caudal vertebrae with marked laterally projected parapophyses, presence of pelvic bar, high ratio (~ 1.2) between humerus/femur length and a large posterodistal projection of the humerus which bears a posterior accessory articular facet. A phylogenetic analysis recovered K. lafquenianum closely related with Morenosaurus stocki, Vegasaurus molyi and Aristonectinae, showing the relationships between the elasmosaurids from Patagonia, Western Antarctic, and the Pacific coast of the USA. Kawanectes lafquenianum is part of the fauna of the coeval Allen and La Colonia formations that also comprises indeterminate aristonectines and polycotylids . This relatively high diversity plesiosaur fauna includes the three main morphotypes (aristonectines, non-aristonectines elasmosaurids and polycotylids), which is remarkable since the depositational environments of the Allen have been inferred as marginal marine to non-marine environments.

Keywords. Elasmosauridae. Upper Cretaceous. Patagonia. Antarctic Peninsula.

Resumen. UN ESLASMOSÁURIDO NO ARISTONECTINO (SAUROPTERYGIA, PLESIOSAURIA) DE PEQUEÑO TAMAÑO CORPORAL DEL CRETÁCICO SUPERIOR DE PATAGONIA CON COMENTATIOS SOBRE LA RELACIÓN ENTRE LOS ELASMOSÁURIDOS DE ANTÁRTIDA Y PATAGONIA. La sistemática de los elasmosáuridos no aristonectinos del Cretácico de la Patagonia Argentina es poco conocida, no habiendo ninguna especie válidas actualmente
reconocidas. En esta contribución un nuevo elasmosáurido no aristonectino:
Kawanectes lafquenianum nov. comb. proveniente de la Formación Allen (Campaniano superior-Maastrichtiano inferior) es diagnosticado. Kawanectes lafquenianum nov. comb. es un elasmosáurido no aristonectino de pequeño tamaño corporal que se caracteriza por la presencia de vértebras caudales con parapófisis fuertemente proyectada lateralmente, presencia de barra pélvica, elevada razón longitud del húmero / longitud del fémur (~ 1.2) y una marcada proyección posterodistal del húmero que lleva un carilla articular accesoria. El análisis filogenético recupera a Kawanectes lafquenianum nov. comb., estrechamente relacionado con Vegasaurus molyi, Morenosaurus stocki y los aristonectinos que muestran las relaciones entre los elasmosáuridos del norte de Patagonia, Antártida Occidental y la costa pacífica de USA. Kawanectes lafquenianum nov. comb. es parte de la fauna de la Formacion Allen que comprende, además de Kawanectes lafquenianum nov. comb., aristonectinos indeterminados y policotílidos mostrando una diversidad relativamente alta, con los tres morfotipos principales presentes (elasmosáuridos aristonectinos, elasmosáuridos no aristonectinos y policotílidos). Esto es notable ya que el ambiente de depositación de la Formación Allen se ha inferido como marino marginal con intercalaciones de ambientes no marinos

Palabras Clave: Elasmosauridae. Cretácico Superior, Patagonia, Península Antártica.

ELASMOSAURID plesiosaurs form a monophyletic group of cosmopolitan diapsid marine reptiles that flourished during the Late Cretaceous (Vincent et al., 2011; Benson and Druckenmiller, 2014). Elasmosaurids comprise the more typical nonaristonectine elasmosaurids, characterised by elongated cervical centra and relatively small cranium, and the aristonectines, with short cervical centra a relatively large cranium, and increased number of teeth (Gasparini et al., 2003; Otero et al., 2012, 2014b).

Elasmosaurids have been collected from southern South America since the XIX century (Gay, 1848; Ameghino, 1893; Gasparini et al., 2007; Otero et al., 2009; O'Gorman et al., 2013b). Late Cretaceous elasmosaurids from southern South America have been collected from the lower levels of the Mata Amarilla Formation (Cenomanian), Allen and Loncoche formations (upper Campanian-lower Maastrichtian), La Colonia Formation (Campanian-Maastrichtian), Dorotea and Quiriquina formations (Maastrichtian-Danian), and the late Maastrichtian levels of the Lefipán and Jagüel formations (Gasparini and Salgado, 2000; Gasparini et al., 2003a,b, 2007; Previtera et al., 2008; Otero et al., 2009; O'Gorman et al., 2011; Varela et al., 2012). In spite of this great amount of records, only two elasmosaurid species from southern South America are currently considered valid: Aristonectes parvidens Cabrera, 1941 and Aristonectes quiriquinensis Otero, Soto-Acuña, O'Keefe, O'Gorman, Stinnesbeck, Suárez, Rubilar-Rogers, Salazar, Quinzio-Sinn, 2014. The absence of nominated non-aristonectine elasmosaurids from Patagonia is connected with the poor preservation of cranial material and the poorly understood postcranial morphology (Salgado and Gasparini, 2000; Gasparini et al., 2003b).

Gasparini and Goñi (1985) nominated a new species "Trinacromerum lafquenianum" based on a well preserved postcranium from the upper Campanian-
lower Maastrichtian Allen Formation, Lago Pellegrini locality, Río Negro, Patagonia (Fig. 1-4). Later, Gasparini and Salgado (2000) described two additional specimens from the same locality and formation and referred them to Elasmosauridae indet. The three mentioned specimens are: the holotype of "T. lafquenianum" (MLP 71-III-13-1, where MLP refers to Museo de La Plata, La Plata, Argentina) and the above mentioned two new specimens: MCS PV 4 and MUC Pv 92 (MCS Museo de Cinco Saltos, Rio Negro Province, Argentina; MUC Museo de la Universidad del Comahue, Neuquén Province, Argentina). This taxonomical determination has been followed since then (Gasparini et al., 2001, 2007; Cerda and Salgado, 2008; O'Gorman et al., 2011). These three specimens were reviewed by the author (O'Gorman, 2013), who concluded they belong to the same elasmosaurid species. The aims of this paper are to name Kawanectes nov. gen., re-describe Kawanectes lafquenianum nov. comb. and discuss its relation with other elasmosaurids from the Weddellian Province sensu Zinsmeister, 1979 (i.e., Patagonia, Eastern Antarctica. and New Zealand).

Institutional Abbreviations. BRSMG, Bristol City Museum and Art Gallery, Bristol,United Kingdom; CIT, California Institute of Technology, Pasadena now in the Natural History Museum of Los Angeles County; CM, Canterbury Museum, Christchurch, New Zealand; DM, Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand; MDNH, Denver Museum Natural History, Colorado, USA; MCS, Museo de Cinco Saltos, Río Negro Province, Argentina; MCZ, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA; MIWG, 'Dinosaur Isle' Museum of Isle of Wight Geology, Sandown, UK; MLP, Museo de la Plata, Buenos Aires Province, Argentina; MML, Museo Municipal de Lamarque, Río Negro Province, Argentina; MNA, Museum of Northern Arizona, Flagstaff, Arizona, USA; MPEF, Museo Paleontológico Egidio Feruglio, Chubut Province, Argentina;

MUC, Museo de la Universidad del Comahue, Neuquén Province, Argentina; CD NZGS, Nuclear and Geological Science, Lower Hut, New Zealand; OU, Geology Museum, University of Otago, Dunedin, New Zealand; QM, Queensland Museum, Brisbane, Australia; SGO.PV, Museo Nacional de Historia Natural, Santiago, Chile. Anatomical Abbreviations. act, acetabulum; af, accessory facet; cap, capitulum; cr, cervical rib; di, diapophysis; dlp, dorsolateral process; dr, dorsal rib; epf, epipodial foramen; f, femur; ff, fibular facet; fi, fibula; gr, glenoid ramus; hf, hemal facets; invf, intervertebral foramen; is, ischium; $\mathbf{l k}$, lateral keel; $\mathbf{n c}$, neural canal; $\mathbf{n s}$, neural spine; pu, pubis; par, parapophysis; pb, pelvic bar; pez, prezygapophysis; pf, pedicellar facet; poz, postzygapophysis; rf, radial facet; rpp, rib posterior process; \mathbf{t}, tibia; $\mathbf{t f}$, tibial facet; tp, transverse process; tro, trochanter; tub, tubercle; uf, ulnar facet; vf, ventral foramina; $\mathbf{v n}$, ventral notch.

GEOLOGICAL SETTING

The Allen Formation, where the MCS PV 4, MLP 71-III-13-1 and MUC Pv 92 were collected, crops out in the north of Patagonia (Fig. 1.1) (Río Negro, La Pampa and Neuquén provinces). It is a thick succession of sandstones and shales with interbedded carbonate and evaporite rocks in its upper section (Andreis et al., 1974). The Allen Formation yielded vertebrates such as dipnoans, teleosts, elasmosaurids and polycotylid plesiosaurs, ophidians, theropods, sauropods, hadrosaurs, (Martinelli and Forasiepi, 2004; Salgado et al., 2007; Novas et al., 2009; O'Gorman et al., 2011; García, 2013), mammals (Rougier et al., 2009) and some mollusks (Gasparini et al., 2007). This formation was deposited in a marginal marine environment (Barrio, 1990; Gasparini et al., 2007). Based on ostracods and magnetostratigraphy, the Allen Formation is regarded as late Campanian-early Maastrichtian in age (Ballent, 1980; Dingus et al., 2000).

METHODS

The linear measurements were taken using a digital caliper. The indices considered are those proposed by Welles (1952) for the description of vertebral centra, which take into account the length (L), the height (H) - length centrum ratio $(\mathrm{HI}=100 * \mathrm{H} / \mathrm{L})$, and the breadth (B) length centrum ratio $(\mathrm{BI}=100$ * $\mathrm{B} / \mathrm{L})$; also, the breadth-height centrum ratio $(\mathrm{BHI}=100 * \mathrm{~B} / \mathrm{H})$ was considered. Both the breadth and height were measured on the posterior articular face. Also, the degree of vertebral elongation (Vertebral Length Index: Brown, 1981) is used (VLI $=\mathrm{L} /(0.5 *(\mathrm{H}+\mathrm{B}))$). In the description of propodials, the $\mathrm{B}: \mathrm{L}$ index $(\mathrm{B}: \mathrm{L}=100 * \mathrm{Bd} / \mathrm{Lt})$, which is the ratio between the distal anteroposterior breadth (Bd) and the total length (Lt) (Welles, 1952), was used.

The ontogenetic developmental categories proposed by (Brown, 1981), based on the fusion of the neural arch to the vertebral centrum, were considered; these were considered to differentiate the "adult" from the "juvenile" stages of growth.

In order to clarify the phylogenetic position of Kawanectes lafquenianum nov. comb. within Elasmosauridae, a phylogenetic analysis was performed. The data set is based on the data published by Benson and Druckenmiller (2014), and modified in order to include more Late Cretaceous elasmosaurids. The scoring of the Weddellian Elasmosauridae Kaiwhekea katiki Cruickshank and Fordyce, 2002 (OU 12649), Aristonectes parvidens Cabrera, 1941 (MLP 40-XI-14-6) Aristonectes quiriquinensis (holotype SGO.PV. 957 and referred specimen SGO.PV.260) Tuarangisaurus keyesi Wiffen and Moisley, 1986 (CD NZGS CD 425 and NZGS CD 426), Morenosaurus stocki Welles, 1943 (CIT 2802), Hydotherosaurus alexandrae Welles, 1943 (UCMP 33912), Callawayasaurus colombiensis Welles, 1962 (UCMP 38349) and Thalassomedon haningtoni Welles, 1943 (DMNH 1588) were modified based on personal observations. Additionally, Elasmosaurus platyurus Cope, 1869 and

Styxosaurus snowii (Williston, 1890) Welles, 1943 were scored based on bibliography. The final data set comprises 89 taxa. Additionally, three characters were added to the character list of Benson and Druckenmiller (2014), giving a total of 273 characters and additionally some characters were modified (see Supplementary Online Information 1 and 2). A data set was compiled using Mezquite (Maddison and Maddison, 2011) and analyzed using TNT (Goloboff et al., 2008). All the characters are considered unordered. The data set was analysed using a heuristic search (tree bisection reconnection, with 1,000 random addition sequence replicates). Consistency (CI) and retention (RI) indexes (Farris, 1989) were calculated and, Bremer Support (Bremer, 1994) values were calculated for some nods.

SYSTEMATIC PALEONTOLOGY

Superorder Sauropterygia Owen, 1860
Order Plesiosauria de Blainville, 1835
Superfamily Plesiosauroidea Welles, 1943
Family Elasmosauridae Cope, 1869
Genus Kawanectes nov. gen.
Type species. Trinacromerum lafquenianum Gasparini and Goñi, 1985
Derivation of name. Kawa for the "Kawas Sea" named given by (Casamiquela, 1978: 137) to the last Mesozoic marine transgression in Patagonia (late Campanian-Danian) and -nectes, meaning swimmer in Greek.

Diagnosis. Same as for spcies by monotypy.

Kawanectes lafquenianum nov. comb. (Gasparini and Goñi, 1985)
Figures 2-8; 9.1,10
Trinacromerum lafquenianum: Gasparini and Goñi, 1985: 56

Tricacromerum lafquenianum: Gasparini and Salgado, 2000:15 (incorrect spelling). Derivation of name. "lafquenianum" as for the mapuche word for "sea" (Moesbach, 1984).

Diagnosis. Small sized elasmosaurid (ca. 3.8 m long) which belongs to the nonelongated group sensu (O'Keefe and Hiller, 2006) that differs from other elasmosaurids by the following combination of characters: vertebral centra broader than long, marked laterally projected parapophyses of caudal vertebrae forming a lateral "knob", presence of pelvic bar, high ratio between humerus/femur length (~ 1.2) (a proportion only shared among elasmosaurids by Callawayasaurus colombiensis), large posterodistal projection of humerus which bears an accessory articular facet (a feature only shared among elasmosaurids by Morenosaurus, Vegasaurus and Kaiwhekea), and femur with strongly convex capitulum. It differs from Vegasaurus molyi in that it presents a not elongated trochanter in the dorsal surface of the femur and from Vegasaurus molyi and Morenosaurus stocki in the small body size, the laterally projected parapophyses of the caudal vertebrae, higher ratio between humerous/femur length (1.2) and the presence of pelvic bar.

Type material. MLP 71-II-13-1, six cervical vertebrae, three dorsal vertebrae, three sacral vertebrae, nine caudal vertebrae, right femur, right humerus, ilium, one mesopodial element, one caudal phalanx and one caudal rib (Gasparini and Goñi, 1985: lam I, II; Gasparini and Salgado, 2000: fig. 7). Type locality and horizon. Quarry of the "Bentonitas Patagónicas" company, Northeast of Lago Pellegrini, Río Negro Province, Argentina. Middle Member of the Allen Formation, upper Campanian-lower Maastrichtian (Ballen, 1980; Page et al., 1999; Dingus et al., 2000).

Referred specimens. MCS PV 4: fifteen cervical vertebrae, three pectoral vertebrae (contra O'Gorman, 2013), fifteen dorsal vertebrae, three caudals, right scapula, part of right coracoid, both pubes and ischia, distal part of a femur and epipodium, phalanges, ribs fragments and 389 gastroliths (Gasparini and Salgado 2000: fig. 1e, 2, 4, 5, 6a,b; Gasparini et al., 2007:fig. 3a-e; Cerda and Salgado, 2008: fig.: 2). MUC Pv 92: two cervical vertebrae, three dorsal vertebrae, one sacral and eight caudal vertebrae, fragments of girdles, right femur, two epipodial elements, ribs and phalanges (Gasparini and Salgado, 2000:fig 1a-d, 3. 6c-e; Gasparini et al., 2007: fig. 3f-k).

Locality and horizon of referred specimens. The specimen MCS 4 was collected at the northeast of the depression occupied by Pellegrini, middle Member of the Allen Formation (Gasparini and Salgado 2000). The MUCPv 92 specimen, has no precise provenance but it probably it probably comes from the nearby Pellegrini Lake.

DESCRIPTION

Axial skeleton

The cervical region of K. lafquenianum is comprised of an unknown number of vertebrae. The anterior and middle cervical vertebrae are longer than high and broader than long. The VLI index reaches 110 in the longest preserved cervical centrum (Table 1). The articular facets are flat to slightly concave with dumbbell-shaped articular facets (Fig. 2.1, 3, 6). Additionally, the lateral surface shows a marked and sharp lateral keel (Fig. 2.2, 5). These three features are absent in the posteriormost vertebral centra, preserved in the holotype (MLP 71-III-13-1) and MCS PV 4, where the vertebral centra are short (VLI~85) with almost elliptical articular facets (slight or absent ventral notch) and without lateral keel (Fig. 2.4, 7, 8, 12). All the vertebrae have two ventral foramina on the ventral surface (Fig. 2.11). The right and left prezygapophyses contact each other along the midline and the same is observed in the postzygapophyses, although its distal
tip remains free (Fig. 2.6, 9, 10), a common feature in the Late Cretaceous elasmosaurids (Hiller et al., 2005; Sato et al., 2003). Most of the neural spines are not well preserved but the posteriormost vertebral centra of MCS PV 4 are complete. These neural spines are tall (about twice the height of the centra) and present a rectangular shape and are slightly cranially inclined in lateral view (Fig. 2.8). In both the anterior and posterior margin the neural spine shows a groove that extends until at least half of the total length (Fig. 2.10). The anterior and middle cervical ribs are relatively short, have anterior and posterior processes and are fused to the centra (Fig. 2.7). On the other side, the posterior cervical ribs are more elongated, bearing closer similarity to the dorsal ribs and they are not fused with the cervical centra, as it is seen due to the free parapophyses (Fig. 2.9, 11,12). This absence of fusion on the posterior cervical centra has been recorded in other elasmosaurids such as Vegasaurus molyi O'Gorman, Salgado, Olivero and Marenssi, 2015 and Futabasaurus suzukii Sato, Hasegawa and Manabe, 2006.

The pectoral region is well preserved in the specimen MCS PV 4 but it is obscured by the matrix and scapula and, therefore, cannot be described (Fig. 6.1). The dorsal region, well preserved in the specimen MCS PV 4, comprises fifteen vertebrae, one of it still articulated with the pectoral region (Fig. 3.4). The vertebral centra are broader than long and as long as high (Table 1). The articular facets are dorsoventrally depressed to subcircular (Fig. 3.1, 5, 9). The ventral surface usually bears two foramina, and one of the vertebrae has a third smaller foramen (Fig. 3.3). The diapophyses are directed laterally, in an almost horizontal direction (Fig. 3.1, 9). The MCS PV 4 preserves the complete sacral region, formed by three vertebrae (Fig. 3.4). The vertebral centra are broader than high and higher than long (Table 1). The articular facets are kidney-shaped (Fig. 4.1, 5, 7). The diapophyses and parapophyses are convergent as in all
elasmosaurids, forming the transverse process that articulates with the sacral rib (Fig. 4.1, 5). Ventrally, there are one or two foramina (Fig. 4.4, 10). Only one sacral rib of the MUC Pv 92 is preserved (Fig. 4.11-14). The proximal facet is divided in two parts, a smaller dorsal part and a large ventral one that form an angle of about 130° between them. In anterior view, the proximal surface shows a concave zone (Fig. 4.13). The distal zone of the sacral rib is strongly rugose (Fig. 4.11, 12).

The caudal region is comprised of an unknown number of vertebrae. The caudal centra are broader than high and higher than long. The pedicellar facets are subtriangular and anteroposteriorly elongated (Fig. 5.3, 11). The parapophyses are strongly laterally projected (Fig. 5.1, 7, 9) with a rib facet varying from circular to elliptical (Fig. 5.2, 11). The hemal facets are well developed (Fig. 5.4, 8, 12). The MLP 71-III-13-1 and MUC Pv 92 a change in the relative development of the anterior and posterior hemal facets along the tail. Ventrally, there are two foramina in the anteriormost caudal vertebrae and one foramen and an almost flat ventral zone in the other vertebrae (Fig. 5.4, 8, 12).

Girdles

The pectoral girdle is not well preserved in any specimen. The scapula, preserved only in the MCS PV 4, shows the typical elasmosaurid morphology with a large ventral ramus and a dorsolateral process. It is not possible to determine whether the scapulae meet each other in the midline. The dorsolateral process is long and slender (Fig. 6.1). The coracoid is not preserved other than fragments in any specimen.

The pelvic girdle of MCS PV 4 is well preserved (Fig. 6.2). The anterior margin of the pubis is strongly convex and the posterior margin forms the anterior limit of the puboischiadic fenestra (Fig. 6.2). The ischia form an almost complete pelvic bar with its pubis, forming a diamond shaped fenestra between them (Fig. 6.2). The ilium is a
dorsally tapering element with a bent shaft (Fig. 6.3, 4). The tip of the angle is marked by a posterior knob (Fig. 6.3, 4).

Limbs

The humerus of MLP 71-III-13-1 is 207 mm in length and 141 mm in distal width (anteroposterior distal length), giving a B:L index value of 68%. The capitulum and the tuberosity are not completely convergent (Fig. 7.1, 3). In dorsal view, the tuberosity is slightly displaced towards the posterior margin (Fig. 7.1). It is also observed that there is a bone growth over the posterior margin of the tuberosity, which is visible in ventral view (fig. 7.2). In dorsal view, there is a slight but long depression in the anterior margin (arrow, Fig. 7.2). At the distal end, there is a developed posterior expansion holding much of the posterior ulnar facet. There are two slightly concave distal facets (Fig. 7.1, 2). A third facet, much shorter than the other two, possibly associated with an accessory element, is limiting the posterior expansion and it is almost perpendicular to the two epipodial articular facets (Fig. 7.1, 2).

The femur of MLP 71-III-13-1 is 171 mm long. The distal end is broken and, therefore, it is impossible to calculate the B:L index. At the proximal end, the femur has a strongly convex capitulum. The capitulum and trochanter are not completely confluent (fig. 7.4, 5, 8.1-3) and both are surrounded by a rim that is more conspicuous in the capitulum (Fig. 7.4, 5). In dorsal view, the trochanter is displaced towards the posterior margin of the shaft (Fig. 7.4). In ventral view, it shows there is a prominent roughness associated with muscle attachment (Fig. 7.5). Most of the projection of the shaft coincides with the tibial facet, the only almost completely preserved (is 54 mm) and it is posteriorly followed by a small portion of the fibular facet (Fig. 7.5). The specimen MCS PV4 preserves the distal end of the femur in articulation with the tibia and fibula (fig. 8.4). Both are broader than long and form a well-defined epipodial foramen (Fig.
8.4). The preserved phalanges are short and centrally slightly constricted (Figs. 7.8; 8, 5).

PHYLOGENETIC ANALYSIS

The phylogenetic analysis resulted in 250 trees of 1424 steps ($\mathrm{CI}=0.284$ and $\mathrm{RI}=0.673$). The relationships outside Elasmosauridae are not the focus of this contribution and are not to be discussed here. Elasmosauridae is recovered as a monophyletic group sustained by ch. $179(1 \rightarrow 0)$, reduced number of dorsal centra 20-23 to 17-19; ch. 183 $(0 \rightarrow 1)$, strong constriction at the base of the dorsal neural spines; ch. 241 ($1 \rightarrow 2$) ratio humerus to femur length >1. The internal resolution is relatively low, a feature consistent with previous analyses (Vincent et al., 2011b; Kubo et al., 2012; O'Gorman et al., 2015; Fig. 10). Kawanectes lafquenianum is recovered as part of a monophyletic group (Kawanectes lafquenianum; Vegasaurus molyi; Morenosaurus stocki; (Kaiwhekea katiki; Aristonectes parvidens; Aristonectes quiriquinensis) sustained by ch. $23(3 \rightarrow 1)$, postaxial ossicles or articular face for it on propodials) and ch. $248(0 \rightarrow 1)$ epipodial facets aligned in humerus. The aristonectine are sustained by ch. $154(2 \rightarrow 1)$, cervical centra as long as high; ch. $173(1 \rightarrow 2)$, ratio BI more than 130 in anterior half of the neck; ch. $203(1 \rightarrow 0)$, scapular dorsolateral process subequal to width at midlength; ch. $254(2 \rightarrow 1)$, radius longer than broad; ch. $255(2 \rightarrow 1)$, tibia longer than broad; ch. $261(1 \rightarrow 0)$ long epipodial foramen.

DISCUSSION

Taxonomic comparisons

Kawanectes lafquenianum shows diagnostic features of Elasmosauridae, such as lateral keel on the cervical vertebrae, cervical vertebrae with dumbbell-shaped articular facets produced by the presence of a ventral notch; cervical centra longer than high; epipodials broader than long (Gasparini et al., 2003a; Kubo et al., 212; Benson and

Druckenmiller, 2014). The specimens MUC Pv 92, MCS PV 4 are clearly adults sensu Brown (1981) due to the fusion between the neural arches and the vertebral centra in the cervical and dorsal centra, whereas the MLP 71-II-13-1 shows some neural arches free in the posteriormost cervical centra indicating a less advanced degree of fusion. However, a close observation of the pedicellar facets indicates that the neuro-central closure had started. The MUC Pv 92 and MLP 71-II-13-1 shows the neural arches and caudal centra unfused, a feature usually observed in adult specimens (Gasparini et al., 2003a; Hiller et al., 2005; O'Gorman et al., 2015). A detailed comparison of K. lafquenianum with other elasmosaurids has been conducted focusing on the features that allow distinguishing them and summarized in Table 3 for differences with other Weddellian and Pacific elasmosaurids.

The axial skeleton contains useful information, such as the cervical vertebrae with dumbbell-shaped articular facets that are present in all Late Cretaceous elasmosaurids, but absent in the Aptian Callawayasaurus colombiensis and other Early Cretaceous elasmosaurids (Kear, 2005; Druckenmiller and Russell, 2006; O'Gorman et al., 2015). K. lafquenianum has cervical vertebrae with a VLI that differs from the extreme elongated condition of the genera Elasmosaurus and Styxosaurus (O'Keefe and Hilller, 2006) and from the aristonectines Aristonectes, Kaiwhekea (characterized by a cervical centra shorter than other elasmosaurids; Gasparini et al., 2003a; Cruickshank and Fordyce, 2002; Otero et al., 2014b). Other Late Cretaceous elasmosaurids also differ from K. lafquenianum in their cervical proportions and dorsal vertebral count. For instance, the Cenomanian Libonectes morgani (Welles) (Carpenter, 1999, for Cenomanian age of Libonectes see Sachs and Kear, 2014) and the Santonian Hydralmosaurus serpentinus (Cope) Welles, 1943 have mid-cervical vertebral centra longer than broad (Welles, 1952), unlike those of K. lafquenianum, that are always
broader than long (Table 1). Additionally, the dorsal region of K. laquenianum comprises fifteen dorsal vertebrae, less than the 25 vertebrae of the Cenomanian Thalassomedon haningtoni Welles, 1943. The caudal vertebrae of K. lafquenianum show strongly laterally projected parapophyses (Fig. 5.1, 7, 10). A similar morphology has been recorded in some elasmosaurids (Leidy, 1865: pl V.12; O'Gorman et al., 2011: fig. 3.3, 4; O'Gorman et al., 2013b: fig. 2.K, L) but it is absent in the closely related Vegasaurus molyi and Morenosaurus stocki (pers. obs.).

The anatomy of the girdles also distinguishes K. lafquenianum from other taxa. The dorsolateral process of K. lafquenianum is long and gracile differing from the anteroposterioly long and stocky dorsolateral process of the Albian Wapuskanectes betsynichollsae Druckenmiller and Rusell, 2006 and the Maastrichtian M. stocki. The presence of pelvic bar is ontogenetically variable but it is useful to compare adult specimens (Carpenter, 1999). Hydrothersaurus serpentinus (AMNH 1495), M. stocki and V. molyi, lack a pelvic bar (Welles, 1943, 1952:fig. 21; Carpenter, 1999: fig. 6C), unlike K. lafquenianum (Fig. 6.2). This difference cannot be explained by ontogenetic variation since H. serpentinus and M. stocki are also adult specimens and larger than K. lafquenianum (Table 2). In addition, the pubis of T. ponteixensis has a strong concavity in the outer margin (Sato, 2003:fig.12), unlike that of K. lafquenianum (Fig. 6.2). The ilium of K. lafquenianum has a well developed posterior knob which differs from that of Futabasaurus suzukii (Sato et al., 2006:fig.7E, F) and Zarafasaura oceanis Vincent, Bardet, Suberbiola, Bouya, Amaghzaz, Meslouh, 2011 (Lomax and Wahl, 2013:fig. 12), where it is absent. The circular cross section of the dorsal part of the ilium of K. lafquenianum, differs from that of M. stocki, which is strongly laterally compressed (Welles, 1943, J.P. O'G per. obs.). Additionally, the dorsal end of the ilium, although damaged, seems to be unexpanded, which differs from Hydrotherosaurus alexandrae
(Welles, 1943; J.P.O'G per. obs.), Thalassomedon haningtoni (Welles, 1943:fig. 16) and Vegasaurus molyi (O'Gorman et al., 2015: fig. 10C, D).

The ratio between humerus and femur in K. lafquenianum (1.2) differs from that of Hydralmosaurus, Terminonatator and CM Zfr 145, in which the femur is longer than the humerus (an uncommon feature among elamosaurids; Welles, 1943; Sato, 2003; Hiller and Mannering, 2005). In most elasmosaurid genera the humerus is longer than the femur, such as Morenosaurus stocki (1.08) and Hydrotherosaurus alexandrae (1.14) (Welles, 1943). The humerus of Futabasaurus is 18% longer than the femur, a difference regarded as diagnostic of Futabasaurus suzukii (Sato et al., 2006). In K. lafquenianum, the humerus is 21% longer than the femur, so this character is shared with Futabasaurus suzukii. Interestingly, the posterior expansion of the humerus of K. lafquenianum is similar to that of Hydralmosaurus serpentinus, although in the latter there is no accessory articular face (Carpenter, 1999). The only non-aristonectine elasmosaurids that share with K. lafquenianum the relatively unusual humerus with a posterior expansion and an accessory articular facet are Wapuskanectes betsynichollsae, Vegasaurus molyi and Morenosaurus stocki (Druckenmiller and Russell, 2006; Welles, 1943; O'Gorman et al., 2015). The femur of K. lafquenianum has a trochanter that is not dorsally expanded, contrasting with Vegasaurus molyi, Mauisaurus haasti and the aristonectine Aristonectes sp. and Kaiwhekea, where the trochanter has a long posterodistal developement (Cruickshank and Fordyce, 2002; Hiller et al., 2005; O'Gorman, 2013; O'Gorman et al., 2015).

Mauisaurus haasti is currently under revision, however due to the importance of this taxon among the Weddellian elasmosaurids, a special comparison is made to differentiate the two main specimens of Mauisaurus haasti (the lectotype DM R1529 and CM Zfr 115 referred by Hiller et al., 2005) from K. lafquenianum. The first
difference between M. haasti and K. lafquenianum is the body size. Hiller et al. (2005) indicate a body length in excess of 8 meters for CM Zfr 115 and, although the body size of K lafquenianum is not directly known, it is much smaller and has been inferred to be approximately 3.8 meters (Table 2) by comparing it with the propotions of V. molyi (O'Gorman, 2013). Additionally, the femur of K. lafquenianum differs from that of the lectotype of Mauisaurus because the latter has a long posterior expansion that is absent in K. lafquenianum.

The lack of differences on the data set between the Tuarangisaurus keyesi and Kawanectes lafquenianum is because the formers is known only from cranial material and scarce postcranial elements. This problem cannot be resolved at the moment. However, the phylogenetic analysis did not recover Tuarangisaurus keyesi close to Kawanetes lafquenianum, giving at least some evidence against the synonymy of K. lafquenianum and Tuarangisaurus keyesi.

Ontogenetic comparisons

In order to show that K. lafquenianum does not represent a juvenile stage of V. molyi (which is morphologically similar but larger in body size), an analysis of the relationship between size and proportions of the elements was performed. In particular, three evidences were used to show this: 1) K. lafquenianum shows anatomical evidence that is usually related with an adult condition, as was previously mentioned. 2) it is well recorded that during the ontogenetic developement of elasmosaurids there is a trend of the cervical vertebrae to increase the HI and BI due to the relative elongation of the cervical centra (O'Keefe and Hiller, 2006). Figure 9.11shows that the cervical vertebrae of K. lafquenianum have higher or similar HI and BI values than the cervical vertebrae of V. molyi and 3) the pelvic bar is usually absent in juvenile specimens but is present in K. lafquenianum and absent in the holotype of V. molyi (whose pelvic girdle is larger
than the one of K. lafquenianum). This evidence indicates that a putative ontogenetic sequence including the Kawanectes lafquenianum materials (holotype and referred specimens) and the Vegasaurus molyi holotype would not be consistent with current knowledge on ontogenetic changes in elasmosaurids.

Neck elongation pattern

Three groups of elasmosaurids can be recognised based on the neck elongation patterns (two of them with cervical centra longer than high): the "elongated group" (Elasmosaurus and Styxosaurus), the non-elongate group (i.e., the "plesiomorphic group" sensu Otero et al. 2015; Hydrotherosaurus; Hydralmosaurus; Vegasaurus) and the aristonectines characterized by cervical centra higher than long (O'Keefe and Hiller, 2006; Otero et al., 2015). Out of these three groups only aristonectines are currently considered to be monophyletic. The definition of the two former groups was given by O'Keefe and Hiller (2006), who defined the elongated group based on the following features: average VLI (125-138), and presence of some mid-cervical vertebrae with VLI between 150 to 200 and, with some exception, the middle cervical centra has VLI higher than 130. Additionally, O'Keefe and Hiller (2006) pointed out that a single mid cervical centra with VLI higher than 135 is a strong indication of an elongated pattern. On the other hand, the "non-elongated" group has an average VLI much lower than (125-138) and usually about 100 but the middle cervical centra are nonetheless longer than high. Finally, the aristonectine are characterized by cervical centra higher than long and average VLI lower than 80 . One of the main biogeographical patterns indicated by O'Keefe and Hiller (2006) restricts the "elongated group" to the Western Interior Sea.

Following the definition of the three mentioned groups, the cervical centra of Kawanectes lafquenianum clearly belong to the non-elongated group. Previously, Otero et al. (2015) inferred the presence of elasmosaurids of the "elongated group" (extreme
elongated of Otero et al., 2015) in Patagonia during the late Campanian-early Maastrichtian based on the specimens MUC Pv 92, MCS PV 4, and MLP 71-II-13-1 (i.e., holotype and referred specimens of Kawanectes lafquenianum). Their inference was based on the assumption that the specimens MLP 71-II-13-1, MCS PV 4, and MUC Pv 92 were juveniles and therefore, the centra were not considered to have adult proportions. However, the neural arches of the cervical and dorsal vertebrae of these specimens are fused to the centra indicating their adult condition and, additionally, the pelvic bar of MCS PV 4 is almost formed, showing another adult feature. Furthermore, Otero et al. (2015) indicate that the specimen MPEF s/n. (Gasparini et al., 2001:fig. 34) from La Colonia Formation (not Allen Formation as indicated by Otero et al., 2015) has a VLI of ca. 110 and belongs to the "elongated group". However, this value does not indicate they belong to the elongated group of O'Keefe and Hiller (2006). Therefore, at least the specimens mentioned here do not give evidence of the presence of the "elongated group" outside de WIS during the Late Cretaceous.

Phylogenetic relationships

The result of the phylogenetic analysis (Fig. 10) is mostly congruent with previous analyses, but some differences are present. Elasmosauridae is recovered as a monophyletic group, as in previous studies (O'Keefe, 2001; Druckenmiller and Russell, 2008; Benson and Druckenmiller, 2014). The resolution of Elasmosauridae is relatively low, showing the necessity of further work. Nevertheless, Aristonectinae is recovered as monophyletic and well supported $($ Bremer support $=3)$ within Ealsmosauridae, following the results of other studies (Gasparini et al., 2003a; Otero et al., 2012; Benson and Druckenmiller, 2014). Three other species are recovered forming a well-supported monophyletic group (Bremer Support $=3$) along with Aristonectinae: the Antarctic early Maastrichtian Vegasaurus molyi (O'Gorman et al., 2015), the Maastrichtian

Morenosaurus stocki from the Pacific Coast of California, and the late Campanian-early Maastrichtian Kawanectes lafquenianum described in this contribution. This result is congruent and reinforces those of O'Gorman (2013) and O'Gorman et al., (2015), which indicated a phylogentic relationship between Weddellian and Pacific non-aristonectine elasmosaurids and Aristonectinae.

Kawanectes and aristonectine elasmosaurids

The classical questions about the origin of Aristonectinae are: "Within which clade"?; "How?", "When?" and "Where?". The first point has produced several difficulties because, for many years, the elasmosaurid affinity of Aristonectinae was not considered the most probable hypothesis (Welles, 1962; Cruickshank and Fordyce, 2002; O'Keefe and Street, 2009 but see Cabrera, 1941). Only recently aristonectines were considered forming a clade within Elasmosauridae (Gasparini et al., 2003a; Otero et al., 2012; 2014b). Taking into consideration the recent consensus about their phylogenetic affinities, it is possible to answer the other questions mentioned. The appearance of the aristonectine (Aristonectes; Kaiwhekea) features such as short cervical vertebrae, large skulls and high number of teeth probably involved a poorly understood complex sequence of character acquisition; however, this process probably involved some paedomorphic events (O'Gorman, 2013, O'Gorman et al., 2014; Araújo et al., 2015). The question of the time of appearance should be answered by the age of the oldest aristonectine record which is, until now, late Campanian-early Maastrichtian (O'Gorman et al., 2013a) and comes from Patagonia (Río Negro Province). Additionally, a fragmentary postcranial specimen from the upper Campanian Herbert Sound Member of the Snow Hill Island Formation was referred to aristonectine by Otero (2014a:fig 6). Therefore, until now the oldest record of aristonectinae seems to be late Campanian in age. However, the Santonian Futabasaurus suzukii was recovered
within Aristonectinae by Otero et al., (2014b) but not by O'Gorman et al., (2015) and thus the possibility of an older (at least Santonian) origin has been proposed. Finally, the previous absence of aristonectines outside the Weddellian Province, with the only and controversial possibility of the Japanese F. suzukii and the presence of nonaristonectine elasmosaurids closely related with them in the Weddellian Province, was considered as strong support of a Weddellian origin of aristonectines (O'Gorman et al., 2015). Nonetheless, a recent record from the lower Maastrichtian of Angola (Araújo et al., 2015) generates some doubts as they are now not endemic from the Weddellian Province. The internal relationships between Kawanectes, Vegasaurus, and Morenosaurus are important in order to answer the question about the geographical origin of the aristonectines because if Kawanectes and Vegasaurus are more closely connected with aristonectines than Morenosaurus or Futabasaurus, a Weddellian origin can still be considered as more likely. Still, the results of the analysis are not conclusive about this point because the relationships of these taxa are not clear as they are depicted as part of a polytomy in the phylogenetic analysis. Also, the results show an internal relationship between some aristonectines and some non-aristonectine elasmosaurids from the Weddellian Province and California, a relation previously commented by O'Gorman et al, (2015).

The Kawas plesiosaur assemblage

The Kawas plesiosaur fauna (comprised the upper Campanian-lower Maastrichtian Allen, Los Alamitos ["Coli Toro Inferior"], and La Colonia formations) is a remarkable association for several reasons. It comprises the three major groups of Late Cretaceous plesiosaurs: polycotylids, aristonectines, and non-aristonectine elasmosaurids (Gasparini and Spalletti, 1990; Gasparini and Salgado, 2000; O'Gorman et al., 2013a, b; O'Gorman and Gasparini, 2013). Each of the three groups are represented by more than one
specimen and in particular Kawanectes is represented by at least three specimens. The depositional environment of the Allen, La Colonia and Coli Toro formations has been inferred as a marine marginal to non-marine environment (Barrio, 1990; Gasparini and Salgado, 2000; Pascual et al., 2000; Gasparini et al., 2015). Thus, it is remarkable that plesiosaurs are almost the unique faunal elements with strict marine affinities. Therefore this indicate the occupation of a non-marine normal environment by the three groups of plesiosaus in the Weddellian Province, a similar use inferred by Benson et al. (2013) in early-middle Albian deposits of Australia. Another particular feature of Kawanectes, probably related to the particular environment of the Allen Formation, is its strikingly small size compared to other adult elasmosaurids. A similar case was recorded by Sato et al. (2005) at the Dinosaur Park Formation (upper Campanian) where sub-adult specimens were smaller than those recorded in nearby marine formations. Similarly, elasmosaurs from the Allen and La Colonia formations have a smaller body size compared with those from the marine Jagüel Formation (O'Gorman et al, 2013b; Gasparini et al., 2015).

ACKNOWLEDGMENTS

This research was supported by projects PICT 2012-0748, UNLP N 677, UNLP N 607 and PIP 0433. The author thanks Z. Gasparini and M. Fernández for reading an earlier version of the manuscript and Z. Gasparini, L. Salgado, I. Cerda and Y. Herrera for the fieldwork and L. Acosta Burllaile for the preparation of some specimens. Thanks P. Arregui for improving the English of this constribution. The author also thanks the curator of MLP (M. Reguero) Museo Paleontológico Egidio Feruglio (E. Ruigómez), Museo Municipal de Lamarque (D. Cabaza), Museo de Cinco Saltos (I. Cerda) and, Museo de la Universidad del Comahue (L. Salgado) University of California Palentological Museum (P. Holroy); Los Angeles Natural History Museum (M.

594 Barrio, C.A. 1990. Paleogeographic control of Upper Cretaceous Tidal Deposits, Neuquén

596 Benson, R.B.J.R., and Druckenmiller, P.S.P. 2014. Faunal turnover of marine tetrapods
Walsh)), Geology Museum, University of Otago (E. Fordyce) for providing access to the material. Museum of New Zealand Te Papa Tongarewa (A.J.D Tennyson). Finally the author thank R. Otero (Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile) and an anonymous reviewer fot its comment that improve this contribution.

LITERATURE CITED

Ameghino, F. 1893. Sobre la presencia de vertebrados de aspecto mesozoico en la formación Santacruceña de la Patagonia austral. Revista Del Jardín Zoológico de Buenos Aires 1: 76-84.

Andreis, R.A., Iñiguez Rodríguez, A.M., Lluch, J.J., and Sabio, D.A. 1974. Estudio sedimentológico de las formaciones del Cretácico Superior del área del Lago Pellegrini (Prov. de Río Negro, Rep. Argentina). Revista de La Asociación Geológica Argentina 29: 85-104.

Araújo, R., Polcyn, M.J., Lindgren, J., Jacobs, L.L., Schulp, A.S., Mateus, O., Gonçalves, A.O., and Morais, M-L. 2015. New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Netherlands Journal of Geosciences-Geologie En Mijnbouw 94: 93-108.

591 Ballent, S. 1980. Ostrácodos de ambiente salobre de la Formación Allen (Cretácico Superior) en la Provincia de Río Negro (República Argentina). Ameghiniana 17: 67-82. Basin, Argentina. Journal of South American Earth Sciences 3: 31-49. during the Jurassic-Cretaceous transition. Biological Reviews 89: 1-23.

601 Blainville, H.D. de. 1835. Description de quelques espèces de reptiles de la Californie,

604 Bremer, K. 1994. Branch support and tree stability. Cladistics 10: 295-304.

605 Brown, D.S. 1981. The English Upper Jurassic Plesiosauroidea eptilia) and a review of 606 the phylogeny and classification of the Plesiosauria. Bulletin of the British Museum

608 Cabrera, A. 1941. Un Plesiosaurio nuevo de Cretáceo del Chubut. Revista Del Museo de Cretaceous of the western interior.pdf. Paludicola 2: 148-173.

612 Casamiquela, R.M. 1978. La zona litoral de la transgresión Maástrichtense en el norte de la Patagonia. Aspectos ecológicos. Ameghiniana 15.

614 Cerda, I.A., and Salgado, L. 2008. Gastrolitos en un plesiosaurio (Sauropterygia) de la

617 Cope, E.D. 1869. Extinct Batrachia, Reptilia and Aves of North America. Transactions of

619 Cruickshank, A.R.I., and Fordyce, R.E. 2002. A new marine reptile (Sauropterygia) from New Zealand: Further evidence for a Late Cretaceous austral radiation of cryptoclidid plesiosaurs. Palaeontology 45: 557-575. continente antártico. Congresso Brasileiro de Paleontología 8: 55-63.

638 Gasparini, Z., and Spalletti, L. 1990. Un nuevo cocodrilo en depósitos mareales maastrichtianos de la Patagonia noroccidental. Ameghiniana 27: 141-150.

640 Gasparini, Z., and Salgado. 2000. Elasmosáuridos (Plesiosauria) del Cretácico Tardío del norte de Patagonia. Revista Española de Paleontología 15: 13-21.

642 Gasparini, Z., Salgado, L. and Parras, A. 2007. Late cretaceous plesiosaurs from northern Patagonia, Argentina. Geological Journal 42: 185-202.

644 Gasparini, Z., Bardet, N., Martin, J.E., and Fernandez, M. 2003a. The Elasmosaurid 645 Aristonectes Cabrera from the latest Cretaceous of South America and Antarctica.

646 Journal of Vertebrate Paleontology 23: 104-115. from northern Patagonia. Cretaceous Research 24: 157-170.

649 Gasparini, Z., Casadio, S., Salgado, L., Fernández, M., and Salgado, L. 2001. Marine 650 reptiles from the Late Cretaceous of northern Patagonia. Journal of South American Earth Sciences 14: 51-60.

652 Gasparini, Z., Sterli, J., Parras, A., O'Gorman, J.P., Salgado, L., Varela, J., and Pol, D.

656 Gay, C. 1848. Historia Física Y Política de Chile. París. pp. 371
657 Goloboff, P., Farris, J., and Nixon, K. 2008. TNT, a free program for phylogenetic

666 Kear, B.P. 2005. Marine reptiles from the Lower Cretaceous (Aptian) deposits of White

669 Kubo, T., Mitchell, M.T.M., and Henderson, D.M.D. 2012. Albertonectes vanderveldei , a 670 new elasmosaur (Reptilia, Sauropterygia) from the Upper Cretaceous of Alberta. Journal of Vertebrate Paleontology 32: 557-572.

674 Lomax, D.R., and Wahl, W.R.J. 2013. A new specimen of the elasmosaurid plesiosaur

677 Maddison, W.P., and D. R. Maddison. 2011. Mesquite: A Modular System for 678 Evolutionary Analysis, version 2.75. http://mesquiteproject. org. Accessed January 4, 2012.

680 Martinelli, A.G., and Forasiepi, A.M. 2004. Late Cretaceous vertebrates from Bajo de

684 Moesbach, W. de 1984. Diccionario Español - Mapuche. Ed. Siringa, Neuquén, .
685 Novas, F.E., Pol, D., Canale, J.I., Porfiri, J.D., and Calvo, J.O. 2009. A bizarre Cretaceous 686 theropod dinosaur from Patagonia and the evolution of Gondwanan

689 O'Gorman, J.P. 2013. [Plesiosaurios del Cretácico Superior de Patagonia y Península 690 Antártica, Tomos I y II. PhD thesis, Facultad de Ciencias Naturales y Museo, Santa Rosa (Allen Formation), Río Negro province, Argentina, with the description of a new sauropod dinosaur (Titanosauridae). Revista Del Museo Argentino de Ciencias Naturales 6: 257-305. dromaeosaurids. Proceeding of the Royal Society B: Biological Sciences 276: 1101-1107.
Universidad Nacional de La Plata, Argentina. 527 p. Unpublished.].
http://sedici.unlp.edu.ar/bitstream/handle/10915/26140/Tomo_I Documento
completo.pdf?sequence=4
http://sedici.unlp.edu.ar/bitstream/handle/10915/26140/Tomo_II Documento
completo.pdf?sequence=4

699 O'Gorman, J., Salgado, L., and Gasparini, Z. 2011. Plesiosaurios de la Formación Allen

706 (Sauropterygia, Plesiosauria) from the La Colonia Formation (Campanian-

708 O'Gorman, J.P., Salgado, L., Olivero, E., and Marenssi, S. 2015. Vegasaurus molyi gen. et

713 O'Keefe, F.R. 2001. A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia:Sauropterygia). Acta Zoologica Fennica 213: 1-63.

715 O'Keefe, F.R.., and Hiller, N. 2006. Morphologic and Ontogenetic Patterns in Elasmosaur 716 Neck Length, with Comments on the Taxonomic Utility of Neck Length Variables. Paludicola 5: 206-229.

718 Otero, R.A., Suárez, M.E., and Le Roux, J.P. 2009. Primer Registro de Plesiosaurios
719 Elasmosáuridos (Sauropterygia: Plesiosauria) en estratos superiores de la

732 Otero, R.A., Soto-Acuña, S., O'Keefe, F.R., O’Gorman, J.P., Stinnesbeck, W.S., Suárez,

736 Owen, R. 1860. On the orders of fossil and recent Reptilia, and their distribution in time. 737 Reports of the British Association for the Advancement of Science 29: 153-166.

738 Page, R., Ardolino, A., de Barrio, R.E., Franchi, M., Lizuain, A., Page, S., and Silva

742 Pascual, R., Goin, F.J., Gonzalez, P., Ardolino, A., and Puerta, P. 2000. A highly derived Gutstein, C.S. 2014a. Additions to the diversity of elasmosaurid plesiosaurs from the Upper Cretaceous of Antarctica. Gondwana Research 26: 772-784. M.E., Rubilar-Rogers, D., Salazar, C., and Quinzio-Sinn, L.A. 2014b. Aristonectes quiriquinensis, sp. nov., a new highly derived elasmosaurid from the upper Maastrichtian of central Chile. Journal of Vertebrate Paleontology 34: 100-125. Nieto, D., 1999. Estratigrafía del Jurásico y Cretácico del Macizo de Somún Curá, provincias de Río Negro y Chubut. In: R Caminos (Ed), Geología Argentina. Servicio Geológico Minero Argentino, Buenos Aires, pp. 460-488. docodont from the Patagonian Late Cretaceous: evolutionary implications for Gondwanan mammals. Geodiversitas 22: 395-414.

747 Rougier, G.W., Chornogubsky, L., Casadio, S., Arango, N.P., and Giallombardo, A. 2009. 748 Mammals from the Allen Formation, Late Cretaceous, Argentina. Cretaceous

750 Sachs, S., and Kear, B.P. 2014. Postcranium of the paradigm elasmosaurid plesiosaurian

755 Sato, T. 2003. Terminonatator ponteixensis, a new elasmosaur (Reptilia; Sauropterygia) Libonectes morgani (Welles, 1949). Geological Magazine 152: 1-17. Salgado, L., Parras, A., and Gasparini, Z. 2007. Un plesiosaurio de cuello corto (Plesiosauroidea, Polycotylidae) del Cretácico Superior del norte de Patagonia. Ameghiniana 44: 349-358. from the Upper Cretaceous of Saskatchewan. Journal of Vertebrate Paleontology. Sato, T., Eberth, D.A., Nicholls, E.L., and Manabe, M. 2005. Plesiosaurian remains from non-marine to paralic sediment. In: Currie, E.B. and E. Koppelhus (Eds.), Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed, Indiana University Press, Bloomington and Indianapolis, pp. 249-276.

Sato, T., Hasegawa, Y., and Manabe, M. 2006. A new elasmosaurid plesiosaur from the upper cretaceous of Fukushima, Japan. Palaeontology 49: 467-484.

Varela, A.N., Poiré, D.G., Martin, T., Gerdes, A., Goin, F.J., Gelfo, J.N., and Hoffmann, S. 2012. U-Pb zircon constraints on the age of the Cretaceous Mata Amarilla Formation, Southern Patagonia, Argentina: its relationship with the evolution of the Austral Basin. Andean Geology 39: 359-379.

Vincent, P., Bardet, N., Suberbiola, X., Pereda Suberbiola, X., Bouya, B., Amaghzaz, M., and Meslouh, S. 2011. Zarafasaura oceanis, a new elasmosaurid (Reptilia: Sauropterygia) from the Maastrichtian Phosphates of Morocco and the

772 Williston, S.W. 1890. A new plesiosaur from the Niobrara Cretaceous of Kansas. En 773 Transactions of the Annual Meetings of the Kansas Academy of Science. Kansas 774 Publishing House 12: 174-178.
775 Welles, S.P. 1943. Elasmosaurid plesiosaurs with description of new material from

777 Welles, S.P. 1952. A review of the North American Cretaceous elasmosaurs. University of 778 California Publications in Geological Sciences 29: 47-144.

779 Welles, S.P. 1962. A new species of elasmosaur from the Aptian of Columbia and a
palaeobiogeography of latest Cretaceous plesiosaurs. Gondwana Research 19:1062-1073. California and Colorado. Memoirs of the University of California 13: 125-254 review of the Cretaceous plesiosaurs. University of California, Publications in the Geological Sciences 44: 1-96.

Wiffen, J., and Moisley, W.L. 1986. Late Cretaceous reptiles (Families Elasmosauridae and Pliosauridae) from the Mangahouanga Stream, North Island, New Zealand. New Zealand journal of geology and geophysics 29: 205-252.

Zinsmeister, W.W.J. 1979. Biogeographic significance of the late Mesozoic and early Tertiary molluscan faunas of Seymour Island (Antarctic Peninsula) to the final breakup of Gondwanaland Ohio State University, Institute of Polar Studies pp. 349-355.

FIGURE CAPTIONS.

Figure 1. 1, Aproximate locality where the MLP 71-III-13-1 and MCS 4(Kawanectes lafquenianum nov. comb.) were collected. 2-4 material preserved in each specimen, 2, MLP 71-III-13-1(holotype); 3, MCS Pv 4; 4, MUC Pv 92.

Figure 2. Kawanectes lafquenianum nov. comb., MLP 71-III-13; 1-2, anterior cervical vertebra in $\mathbf{1}$, anterior and $\mathbf{2}$, left lateral views; $\mathbf{3} \mathbf{- 4}$, posterior cervical vertebra in $\mathbf{3}$, anterior and 4, left views. MCS PV 4; cervical vertebrae in 5, right lateral and 6, anterior views; 7, cervical vertebrae in left lateral view; 8-10, posterior cervical vertebra in 8, left lateral; 9, anterior; 10, posterior and 11, ventral views; 12, posterior cervical vertebra in left lateral view. Scale bar $=20 \mathrm{~mm}$.

Figure 3. Kawanectes lafquenianum nov. comb., MLP 71-III-13-1; 1-3, dorsal vertebra in 1, anterior, 2, left lateral and 3, ventral views. MCS PV 4; 4, dorsal and sacral regions in dorsal views. 5-7, dorsal vertebra in 5, anterior, 6, right lateral and 7, ventral view; $\mathbf{8 - 9}, 8^{\text {th }}$ dorsal vertebra and rib in $\mathbf{8}$, dorsal and $\mathbf{9}$, posterior views. Scale bar $=20$ mm .

Figure 4. Kawanectes lafquenianum nov. comb., MLP 71-III-13-1; 1-4, sacral vertebra in 1, anterior, 2, posterior, 3, dorsal and 4, ventral views. MCS PV 4; 5-6, sacral vertebrae in 5, anterior and 6, dorsal views. MUC Pv 92; 7-10, sacral vertebra in 7, anterior, 8, left lateral, $\mathbf{9}$, dorsal and 10, ventral views; 11-14, sacral rib in 11, anterior, 12, posterior and 13, proximal views; 14, reconstruction of sacral vertebrae in position. Scale bar $=20 \mathrm{~mm}$.

Figure 5. Kawanectes lafquenianum nov. comb., MLP 71-III-13-1; 1-2, caudal vertebra in $\mathbf{1}$, anterior, $\mathbf{2}$, left lateral, $\mathbf{3}$, dorsal and $\mathbf{4}$, ventral views; $\mathbf{5}$, last caudal vertebrae in left lateral view; 6, caudal rib. MCS PV 4, 7-8, caudal vertebrae in $\mathbf{7}$ anterior and 8, ventral views. MUC PV 92, 9-12, caudal vertebra in 9, anterior, 10, left lateral 11, dorsal and 12, ventral views. Scale bar $=20 \mathrm{~mm}$.

Figure 6. Kawanectes lafquenianum nov. comb., MCS PV 4; 1, pectoral region and scapula in right lateral view; 2, pubis and ischia in dorsal views. MLP 71-III-13-1; 3, 4, ilium in 3, lateral? and 4, medial? views. Scale bar $=20 \mathrm{~mm}$.

Figure 7. Kawanectes lafquenianum nov. comb. MLP 71-III-13-1; 1-3, humerus in 1, dorsal, 2, ventral and 3, proximal views; 4-6, femur in 4, dorsal, 5, ventral and 6, proximal views; 7, mesopodial element; 8, phalanges. Scale bar $=20 \mathrm{~mm}$. Figure 8. Kawanectes lafquenianum nov. comb. MUC Pv 92; 1-3, femur in 1, dorsal, 2, ventral and 3, proximal views. MCS PV 4; 4, distal part of right femur and epipodials in dorsal view; 5, MUC Pv, phalanges. Scale bar $=20 \mathrm{~mm}$.

Figure 9. Comparisson between the humera of Weddellian elasmosaurids, 1-4, same size and 5-8, same scale. 1, 5, Kawanactes lafquenianum nov.comb., 2, 6, Vegasauru molyi, 3, 7, Morenosaurus stocki, 4, 8, Kaiwhekea katiki. White arrow indicate the posterior expansion and accessory facet. $\mathbf{9}, \mathbf{1 0}$. Comparisson between $\mathbf{9}$, femur of Mauisaurus haasti lectotype (DM R1529) and 10, Kawanectes lafquenianum nov. comb. Scale bar $=20 \mathrm{~mm} .11$, plot of the BI and HI indexes of Vegasaurus molyi $\mathbf{(M L P}$ 93-I-5-1) and Kawanectes lafquenianum (MLP 71-II-13-1, MCS PV 4 and MUC Pv 92).

Figure 10. Strict consensus of 250 most parsimonious trees (1424 steps, $\mathrm{CI}=0.284$ and $\mathrm{RI}=0.673$). Bremer support values are given below some nodes on the cladogram.

 CStur

TABLE 1-Kawanectes lafquenianum nov. comb. Vertebral measurements of holotype and reffered specimens (in $m m$): L, length; H, height and B, breadth, indexes $H I$, height $(H) /$ length (L) ratio $\left(H I=100^{*} H / L\right), B I$, breadth (B)/length (L) ratio ($B I=100 * B / L$), BHI, breadth/height ratio (BHI=100*B/H) and VLI, Vertebral Length Index [VLI= 100*L / ($0.5^{*}(H+B)$)]. C, cervical, D, dorsal, S, sacral, Ca, caudal. In black articulate vertebrae.

vertebrae	L	H	B	HI	BI	BHI	VLI
C1	49	32	52	65	106	163	117
C2	45	33	50	73	111	152	108
C3	-	-	-	-	-	-	-
C4	50	36	59	72	118	164	105
C5	48	37	57	77	119	154	102
C6	49	35	57	71	116	163	107
C7	50	36	58	72	116	161	106
C8	52	-	-	-	-	-	-
C9	50	36	60	72	120	167	104
C10	48	38	59	79	123	155	99
C11	48	38	60	79	125	158	98
C12	-	-	-	-	-	-	-
C13	39	37	59	95	151	159	81
C14	41	42	60	102	146	143	80
C15	45	44	66	98	147	150	82
D1	45	47	58	104	129	123	86
D2	47	45	56	96	119	124	93
D3	46	49	60	107	130	122	84
D4	42	50	55	119	131	110	80
D5	44	45	57	102	130	127	87
D6	44	45	55	102	125	122	88
D7	45	43	54	96	120	126	93
D8	48	44	56	92	117	127	96
D9	47	45	56	96	119	124	93
D10	47	-	55	-	117	-	-
D11	45	42	54	93	120	129	94
D12	43	40	50	93	116	125	96
D13	41	38	54	93	132	142	89
D14	40	38	55	95	138	145	86
D15	40	36	50	90	125	139	93
S1	38	36	52	94	136	144	86
S2	37	35	55	94	148	157	82
Ca 1	32	34	54	106	169	159	73
Ca 2	32	35	-	109	-	-	-
Ca3	31	35	50	113	161	143	73
MLP 71-II 13-1							
C1	43	36	49	84	114	136	101
C2	45	37	50	82	111	135	103
C3	42	38	48	90	114	126	98
C4	35	38	60	109	171	158	71
C5	34	37	57	109	168	154	72
C6	34	39	60	115	176	154	60

D1	33	33	46	100	139	139	83
D2	33	30	40	91	121	133	94
D3	35	34	48	97	137	141	86
Cal	28	33	45	118	161	136	72
Ca 2	28	32	43	114	154	134	75
Ca3	27	33	42	122	156	127	72
Ca 4	27	32	41	119	152	128	74
$\mathrm{Ca5}$	27	31	39	115	144	126	77
Ca6	28	32	42	114	150	131	77
Ca 7	25	30	41	120	164	137	70
Ca8	24	30	40	125	167	133	69
Ca 9	25	27	36	108	144	133	79
Ca10	24	28	34	117	142	121	77
MUC Pv 92							
C1	28	20	35	71	125	175	102
C2	33	-	-	-	-	-	-
D1	40	37	50	93	125	135	92
D2	42	41	59	98	140	144	84
D3	50	41	55	86	108	134	104
S1	35	33	48	94	137	145	86
$\mathrm{Ca1}$	30	33	46	110	153	139	76
Ca 2	32	34	46	106	144	135	80
Ca3	32	35	46	109	144	131	79
Ca 4	32	34	42	106	131	124	84
Ca5	31	33	42	106	135	127	83
Ca6	29	32	40	110	138	125	80
Ca 7	29	30	40	103	138	133	83
Ca8	31	30	37	97	119	123	93

TABLE 2 - Body length of several elasmosaurids

Taxon	Length (m)	Ratio with Kawanectes	References
Kawanectes lafquenianum	ca. 3.8 m (total)		O'Gorman, 2013
Vegasaurus molyi	6,5 m (total)	1.7	O'Gorman, 2013
Thalassomedon haningtoni	10.86 m (total)	3.9	Welles, 1952
Elasmosaurus platyurus	10.3 m (total)	3.7	Welles, 1952
Hydralmosaurus serpentines	9.44 m (total)	3.4	Welles, 1952
Mauisaurus haasti (based on CM Zfr 115)	+8m	+2.9	Hiller et al., 2005
Hydrotherosaurs alexandrae	7.77 m (total)	2.8	Welles, 1952
Futabasaurus suzukii	6.4-9.2 m	2.3-3.3	Sato et al., 2006
Styxosaurus browni	5.25 m (neck)		Welles, 1952
Libonectes morgani	5.06 m (neck)		Welles, 1952
Morenosaurus stocki	3.63 m (trunk and tail)	-	Welles, 1952

Table 3 -Characters used to differentiate Kawanectes from other Weddellian and Pacific Taxa. 1, cervical centrum proportions; 2, caudal prapophysis laterally projected; 3, ilium dorsal end; 4, pelvic bar; 5, humerus posterior accessory facet; 6, trochanter widely expanded in dorsal view; 7, ratio humerus length /femur length; 8, body length. Data taken from Welles, 1943; Cruickshank and Fordyce, 2002; Hiller et al., 2005; O'Gorman et al., 2015).

	1	2	3	4	5	6	7	8
Kawanectes lafquenianum	$\mathbf{L}>\mathbf{H}$	prensent	tapering	present	present	absent	1.2	3.8 m
Vegasaurus molyi	L $>\mathrm{H}$	absent	expanded	absent	present	present	1.08	6.5 m
								3.63 m
Morenosaurus stocki		absent	expanded	absent	present	present	1.08	(trunk and
								tail)
Hydrotherosaurus	$\mathrm{L}>\mathrm{H}$	absent	expanded	$?$	absent	absent	1.14	
alexandrae								(total)
Aristonectes parvidens	$\mathrm{L} \leq \mathrm{H}$	absent	?	?	absent	?		?
Mauisaurus haasti (DM								
	?	?	?	?		present		?
R1529, holotype)								
(CM Zfr 115, reffered)	L>H		?	?	?	absent		+8 meters
Kaiwhekea katiki	$\mathrm{L} \leq \mathrm{H}$	absent	?	?	present	present		6 m

\#NEXUS
[written Mon Sep 07 19:45:46 ART 2015 by Mesquite version 3.0 (build 644) at Note-Jose/ 10.1.10.76]

BEGIN TAXA; TITLE Taxa; DIMENSIONS NTAX=89; TAXLABELS

Yunguisaurus_liae Pistosaurus_postcranium Pistosaurus_skull
Augustasaurus_hagdorni Bobosaurus_forojuliensis Macroplata_tenuiceps Anningasaura_lymense Stratesaurus_taylori Avalonnectes_arturi Eurycleidus_arcuatus Meyerasaurus_victor Maresaurus_coccai Borealonectes_russelli Rhomaleosaurus_megacephalus Archaeonectrus_rostratus Rhomaleosaurus_cramptoni Rhomaleosaurus_zetlandicus Rhomaleosaurus_thorntoni Thalassiodracon_hawkinsii Hauffiosaurus_longirostris Hauffiosaurus_tomistomimus Hauffiosaurus_zanoni Marmornectes_candrewi Peloneustes_philarchus Simolestes_vorax Pliosaurus_funkei Pliosaurus_BRSMG_Cc332 Pliosaurus_brachydeirus Gallardosaurus_iturraldei Liopleurodon_rossicus Pliosaurus_irgisensis Pliosaurus_andrewsi Liopleurodon_ferox Kronosaurus_MCZ_1285 Brachauchenius_eulerti Brachauchenius_lucasi Brachauchenius_MNA_V9433 QM_F51291 Attenborosaurus_conybeari Plesiosaurus_dolichodeirus Eopleiosaurus_antiquior Eretmosaurus_rugosus Westphaliasaurus_simonsensii Seelyosaurus_guilelmiimperatoris Microcleidus_tournemirensis Microcleidus_brachypterygius Microcleidus_homalospondylus Plesiopterys_wildi Cryptoclidus_eurymerus Tricleidus_seeleyi Muraenosaurus_leedsii Kimmerosaurus_langhami Pantosaurus_striatus Picrocleidus_beloclis Tatenectes_laramiensis Plesiosaurus_mansellii Colymbosaurus_trochanterius Djupedallia_engeri Spitrasaurus_spp Abyssosaurus_nataliae Umoonasaurus_demoscyllus Nichollssaura_borealis Leptocleidus_capensis Leptocleidus_superstes Hastanectes_valdensis MIWG_1997_302 Brancasaurus_brancai Edgarosaurus_muddi Plesiopleurodon_wellesi QM_F512912 Callawayasaurus_colombiensis Gronausaurus Speeton_Clay_plesiosaurian Wapuskanectes_betsynichollsae Futabasaurus_suzukii Hydrotherosaurus_alexandrae Libonectes_morgani Elasmosaurus_platyurus Thalassomedon_hanintoni Stixosaurus_snowii Tuarangisaurus_keyesi Terminonatatot_ponteixensis Albertonectes_vanderveldei Morenosaurus_stocki Vegasaurus_molyi kawanectes_lafquenianum Aristonectes_quiriquinensis Aristonectes_parvidens Kaiwhekea_katiki
;

END;

BEGIN CHARACTERS;

 TITLE Character_Matrix; DIMENSIONS NCHAR=275; FORMAT DATATYPE $=$ STANDARD GAP $=-$ MISSING $=$? SYMBOLS = " 0123456 7"; CHARSTATELABELS6 Character_6, 49 Character_49, 50 Character_50, 272 Character_272, 273 Character_273, 274 Naterior_depresed_ares_in_the_humerus, 275 anterioe_oncave_shafth ; MATRIX Yunguisaurus_liae 0001000??10000000??0010010?000010010?000?
000110??200??00??????01020????????????????02?10???????0?0?0010020???10011001100?1001?1???? 13??0???????1???????????41000??00?000000?001??0??01210?0?00\{2 3\}??0???????0?000? 200????????????0?00122011?0000002000??11000?000?0?000000010000100000?????

Pistosaurus_postcranium

???

Augustasaurus_hagdorni 010100?0010?00000??00100100000000000000100?
0010012101000010??????0???0?0000???????02??000?0110000?0010000????0?1100?10??1001??1??? 01010002100???00??21??41?01??000000200?0?10000011??0000????????????00?000?102?020000? 0??????????????????000??00???100000000???0?100?1000???0?00?????

Bobosaurus_forojuliensis ????????????????
0?? ???????????????????????????????02?0?00?00??01?2100000??110?12?000?00??001221100?10\{2 3\} 1???????????????????????????????????0122010?001??????0???1?000????????0???0?0??0????????????

Macroplata_tenuiceps 1101001??10?10101110\{0 2\}?001??1001010?0??????? 0010????0??????????010100?012?100??01?100211????????????100??00???????1111??0??21???11?? 00201001110000100??210220001???110?120100??30?001?11100000?0110000?20110?1????0000000?001? 0001?2012?002?????0?101?0?0?0?0?110?1???010??01???????????

Anningasaura_lymense 111000?0120?00??10000100?0010000100000? 10000010112001000?10?0?1020?0110111010010?00211?1000000011?00?000?111??1110?100?1010?110?? 00010011000?0?00??0?0??10010??3?0?120100?031?
1?? ???????????

Stratesaurus_taylori 001000?0100100100??0110010000010?0?
000010000010001001000010101101012002000010?00102211???01000010110?000000?2?111? 11000110001?0?001000011000?0?00??2001?10010011100120100003101??1????00?0???????????? 1??????????????????????01022111???????????????????????????1???010??010??10?10?? Avalonnectes_arturi ??????????01??10????????10?????01?? 00001000001001100100001010???????????????????1?????? 0??\{1 2\}???????????2100?00211001??100? 0110001101101200?0110?00????1?01201????????????????0102?110??1?????????11020?000?110110? 101000010?100?????

Eurycleidus_arcuatus ??? ??111???????????1????????? 01110??????????????100100211000201000010100?1?1101????0110100?201101120010201000100? 10001020110001???????0101?02110010110????1?10????????0?????

Meyerasaurus_victor 10?00?0?21??00??11??0100??0000???
0??????????????????10?0??0101??\{0 1\}0????????0??????022?0?1?01010111122?11000101?0111100? 02110211???01?1001010?0???0???1?120?01?????00?20????0???0011211012002?110?0?0111?0?1???? 0201000?0001000102011?0011002100??12020?00021??11011010001101100?????

Maresaurus_coccai 110100?1220?1???1120\{0 2\}1001?0?00??????????????
00001120?10???10?0110?0??????0?????????0??11?000101010?122?1000???200111?00??2100?11???01? 1?011100?????0???????0001???2?0?\{0 1\}??1???
030??? ???????????????

Borealonectes_russelli 11010?1?210?102011100?00\{1 2\}0?0000??010? 0010010000?\{0 1\}??1?000??0?0???20???12000???????022?1?0???????0??2???201?????111??00???1? 0?110??0\{1 2\}?1?01?10?00100??21?120001???2?0??20?????30?0????????
1???100??00?????1101012???2?011?0001???11? 1?????

Rhomaleosaurus_megacephalus 100101212201121010002100100100?000?
000010000010012001000110101???0?201?000???0??1002111000100011011???00?0002001111?0??20?0? 11??0??00001020?0???0???10120001???1100?201????10?00111?1012001??20?0?0??????????? 1???????????????01022110???????? $00 ? ? 1 ? 0201001 ? 110 ? 1 ? ? 1010 ? ? 0 ? ? ? ? ? 0 ? ? ? ? ?$

Archaeonectrus_rostratus 1002002???0?102?1111??00?????????0?000?
10000010012011000?1??01??11??1???? 1????????????? $11120 ? 0 ? ? ? ? ? ? ? ? ? ? 2100100111000201 ? ? ? 0 ? 11 ? 0110110110010 ? ? ? ? ? ? 0 ? ? ? ? ? 0 ? 20 ?$ 1???????????????01?2?1100?10001000??1?020?00??11011011010001101100?????

Rhomaleosaurus_cramptoni 10000021220?1020100121101?00001?1000000??? 0001001201100011110?10?0???1?000????????02?1110?01010110122?1000000200?11?00??2100?11???01? 1?01020?00?????????200???1211000??1?0?01?1?0002110?100?0?????0?????1???????????????1??????? 0102?11000?10???00??1?021?001?1??110110100?11?1?00?????

Rhomaleosaurus_zetlandicus 11000??1220?102010012110??00001??000???????? 001001?0110?0?1110110??????1?0?0????????2211??0?1?????1?1?2??0??0??2001111000021002110000??

1001020?0??????????200010??110?020100?010?00??2110?1???
01201000??????????????????????????????????????1?0??001212021000121101101101001?????0??????? Rhomaleosaurus_thorntoni 11??0???2?0?10??1021?1101?00?????0??
0001000?????????????1???????????????????????????????1??01??01?????????????200111??10?11??? 11000?11100101000????????????0001???110?000100??10??01?21101?00?0110100??01100120210?0?
000100?10001220110001??????0111?02100002110???????????????????????
Thalassiodracon_hawkinsii 00100001110100111120??0?1000???0000000?
10020000001011000010110101010002000011000101011?00011001??100?000????0?11101100010000? 1200?001001110010000??2101310010011100120100002100011101000001011000002011011001?
00000001000?0001020111001000200000110100000010?11001010000101100?????
Hauffiosaurus_longirostris 00?20??0?1??12111120??00???2?????????????????????
02???????????01001??0???1?0?????1110??????????????110?0??0?????1001?100?1100?11?
0023010011200?? ???

Hauffiosaurus_tomistomimus 00020?10210?1?110??0100?0?0210100100???????00?
00010100?0?101?01011??????1001????111011?0?0100010?100?010??????1000?100?1100?
112002301001120?1100???\{0 2\}?1231001?11110?100100002000011101010001??10????0???1??1?0? 0???????????? $00 ? ? ? ? ? ? ? ? 00 ? ? ? 0 ? 1000012010000121 ? 01101 ? 1 ? 0 ? 11201 ? 00 ? ? ? ? ?$

Hauffiosaurus_zanoni 00?2??1??1???????????????0?0??????????0?
10???????????00?001???010?????????????????11101101?0100010?100?010????20100??100?1100?? 12002301\{0 1\}01120000?00??????310011?11100100100?020?00??????????0?01100000201101120?? 0020000?010?0001020?2?0001001000??11010?00121??11011010001101100????? Marmornectes_candrewi 0???????????00??0?????00???????????????????????? 0????10???0???0??10100110?0000? 111000201021020000000??21?1?0001???1200100100?200?1001??1?00?1?0010000???????1?0??000?00??? 00????00220111??2000??00110001000012100?1??1110??011???1????? Peloneustes_philarchus 10020120211100210??010001000101?
010000010020010003121100010?00101000011000011?10102211100110\{0 1\}010?12110200??? 2110110110000001111000211001020001000??21?110001?121200110100000011001201100?1?0010001?00? 1011000010000002010??1002301111022000?01??000210001220022101110111101111????? Simolestes_vorax 110101???21?10210??010001??010??0100000100200? 0003111?000?0?0010100??11000????1???221110???????? ?121?0210???210111??10?0000?111000??1? 01010?0??00???111100011121?0?1000001200110????11?????0????0??20?10012010?02?000?0???? 000230??1102201??010100021010122001110111001110?????????? Pliosaurus_funkei ???????0?????
0???0?\{1
2\}???01????10?1????0?1??010?11????????????? 0001???1????00???0?00?2?00??1100???????????????????????2000000200??????????????????0??0? 0????2?01012???3?101?0001???1??1?????

Pliosaurus_BRSMG_Cc332 110101?0221110210??0100110?0111?
1100000100200100231111000201001010???1????01???0?012111001????????12110200????1?101?0010? 200???13?00\{1 2\}11011011?????????????0001???1?00?00?????00???00??
1100?? ?????

Pliosaurus_brachydeirus 11?1??????2??102?0??01001???0????????????????00? 0???1??????????01010?????????????0??????????1?????0?12110200?????101??010?2000??13000\{1 2$\}$ 11101021?0??????????? $0001 ? ? ? 110 ? ? 10 ? ? ? 0 ? 00 ? 2010 ? ?$
1100??0???00????0??????1?1???3???1?0??10???? 1?????

Gallardosaurus_iturraldei ??0?01?022?1??21?????????10??????11?
0000100200100?31?1100020?01101????1?????????????121110???0?010?12110300???211??????1??? 0??????????????????1????00??2? $11 ? 00011 ? ? 1 ? 0 ? 110 ? 0 ? ?$
201??? ???????????????

Liopleurodon_rossicus 11?1?1??????10210??01000????1?1?11000001??200?
0??3121??1????????0????????????1? 01011???1000200?2????0? 2??

Pliosaurus_irgisensis ???????0??????21?????????????????11?0000100200?0? 231?11?002??0???1????

1??000??1? 1?0?1??000?200???001?0?????0???
10??1???3???1?0??1111100?????
Pliosaurus_andrewsi 01020?2021??10210??0??00??00???????????????00?
00?3\{0 1\}211?0??0?00??10??????????????102?11?00110?010?1211020????21111?
0110000101111000211001010001001102??210001012110010000002001100120110??1?
0010000??????????????????????????00230110???200??01??02021010122003210?100011001211????? Liopleurodon_ferox 11010120221110210??010001000101?11?
000010020000003121100020100101000?1100001??101022111001101110?12110210???2111110010?0010? 111000111101010001100??0110100011121200100101000011000?0110????2010100????1??0?000?????0?? 01???1????????10320???010???02101012?0?2?101?0001???1?11????? Kronosaurus_MCZ_1285 ??0?0?20?2??????
0??01000?\{0 1\}?00011000?01110?111?0??????????? 12110\{2 3\}10??????????0????001????0??????01010?011?0??2??00000?11?3211?0?000?0001??0?20? 1??0??2?10000?00?10?0?????02??0020????1????????103?????????????????????????????????? 1?????????

Brachauchenius_eulerti 010200?0211100210??1100010?0200?
11100001012001002312100012??00???????????????????011?0?00011000101211031010?21110?0010? 0001?11???00000010100???????????????????
1??? ??????????????????????????

Brachauchenius_lucasi 00020120211100210??010001000200?111?
0001012001000312100012??00???????????????????011?0100?1011?0??2100310???211???001?00001\{1 2\}11????????010?0?0???0?????000002????211?00?????????00??
001?? 11111?????

Brachauchenius_MNA_V9433 0102?????1?100210??0100010?0????????0001???00?
002\{2 3\}1210?0?20?0????0?????????????????????00????110??2110210???2111000010?0001?
1110000000010100???????????0000211?3211100000?200?2?0???01??????????????0?1???????
22200002?????11??0011?10???
QM_F51291 ? ? ? ? 01??2?????210??010?????0210?1110000????
0010???12?????????????????????????????????0?00?????????????\{2
3\}??????????????????????????????????
10?? ??

Attenborosaurus_conybeari 00010010???110??112???0010?0?????0??
0001002??????2??10000???11??????????????????1?2???????????????????????????0110??0??? 0?????????10100???0?2??????????310??011110????1???0\{0 3\}00??11101100?0???1???1?20?10?1???? 0220000?000?310?02??1?0010001000??1??10?00?????1?001?100???01101????? Plesiosaurus_dolichodeirus 001100?0110?00100??0010010?000010010000100? $001000100100001010110\{01\} 010 ? 02000 ? 1111 ? 10 ? 01100 ? 01000110100 ? 000 ? 1110 ? 0100 ? 100 ?$ 1000???????100001110?2???0????01410010121\{0 1\}00100101003\{0 1\}00011111100001000010\{0 1\}? 211101100110000000?000?000002012100100020000?1102010000200110\{0 1\}1010000?01100?????

Eopleiosaurus_antiquior
?? ?? 2??????????4100?0111?0?12?1???03??0??????????01000?11?02??1001002?0?0??00???????0??2?11? 00110020000?11010100??1?0110?1010000101100?????

Eretmosaurus_rugosus ? ? ?? ??\{1 2\}???????????\{3 4\}100110?100?12010000?000111??11?0???0000?01???? $1 ? ? ? ? ? ? ?\{0$ 1\}?0??0??????? 0010201200011000000??11021?100020011011010000201100?????

Westphaliasaurus_simonsensii ? ? ? ??? ??? 2????????????0011021?0??0010?1031000111?1?0010?0000101?211100120??00000001??10000??20? 20001?????00011002100011100110110100011?1??1?????

Seelyosaurus_guilelmi imperatoris 00000?00?10?02?????0???????0?????0??0011001???? 1?1?01000?0??11???10??100?1010???????

100001100?2???????????3100?1221000???1???00?00?1200110010\{2 3\}100001101101001201?10030?1? 0???300?02??200011000100??11020?100?20011011000011201101?????

Microcleidus_tournemirensis 0000000?120102100??
0010010000000001011110010010002001000110?1???\{1 2\}1??????000?????0112?110000??00?0? 12100100???20??????????????????????11000110012?????????142101112100?20?100? 0010011200111010?????????201100120211013010?010?300122012000110????0??1?020?100?2? 0110110100012?1??1?????

Microcleidus_brachypterygius 0011000?110102100??
0010010000000101011110010010102001000100??????1????????????????101??100?0010000?12100000??? 20?????????????????????0000110012?????????2321011121?00??1????00100?12011110?03100011? 0210???1????20130?0?01???101220?10??01002000??11021?100?2??11010010011101101????? Microcleidus_homalospondylus 0000000011010210???0010020?000?000? 0111100100101020010001??11110110010200001??001021?1?00????000??2100100???2001001??00?0??? 102???10000??0012???????????42101112100020110010010011201111010?1000011??1011110001?01? 010101???00122012000010?20000011021?100110011011010011201101?????

Plesiopterys_wildi 00100?0?1???00?????????00???00??1?0?0???10??01?
0001001000?00?0?10101110200001001010110???1????0011?00??00?100???20??100?1000?0?2??0?00? 01110??????????02420011121101?001??0001001111?1100003000000? 01?11?01201??0??0???010?3? 0102012?001???00?000110200101?2??11001010011101110?????

Cryptoclidus_eurymerus 00100?0010?101100??
00100101000010000020100201001011010000000010?1011101101?111011111??00101100011?00?0???? 000?02001100?1000?0021?0200001110121111101?
$013100111232011001110000000111011000000010001121011001010201201020200 ? 1100210110112010$? 101113032010122101300110\{1 2\}2\{0 1\}\{0 1\}001211?????

Tricleidus_seeleyi 01100???????011010?00?0010?000?100????????\{1 2\}
01001?3001000?000010?00?0111111?????111110??????????011200?000?1100?0201110001000?0021? 01110011001?11?1101?02210011123201100111000100?11?01100???????????110110000002012010202? 13?????????????210??1011130210101221023001101111101211?????

Muraenosaurus_leedsii 00????????0?01100??001001??000?10??????????010? 0?????1???0???10?00?0????11????? $11011 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? 0201010002000 ? 0021 ?$ 010100110012?1?1101??14210112232012001110001001??11111000?200?111????????0???0\{1 2\}????1? 2020?3?1012?021??12????1001230311101221023001100111001210?????

Kimmerosaurus_langhami ??1??0?1??0?0????????????0?????10??0?????? 20100000102000000011101010201101?101111111??????????????200?0?????????0200110001000?002??0? 00?01220???1?1001?01?00011??3?01100111???1?
0??? ???????????

Pantosaurus_striatus
??? ??? ?????\{3 4\}100111?320??00???000100??1??110000?2000111???????????????????????????01001? 021011200??10?????0210101??1?1?10???211???1211?????

Picrocleidus_beloclis ?? 0????0?010?\{0 1\}0?????????????10012????????????????????????????????1100?1000???2??2????? 11?????1?1101?02411011223201200111000100111?011?0?0?200?101001011002010201201020201?01?12? 021112200??101???02111012210110010011111?1?10?????

Tatenectes_laramiensis ???????0??????????????????0??????0???????1??\{1
2\}?????????2000?0000?????????????????????????????????????11????????? 1????????????????????????????11??????01001????00011??32011001?1000100?110?110000??????????? 1011???????\{1 2\}01??1020101?10?110021011210??10????0210101??1?2?001?0211??01??1?????

Plesiosaurus_mansellii
?? ??? 1111101??2\{3 4\}1101???320??00?????01?01??1111?????1010011??0????????????2??1?
202??2???????????????

Colymbosaurus_trochanterius ??? ???100?1000??????0????????????1? 1110??2410012??320?200111??01?01??1011??00?2010101??0????????????2??102?2????????????????

201??10111?2210101221022101102?11101211?????
Djupedallia_engeri ??????0?????
0??00????????0?
01111????????????????????????????????????020???????????????????00?0??1??2011???100?
510012113201200111030100110??1100???????????????11?0???0?0??01???\{1 2\}??3?????????????2?
0??????1?02?0?012?1???101102???1?1211?0???
Spitrasaurus_spp
??????0?????
0??0???00??1010??????????????1???????????????????? 0????????????0201?100?1000???2??0?00?01110?20111111??2521012213201200111030100110? 01100??????????????11?0???0?0??01???2????????????????2?11?????1?02\{1 2\}0?012?1???101102? 1???1\{1 2\}11??????

Abyssosaurus_nataliae ??
???2??? 1110??1\{4 5\}1001???3201200111??01?01??1011??0??\{1 2\}0????????0010000100??2??10?0?001?1? 1101110??2?1??1????10???10?22?0?3??110\{0 2\}??1001211?????

Umoonasaurus_demoscyllus 00000100112??1101020??00??00????0???????????0?
002222?10???10?11????1??12?11?0??0??022?????0?????11122?1211000????????0??1111??????? 1111010?01?????????????1001????20?1??1010??00?110101102000201?00?1???1?01?010?????????????? 0???????????21????0111?02001022210?2???1?0??10?1??1??????

Nichollssaura_borealis 0000010011200010102010001100000100?
000010010000122301010010011??211?2??0???00000?0221110101100011122?13110000?0111110??0101? 112??02?1001010100100??20022100100132011?010??000??1102?101?00000??????????
10110020???????????????2?12102?01?2?\{0 1\}0000??1??200101?21012101100011101110?1???
Leptocleidus_capensis 010001?1112?1010102002001?0000?10??0000??
01001022\{2 3\}201010?0??01??21?????0?????????0221110?01?00011122?12110001?????1110?0111??\{1 2\}2?111111010101???????????210010??320?1?0100?0?0?0?????
1??2????00????0????????????2???1?0??10? 1????????

Leptocleidus_superstes ??0?0??1?1?0????10\{1 2\}?????1???????????????????
0?10222201010?100011121?0011?01???????02211????????????122??31????
1???\{1 2\}0?01?0132011001000??00?110?11102??? 1011001?10110011020??1?100200102???????????????????01???02001012?0?????????????????????????

Hastanectes_valdensis ?? ??? 1100???1?1\{1 2\}1001002320?110100000001?????1??????
1011000???001???02001021?0?????????0????????1??????

MIWG_1997_302 ? ???
??? ?????????01?01??0?1??1010??00??10??1102??????????????1??? $1 ? 02 ? ? ? 1 ? ? 01 ? 10 ?$
0???
Brancasaurus_brancai 0010?000100000\{0 1\}?101002001?00000?0?1000???
0101?02223010?0?00?011101101120101000100022?????011000???0???????????01???100?1110???2?? 121100111?120100??20014100100232012?0101100000110101102000101?1011???1?01?0201?10?0?210? 0201012102101121????0111002001022200321?11???110?1????????

Edgarosaurus_muddi 100101?021001020111010001??0?0??001000010?
200102220011101000110?01?02?2?1?0????1002211?01??????10122?1300100201100011011110?120011\{2 3\}110111100?010100000121001?1132011201000000000???
01???00?00??????0010?2?0?3?10??0101?? 01211?1???

Plesiopleurodon_wellesi 000100?0?100102?1120?000???2?0??????????????1??? 222201010?10?11??0001?11??? $110 ? 1 ? ? ? ? 1\{12\}$ 000210?0??????????????100?011320?120100?0?0?0??0??110\{0 2\}???\{0 1\}0??101?????????????20110? 1?01?????????????????????????????\{2 3\}\{0 1\}?1012?1?????????????????????????

QM_F512912
00010020110011201120?000\{1 2\}??2?0??00??01010?? 1???2222010101100111101??????????????1?022??001???00???1?2?100???? $1 ? ? 001 ? ? ? ? ? ? 1 ? ? ? 11 ? ? ? ?$ 100011020?11101000?0210001\{0 1\}02320?1201001000100100?1100?00101010011??1???????20? 1???????????20100121011200110110111200101221022101100011101\{1 2\}10?????

Callawayasaurus_colombiensis 000010?0?10000\{1 2\}?10100?0020?000?10???????? 01010000220101010001111011?\{1 2\}02?1010??1?002211001????0?0???2?1100????1?1101\{0 1\}?0?? 20?????2??010000110012???????????5210102232022001111\{0 1\}0100111211110????????????200100? 11001120010?10?01??????????00??0\{0 1\}??100?220300102?3101200?10\{0 1\}0111??2?11??00

Gronausaurus
?? ?? ????????01?12320?2001111?000?1110011100002011101????1????????????0?210??? 01012102101021????0112?02000022210?1???1?0????????1???00

Speeton_Clay_plesiosaurian ? ? ??? ?? 2????????????101012320120011110010011201111000?20?1111??1011?1??20??1??002????? 010121011011200??00102103001022?1021001100011101?11?????

Wapuskanectes_betsynichollsae ? ??? ?? ???????????????????????????????1??1??0???????????2101\{0 1\}2?110?1110110?10??3???????????? 200???01???03000022???????????????????03????

Futabasaurus_suzukii 00??000?1?0?00??0??00?0?2?
0000????????????????????0???1??????????????????????????????????0110000???????????????
100??????0????\{1 2\}????100001100???????????????11?22?2022001111?010?
11110111000??????????????????????????????01301?1??01?0?
1100200000220300102221122101100011101\{1 2\}10?????
Hydrotherosaurus_alexandrae 000010?0??0000201\{1 2\}100?002??0000?
0011000100111?????2121?111??01???100010?1? 01??112???10?00110012???1?????1521110223202200111?101001110011100002011?11?1001\{0 1\} 00001011200?020????120111011000100?000??12031010123102300110\{0 1\}01110121111?00

Libonectes_morgani 000010?011000020102001002000000?
00110001001110????21??111?00010?010?20201010?00100221100101?00?0?112?1200???2101000101? 2000?012000101001?0012???1?????16211102?320?2001111?01?01???????????????????21011??????
11100?0?100?1?????????????00??00????????10??????200??01?1????????1???
Elasmosaurus_platyurus ????????????????
11??? 1??????????????????????0?????????????????20????1?002???100???273111???320?2?0111???1?0?1?? 011??0??2?1??00??1?11???????????????????
0???
Thalassomedon_hanintoni 0??01000?0???0??1000001?20??0?1?001?00010011???? 0201??111????10???????2?0?????????????????????????0???????????110100?0??0????0????1110??? 0002?1?11?2?0262111022320020011113?1001122011??00??0???????0011?00110?12????
210001120121001010000????0?12?32010?22102210110?0?1?01210?1100
Stixosaurus_snowii 000010????????200??00?0020??0???001?00?10?
11???????1??111????1??110?1??0??0??????????? 10???0?3????????????311?1??320?2??1111??1?
011??? ???????????

Tuarangisaurus_keyesi
000?10??1?0?002?1020010?20000?1?0??000011011???
0020???111????????0??102??????0?000211??0?0100000???2??200???121102?00?????????????110? 001000???????2?02?21110??320?200111?3?1?
0??? ???????10??

Terminonatatot_ponteixensis 00?????0?????02?1010??0?1????????01????1???
1?????2????1??????1??1100???1??0???01?1??\{0 1\}00??010?12???????????211???1320?2001111??1?011????????????1???
1??????????????????????????2?12?????1?200??0???11?31??1?22113310110001110?????????

Albertonectes_vanderveldei ? ? ? ??? ??2?1? 11?2?02721110?232022?011111?10011100???01?12?0???01?001??01????1??0?????0??12?11???00?? 0002?0?0?12?21011?0211211?11?001?101210?01??
00110?1??0??21????1???????????2?0??0?0??????0???2?1?111?1100??1?0?2??3????
Aristonectes_parvidens 00?010??1?0000201??00200200000??00???\{0 1\}?11??
01010?3212?1?0000?00?1?01212010???????????????0?10000??????????????01030?0??1000???????
30000?1400?1101102?01?1?11???320?200111??02?0??????????????1?
001???10??
Kaiwhekea_katiki 00001010??000???1020020020?000?????????11????0?
0?32?2111000?00??010??10??1000??????
0300001140?2??????????40011121320?2?0111?10200?11111?10???2????0?????????
0?????????????????2??????????210??00??11?32?11??3?211101000001201??03????
;
END;
BEGIN NOTES;

```
SUT TAXA = Taxa TAXON = 77 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 78 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 79 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 80 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 81 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 82 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 83 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 84 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 85 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 86 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 87 NAME = color INTEGER = 11;
SUT TAXA = Taxa TAXON = 88 NAME = color INTEGER = 0;
SUT TAXA = Taxa TAXON = 89 NAME = color INTEGER = 0;
```

SU $C=1 \mathrm{~N}=$ color $\mathrm{I}=2$;
SU $\mathrm{T}=79 \mathrm{C}=1 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU $\mathrm{T}=80 \mathrm{C}=1 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU $\mathrm{T}=81 \mathrm{C}=1 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU $\mathrm{T}=82 \mathrm{C}=1 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU T = $84 \mathrm{C}=1 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU T = $78 \mathrm{C}=2 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU $\mathrm{T}=79 \mathrm{C}=2 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU T = $80 \mathrm{C}=2 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU $\mathrm{T}=81 \mathrm{C}=2 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU $\mathrm{T}=82 \mathrm{C}=2 \mathrm{~N}=$ color $\mathrm{I}=11$;
SU T = $84 \mathrm{C}=2 \mathrm{~N}=$ color $\mathrm{I}=11$;

```
SU T = 79 C = 3 N = color I = 11;
SU T = 80 C = 3 N = color I = 11;
SU T = 81 C = 3 N = color I = 11;
SU T = 82 C = 3 N = color I = 11;
SU T = 84 C = 3 N = color I = 11;
T = 79 C = 4 N = color I = 11;
T = 80 C = 4 N = color I = 11;
T = 81 C = 4 N = color I = 11;
T = 82 C = 4 N = color I = 11;
T = 84C = 4 N = color I = 11;
    T = 79 C = 5 N = color I = 11;
T = 80 C = 5 N = color I = 11;
T = 81 C = 5 N = color I = 11;
T = 82 C = 5 N = color I = 11;
T = 84 C = 5 N = color I = 11;
T = 79 C = 6 N = color I = 11;
T = 80 C = 6 N = color I = 11;
T = 81 C = 6 N = color I = 11;
T = 82 C = 6 N = color I = 11;
T = 84C = 6 N = color I = 11;
T = 79 C = 7 N = color I = 11;
T = 80 C = 7 N = color I = 11;
T = 81 C = 7 N = color I = 11;
T = 82 C = 7 N = color I = 11;
T = 84 C = 7 N = color I = 11;
T = 79 C = 8 N = color I = 11;
T = 80 C = 8 N = color I = 11;
T = 81 C = 8 N = color I = 11;
T = 82 C = 8 N = color I = 11;
T = 84 C = 8 N = color I = 11;
T = 79 C = 9 N = color I = 11;
T = 80 C = 9 N = color I = 11;
T = 81 C = 9 N = color I = 11;
T = 82 C = 9 N = color I = 11;
T = 84 C = 9 N = color I = 11;
T = 79 C = 10 N = color I = 11;
T = 80 C = 10 N = color I = 11;
T = 81 C = 10 N = color I = 11;
T = 82 C = 10 N = color I = 11;
T = 84 C = 10 N = color I = 11;
T = 79 C = 11 N = color I = 11;
T = 80 C = 11 N = color I = 11;
T = 81 C = 11 N = color I = 11;
T = 82 C = 11 N = color I = 11;
T = 84 C = 11 N = color I = 11;
T = 79 C = 12 N = color I = 11;
T = 80 C = 12 N = color I = 11;
T = 81 C = 12 N = color I = 11;
T = 82 C = 12 N = color I = 11;
T = 84 C = 12 N = color I = 11;
```

```
SU T = 79 C = 13 N = color I = 11;
SU T = 80 C = 13 N = color I = 11;
SU T = 81 C = 13 N = color I = 11;
SU T = 82 C = 13 N = color I = 11;
T = 84 C = 13 N = color I = 11;
T = 79 C = 14 N = color I = 11;
T = 80 C = 14 N = color I = 11;
T = 81 C = 14 N = color I = 11;
T = 82 C = 14 N = color I = 11;
T = 84 C = 14 N = color I = 11;
T = 79 C = 15 N = color I = 11;
T = 80 C = 15 N = color I = 11;
T = 81 C = 15 N = color I = 11;
T = 82 C = 15 N = color I = 11;
T = 84 C = 15 N = color I = 11;
T = 79 C = 16 N = color I = 11;
T = 80 C = 16 N = color I = 11;
T = 81 C = 16 N = color I = 11;
T = 82 C = 16 N = color I = 11;
T = 84 C = 16 N = color I = 11;
T = 79 C = 17 N = color I = 11;
T = 80 C = 17 N = color I = 11;
T = 81 C = 17 N = color I = 11;
T = 82 C = 17 N = color I = 11;
T = 84 C = 17 N = color I = 11;
T = 79 C = 18 N = color I = 11;
T = 80 C = 18 N = color I = 11;
T = 81 C = 18 N = color I = 11;
T = 82 C = 18 N = color I = 11;
T = 84C = 18 N = color I = 11;
T = 79 C = 19 N = color I = 11;
T = 80 C = 19 N = color I = 11;
T = 81 C = 19 N = color I = 11;
T = 82 C = 19 N = color I = 11;
T = 84C = 19 N = color I = 11;
T = 79 C = 20 N = color I = 11;
T = 80 C = 20 N = color I = 11;
T = 81 C = 20 N = color I = 11;
T = 82 C = 20 N = color I = 11;
T = 84C = 20 N = color I = 11;
T = 79 C = 21 N = color I = 11;
T = 80 C = 21 N = color I = 11;
T = 81 C = 21 N = color I = 11;
T = 82 C = 21 N = color I = 11;
T = 84 C = 21 N = color I = 11;
T = 78 C = 22 N = color I = 11;
T = 79 C = 22 N = color I = 11;
T = 80 C = 22 N = color I = 11;
T = 81 C = 22 N = color I = 11;
T = 82 C = 22 N = color I = 11;
```

 T = 84C = 22 N = color I = 11;
 T = 79 C = 23 N = color I = 11;
 T = 80 C = 23 N = color I = 11;
 T = 81 C = 23 N = color I = 11;
 T = 82 C = 23 N = color I = 11;
 T = 84 C = 23 N = color I = 11;
 T = 79 C = 24 N = color I = 11;
 T = 80 C = 24 N = color I = 11;
 T = 81 C = 24 N = color I = 11;
 T = 82 C = 24 N = color I = 11;
 T = 84 C = 24 N = color I = 11;
 T = 79 C = 25 N = color I = 11;
 T = 80 C = 25 N = color I = 11;
 T = 81 C = 25 N = color I = 11;
 T = 82 C = 25 N = color I = 11;
 T = 84 C = 25 N = color I = 11;
 T = 79 C = 26 N = color I = 11;
 T = 80 C = 26 N = color I = 11;
 T = 81 C = 26 N = color I = 11;
 T = 82 C = 26 N = color I = 11;
 T = 84 C = 26 N = color I = 11;
 T = 79 C = 27 N = color I = 11;
 T = 80 C = 27 N = color I = 11;
 T = 81 C = 27 N = color I = 11;
 T = 82 C = 27 N = color I = 11;
 T = 84 C = 27 N = color I = 11;
 T = 79 C = 28 N = color I = 11;
 T = 80 C = 28 N = color I = 11;
 T = 81 C = 28 N = color I = 11;
 T = 82 C = 28 N = color I = 11;
 T = 84 C = 28 N = color I = 11;
 T = 79 C = 29 N = color I = 11;
 T = 80 C = 29 N = color I = 11;
 T = 81 C = 29 N = color I = 11;
 T = 82 C = 29 N = color I = 11;
 T = 84 C = 29 N = color I = 11;
 T = 79 C = 30 N = color I = 11;
 T = 80 C = 30 N = color I = 11;
 T = 81 C = 30 N = color I = 11;
 T = 82 C = 30 N = color I = 11;
 T = 84 C = 30 N = color I = 11;
 T = 79 C = 31 N = color I = 11;
 T = 80 C = 31 N = color I = 11;
 T = 81 C = 31 N = color I = 11;
 T = 82 C = 31 N = color I = 11;
 T = 84C = 31 N = color I = 11;
 T = 79 C = 32 N = color I = 11;
 T = 80 C = 32 N = color I = 11;
 T = 81 C = 32 N = color I = 11;
 T = 82 C = 32 N = color I = 11;
    ```
    \(\mathrm{T}=84 \mathrm{C}=32 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=47 \mathrm{C}=33 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=33 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=33 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=33 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=33 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=33 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=34 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=34 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=34 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=34 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=34 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=35 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=35 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=35 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=35 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=35 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=36 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=36 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=36 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=36 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=36 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=37 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=37 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=37 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=37 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=37 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=38 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=38 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=38 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=38 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=38 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=39 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=39 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=39 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=39 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=39 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=40 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=40 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=40 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=40 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=40 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=79 \mathrm{C}=41 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=80 \mathrm{C}=41 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=81 \mathrm{C}=41 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=82 \mathrm{C}=41 \mathrm{~N}=\) color \(\mathrm{I}=11\);
    \(\mathrm{T}=84 \mathrm{C}=41 \mathrm{~N}=\) color \(\mathrm{I}=11\);
SU \(\mathrm{T}=79 \mathrm{C}=42 \mathrm{~N}=\) color \(\mathrm{I}=11\);
SU \(\mathrm{T}=80 \mathrm{C}=42 \mathrm{~N}=\) color \(\mathrm{I}=11\);
SU \(\mathrm{T}=81 \mathrm{C}=42 \mathrm{~N}=\) color \(\mathrm{I}=11\);
```

SU T = 82 C = 42 N = color I = 11;
SU T = 84 C = 42 N = color I = 11;
SU T = 79 C = 43 N = color I = 11;
SU T = 80 C = 43 N = color I = 11;
SU T = 81 C = 43 N = color I = 11;
SU T = 82 C = 43 N = color I = 11;
SU T = 84 C = 43 N = color I = 11;
SU T = 79 C = 44 N = color I = 11;
SU T = 80 C = 44 N = color I = 11;
SU T = 81 C = 44 N = color I = 11;
SU T = 82 C = 44 N = color I = 11;
T = 84 C = 44 N = color I = 11;
SU T = 79 C = 45 N = color I = 11;
SU T = 80 C = 45 N = color I = 11;
SU T = 81 C = 45 N = color I = 11;
SU T = 82 C = 45 N = color I = 11;
SU T = 83 C = 45 N = color I = 11;
SU T = 84 C = 45 N = color I = 11;
SU T = 79 C = 46 N = color I = 11;
SU T = 80 C = 46 N = color I = 11;
SU T = 81 C = 46 N = color I = 11;
SU T = 82 C = 46 N = color I = 11;
SU T = 83 C = 46 N = color I = 11;
SU T = 84 C = 46 N = color I = 11;
SU T = 79 C = 47 N = color I = 11;
SU T = 80 C = 47 N = color I = 11;
SU T = 81 C = 47 N = color I = 11;
SU T = 82 C = 47 N = color I = 11;
SU T = 83 C = 47 N = color I = 11;
SU T = 84C = 47 N = color I = 11;
SU T = 79 C = 48 N = color I = 11;
SU T = 80 C = 48 N = color I = 11;
SU T = 81 C = 48 N = color I = 11;
SU T = 82 C = 48 N = color I = 11;
SU T = 84 C = 48 N = color I = 11;
T = 79 C = 49 N = color I = 11;
T = 80 C = 49 N = color I = 11;
T = 81 C = 49 N = color I = 11;
T = 82 C = 49 N = color I = 11;
T = 84 C = 49 N = color I = 11;
T = 79 C = 50 N = color I = 11;
T = 80 C = 50 N = color I = 11;
T = 81 C = 50 N = color I = 11;
T = 82 C = 50 N = color I = 11;
T = 84 C = 50 N = color I = 11;
T = 79 C = 51 N = color I = 11;
T = 80 C = 51 N = color I = 11;
T = 81 C = 51 N = color I = 11;
T = 82 C = 51 N = color I = 11;
T = 84 C = 51 N = color I = 11;

```
```

SU T = 79 C = 52 N = color I = 11;
SU T = 80 C = 52 N = color I = 11;
SU T = 81 C = 52 N = color I = 11;
SU T = 82 C = 52 N = color I = 11;
SU T = 84 C = 52 N = color I = 11;
SU T = 79 C = 53 N = color I = 11;
SU T = 80 C = 53 N = color I = 11;
SU T = 81 C = 53 N = color I = 11;
T = 82 C = 53 N = color I = 11;
T = 84C = 53 N = color I = 11;
T = 79 C = 54 N = color I = 11;
T = 80 C = 54 N = color I = 11;
T = 81 C = 54 N = color I = 11;
T = 82 C = 54 N = color I = 11;
T = 84 C = 54 N = color I = 11;
T = 79 C = 55 N = color I = 11;
T = 80 C = 55 N = color I = 11;
T = 81 C = 55 N = color I = 11;
T = 82 C = 55 N = color I = 11;
T = 84 C = 55 N = color I = 11;
T = 79 C = 56 N = color I = 11;
T = 80 C = 56 N = color I = 11;
T = 81 C = 56 N = color I = 11;
T = 82 C = 56 N = color I = 11;
T = 84 C = 56 N = color I = 11;
T = 79 C = 57 N = color I = 11;
T = 80 C = 57 N = color I = 11;
T = 81 C = 57 N = color I = 11;
T = 82 C = 57 N = color I = 11;
T = 84 C = 57 N = color I = 11;
T = 79 C = 58 N = color I = 11;
T = 80 C = 58 N = color I = 11;
T = 81 C = 58 N = color I = 11;
T = 82 C = 58 N = color I = 11;
T = 84 C = 58 N = color I = 11;
T = 79 C = 59 N = color I = 11;
T = 80 C = 59 N = color I = 11;
T = 81 C = 59 N = color I = 11;
T = 82 C = 59 N = color I = 11;
T = 84 C = 59 N = color I = 11;
T = 79 C = 60 N = color I = 11;
T = 80 C = 60 N = color I = 11;
T = 81 C = 60 N = color I = 11;
T = 82 C = 60 N = color I = 11;
T = 84C = 60 N = color I = 11;
T = 79 C = 61 N = color I = 11;
T = 80 C = 61 N = color I = 11;
T = 81 C = 61 N = color I = 11;
T = 82 C = 61 N = color I = 11;
T = 84 C = 61 N = color I = 11;

```
```

SU T = 79 C = 62 N = color I = 11;
SU T = 80 C = 62 N = color I = 11;
SU T = 81 C = 62 N = color I = 11;
SU T = 82 C = 62 N = color I = 11;
SU T = 84 C = 62 N = color I = 11;
SU T = 79 C = 63 N = color I = 11;
SU T = 80 C = 63 N = color I = 11;
SU T = 81 C = 63 N = color I = 11;
T = 82 C = 63 N = color I = 11;
T = 79 C = 64 N = color I = 11;
T = 80 C = 64 N = color I = 11;
T = 81 C = 64 N = color I = 11;
T = 82 C = 64 N = color I = 11;
T = 79 C = 65 N = color I = 11;
T = 80 C = 65 N = color I = 11;
T = 81 C = 65 N = color I = 11;
T = 82 C = 65 N = color I = 11;
T = 79 C = 66 N = color I = 11;
T = 80 C = 66 N = color I = 11;
T = 81 C = 66 N = color I = 11;
T = 82 C = 66 N = color I = 11;
T = 79 C = 67 N = color I = 11;
T = 80 C = 67 N = color I = 11;
T = 81 C = 67 N = color I = 11;
T = 82 C = 67 N = color I = 11;
T = 79 C = 68 N = color I = 11;
T = 80 C = 68 N = color I = 11;
T = 81 C = 68 N = color I = 11;
T = 82 C = 68 N = color I = 11;
T = 79 C = 69 N = color I = 11;
T = 80 C = 69 N = color I = 11;
T = 81 C = 69 N = color I = 11;
T = 82 C = 69 N = color I = 11;
T = 79 C = 70 N = color I = 11;
T = 80 C = 70 N = color I = 11;
T = 81 C = 70 N = color I = 11;
T = 82 C = 70 N = color I = 11;
T = 79 C = 71 N = color I = 11;
T = 80 C = 71 N = color I = 11;
T = 81 C = 71 N = color I = 11;
T = 82 C = 71 N = color I = 11;
T = 79 C = 72 N = color I = 11;
T = 80 C = 72 N = color I = 11;
T = 81 C = 72 N = color I = 11;
T = 82 C = 72 N = color I = 11;
T = 79 C = 73 N = color I = 11;
T = 80 C = 73 N = color I = 11;
T = 81 C = 73 N = color I = 11;
T = 82 C = 73 N = color I = 11;

```
```

SU T = 79 C = 74 N = color I = 11;
SU T = 80 C = 74 N = color I = 11;
SU T = 81 C = 74 N = color I = 11;
SU T = 82 C = 74 N = color I = 11;
SU T = 79 C = 75 N = color I = 11;
SU T = 80 C = 75 N = color I = 11;
SU T = 81 C = 75 N = color I = 11;
T = 82 C = 75 N = color I = 11;
T = 79 C = 76 N = color I = 11;
T = 80 C = 76 N = color I = 11;
T = 81 C = 76 N = color I = 11;
T = 82 C = 76 N = color I = 11;
T = 79 C = 77 N = color I = 11;
T = 80 C = 77 N = color I = 11;
T = 81 C = 77 N = color I = 11;
T = 82 C = 77 N = color I = 11;
T = 79 C = 78 N = color I = 11;
T = 80 C = 78 N = color I = 11;
T = 81 C = 78 N = color I = 11;
T = 82 C = 78 N = color I = 11;
T = 79 C = 79 N = color I = 11;
T = 80 C = 79 N = color I = 11;
T = 81 C = 79 N = color I = 11;
T = 82 C = 79 N = color I = 11;
T = 79 C = 80 N = color I = 11;
T = 80 C = 80 N = color I = 11;
T = 81 C = 80 N = color I = 11;
T = 82 C = 80 N = color I = 11;
T = 79 C = 81 N = color I = 11;
T = 80 C = 81 N = color I = 11;
T = 81 C = 81 N = color I = 11;
T = 82 C = 81 N = color I = 11;
T = 79 C = 82 N = color I = 11;
T = 80 C = 82 N = color I = 11;
T = 81 C = 82 N = color I = 11;
T = 82 C = 82 N = color I = 11;
T = 79 C = 83 N = color I = 11;
T = 80 C = 83 N = color I = 11;
T = 81 C = 83 N = color I = 11;
T = 82 C = 83 N = color I = 11;
T = 79 C = 84 N = color I = 11;
T = 80 C = 84 N = color I = 11;
T = 81 C = 84 N = color I = 11;
T = 82 C = 84 N = color I = 11;
T = 79 C = 85 N = color I = 11;
T = 80 C = 85 N = color I = 11;
T = 81 C = 85 N = color I = 11;
T = 82 C = 85 N = color I = 11;

```
```

SU T = 79 C = 86 N = color I = 11;
SU T = 80 C = 86 N = color I = 11;
SU T = 81 C = 86 N = color I = 11;
SU T = 82 C = 86 N = color I = 11;
SU T = 79 C = 87 N = color I = 11;
SU T = 80 C = 87 N = color I = 11;
SU T = 81 C = 87 N = color I = 11;
T = 82 C = 87 N = color I = 11;
T = 79 C = 88 N = color I = 11;
T = 80 C = 88 N = color I = 11;
T = 81 C = 88 N = color I = 11;
T = 82 C = 88 N = color I = 11;
T = 79 C = 89 N = color I = 11;
T = 80 C = 89 N = color I = 11;
T = 81 C = 89 N = color I = 11;
T = 82 C = 89 N = color I = 11;
T = 79 C = 90 N = color I = 11;
T = 80 C = 90 N = color I = 11;
T = 81 C = 90 N = color I = 11;
T = 82 C = 90 N = color I = 11;
T = 79 C = 91 N = color I = 11;
T = 80 C = 91 N = color I = 11;
T = 81 C = 91 N = color I = 11;
T = 82 C = 91 N = color I = 11;
T = 79 C = 92 N = color I = 11;
T = 80 C = 92 N = color I = 11;
T = 81 C = 92 N = color I = 11;
T = 82 C = 92 N = color I = 11;
T = 79 C = 93 N = color I = 11;
T = 80 C = 93 N = color I = 11;
T = 81 C = 93 N = color I = 11;
T = 82 C = 93 N = color I = 11;
T = 79 C = 94 N = color I = 11;
T = 80 C = 94 N = color I = 11;
T = 81 C = 94 N = color I = 11;
T = 82 C = 94 N = color I = 11;
T = 79 C = 95 N = color I = 11;
T = 80 C = 95 N = color I = 11;
T = 81 C = 95 N = color I = 11;
T = 82 C = 95 N = color I = 11;
T = 79 C = 96 N = color I = 11;
T = 80 C = 96 N = color I = 11;
T = 81 C = 96 N = color I = 11;
T = 82 C = 96 N = color I = 11;
T = 79 C = 97 N = color I = 11;
T = 80 C = 97 N = color I = 11;
T = 81 C = 97 N = color I = 11;
T = 82 C = 97 N = color I = 11;

```
```

SU T = 79 C = 98 N = color I = 11;
SU T = 80 C = 98 N = color I = 11;
SU T = 81 C = 98 N = color I = 11;
SU T = 82 C = 98 N = color I = 11;
SU T = 79 C = 99 N = color I = 11;
SU T = 80 C = 99 N = color I = 11;
SU T = 81 C = 99 N = color I = 11;
T = 82 C = 99 N = color I = 11;
T = 79 C = 100 N = color I = 11;
T = 80 C = 100 N = color I = 11;
T = 81 C = 100 N = color I = 11;
T = 82 C = 100 N = color I = 11;
T = 79 C = 101 N = color I = 11;
T = 80 C = 101 N = color I = 11;
T = 81 C = 101 N = color I = 11;
T = 82 C = 101 N = color I = 11;
T = 79 C = 102 N = color I = 11;
T = 80 C = 102 N = color I = 11;
T = 81 C = 102 N = color I = 11;
T = 82 C = 102 N = color I = 11;
T = 79 C = 103 N = color I = 11;
T = 80 C = 103 N = color I = 11;
T = 81 C = 103 N = color I = 11;
T = 82 C = 103 N = color I = 11;
T = 79 C = 104 N = color I = 11;
T = 80 C = 104 N = color I = 11;
T = 81 C = 104 N = color I = 11;
T = 82 C = 104 N = color I = 11;
T = 79 C = 105 N = color I = 11;
T = 80 C = 105 N = color I = 11;
T = 81 C = 105 N = color I = 11;
T = 82 C = 105 N = color I = 11;
T = 79 C = 106 N = color I = 11;
T = 80 C = 106 N = color I = 11;
T = 81 C = 106 N = color I = 11;
T = 82 C = 106 N = color I = 11;
T = 79 C = 107 N = color I = 11;
T = 80 C = 107 N = color I = 11;
T = 81 C = 107 N = color I = 11;
T = 82 C = 107 N = color I = 11;
T = 79 C = 108 N = color I = 11;
T = 80 C = 108 N = color I = 11;
T = 81 C = 108 N = color I = 11;
T = 82 C = 108 N = color I = 11;
T = 79 C = 109 N = color I = 11;
T = 80 C = 109 N = color I = 11;
T = 81 C = 109 N = color I = 11;
T = 82 C = 109 N = color I = 11;

```
```

SU T = 79 C = 110 N = color I = 11;
SU T = 80 C = 110 N = color I = 11;
SU T = 81 C = 110 N = color I = 11;
SU T = 82 C = 110 N = color I = 11;
SU T = 79 C = 111 N = color I = 11;
SU T = 80 C = 111 N = color I = 11;
SU T = 81 C = 111 N = color I = 11;
SU T = 82 C = 111 N = color I = 11;
SU T = 84 C = 111 N = color I = 11;
SU T = 79 C = 112 N = color I = 11;
SU T = 80 C = 112 N = color I = 11;
SU T = 81 C = 112 N = color I = 11;
SU T = 82 C = 112 N = color I = 11;
SU T = 84 C = 112 N = color I = 11;
SU T = 79 C = 113 N = color I = 11;
SU T = 80 C = 113 N = color I = 11;
SU T = 81 C = 113 N = color I = 11;
SU T = 82 C = 113 N = color I = 11;
SU T = 84 C = 113 N = color I = 11;
SU T = 79 C = 114 N = color I = 11;
SU T = 80 C = 114 N = color I = 11;
SU T = 81 C = 114 N = color I = 11;
SU T = 82 C = 114 N = color I = 11;
SU T = 84 C = 114 N = color I = 11;
SU T = 79 C = 115 N = color I = 11;
SU T = 80 C = 115 N = color I = 11;
SU T = 81 C = 115 N = color I = 11;
SU T = 82 C = 115 N = color I = 11;
SU T = 84 C = 115 N = color I = 11;
SU T = 79 C = 116 N = color I = 11;
SU T = 80 C = 116 N = color I = 11;
SU T = 81 C = 116 N = color I = 11;
SU T = 82 C = 116 N = color I = 11;
SU T = 84 C = 116 N = color I = 11;
SU T = 79 C = 117 N = color I = 11;
SU T = 80 C = 117 N = color I = 11;
SU T = 81 C = 117 N = color I = 11;
SU T = 82 C = 117 N = color I = 11;
SU T = 84 C = 117 N = color I = 11;
SU T = 79 C = 118 N = color I = 11;
SU T = 80 C = 118 N = color I = 11;
SU T = 81 C = 118 N = color I = 11;
SU T = 82 C = 118 N = color I = 11;
SU T = 84 C = 118 N = color I = 11;
SU T = 79 C = 119 N = color I = 11;
SU T = 80 C = 119 N = color I = 11;
SU T = 81 C = 119 N = color I = 11;
SU T = 82 C = 119 N = color I = 11;
SU T = 84 C = 119 N = color I = 11;

```
```

SU T = 79 C = 120 N = color I = 11;
SU T = 80 C = 120 N = color I = 11;
SU T = 81 C = 120 N = color I = 11;
SU T = 82 C = 120 N = color I = 11;
SU T = 84 C = 120 N = color I = 11;
SU T = 79 C = 121 N = color I = 11;
SU T = 80 C = 121 N = color I = 11;
SU T = 81 C = 121 N = color I = 11;
SU T = 82 C = 121 N = color I = 11;
SU T = 84 C = 121 N = color I = 11;
SU T = 79 C = 122 N = color I = 11;
SU T = 80 C = 122 N = color I = 11;
SU T = 81 C = 122 N = color I = 11;
SU T = 82 C = 122 N = color I = 11;
SU T = 84 C = 122 N = color I = 11;
SU T = 79 C = 123 N = color I = 11;
SU T = 80 C = 123 N = color I = 11;
SU T = 81 C = 123 N = color I = 11;
SU T = 82 C = 123 N = color I = 11;
SU T = 84 C = 123 N = color I = 11;
SU T = 79 C = 124 N = color I = 11;
SU T = 80 C = 124 N = color I = 11;
SU T = 81 C = 124 N = color I = 11;
SU T = 82 C = 124 N = color I = 11;
SU T = 84 C = 124 N = color I = 11;
SU T = 79 C = 125 N = color I = 11;
SU T = 80 C = 125 N = color I = 11;
SU T = 81 C = 125 N = color I = 11;
SU T = 82 C = 125 N = color I = 11;
SU T = 84C = 125 N = color I = 11;
SU T = 79 C = 126 N = color I = 11;
SU T = 80 C = 126 N = color I = 11;
SU T = 81 C = 126 N = color I = 11;
SU T = 82 C = 126 N = color I = 11;
SU T = 84 C = 126 N = color I = 11;
SU T = 79 C = 127 N = color I = 11;
SU T = 80 C = 127 N = color I = 11;
SU T = 81 C = 127 N = color I = 11;
SU T = 82 C = 127 N = color I = 11;
SU T = 84C = 127 N = color I = 11;
SU T = 79 C = 128 N = color I = 11;
SU T = 80 C = 128 N = color I = 11;
SU T = 81 C = 128 N = color I = 11;
SU T = 82 C = 128 N = color I = 11;
SU T = 84 C = 128 N = color I = 11;
SU T = 79 C = 129 N = color I = 11;
SU T = 80 C = 129 N = color I = 11;
SU T = 81 C = 129 N = color I = 11;
SU T = 82 C = 129 N = color I = 11;
SU T = 84 C = 129 N = color I = 11;

```
```

SU T = 79 C = 130 N = color I = 11;
SU T = 80 C = 130 N = color I = 11;
SU T = 81 C = 130 N = color I = 11;
SU T = 82 C = 130 N = color I = 11;
SU T = 84 C = 130 N = color I = 11;
SU T = 79 C = 131 N = color I = 11;
SU T = 80 C = 131 N = color I = 11;
SU T = 81 C = 131 N = color I = 11;
SU T = 82 C = 131 N = color I = 11;
SU T = 84 C = 131 N = color I = 11;
SU T = 79 C = 132 N = color I = 11;
SU T = 80 C = 132 N = color I = 11;
SU T = 81 C = 132 N = color I = 11;
SU T = 82 C = 132 N = color I = 11;
SU T = 84 C = 132 N = color I = 11;
SU T = 79 C = 133 N = color I = 11;
SU T = 80 C = 133 N = color I = 11;
SU T = 81 C = 133 N = color I = 11;
SU T = 82 C = 133 N = color I = 11;
SU T = 84 C = 133 N = color I = 11;
SU T = 79 C = 134 N = color I = 11;
SU T = 80 C = 134 N = color I = 11;
SU T = 81 C = 134 N = color I = 11;
SU T = 82 C = 134 N = color I = 11;
SU T = 84 C = 134 N = color I = 11;
SU T = 79 C = 135 N = color I = 11;
SU T = 80 C = 135 N = color I = 11;
SU T = 81 C = 135 N = color I = 11;
SU T = 82 C = 135 N = color I = 11;
SU T = 84 C = 135 N = color I = 11;
SU T = 79 C = 136 N = color I = 11;
SU T = 80 C = 136 N = color I = 11;
SU T = 81 C = 136 N = color I = 11;
SU T = 82 C = 136 N = color I = 11;
SU T = 84 C = 136 N = color I = 11;
SU T = 79 C = 137 N = color I = 11;
SU T = 80 C = 137 N = color I = 11;
SU T = 81 C = 137 N = color I = 11;
SU T = 82 C = 137 N = color I = 11;
SU T = 84C = 137 N = color I = 11;
SU T = 79 C = 138 N = color I = 11;
SU T = 80 C = 138 N = color I = 11;
SU T = 81 C = 138 N = color I = 11;
SU T = 82 C = 138 N = color I = 11;
SU T = 84 C = 138 N = color I = 11;
SU T = 79 C = 139 N = color I = 11;
SU T = 80 C = 139 N = color I = 11;
SU T = 81 C = 139 N = color I = 11;
SU T = 82 C = 139 N = color I = 11;
SU T = 84 C = 139 N = color I = 11;

```
```

SU T = 79 C = 140 N = color I = 11;
SU T = 80 C = 140 N = color I = 11;
SU T = 81 C = 140 N = color I = 11;
SU T = 82 C = 140 N = color I = 11;
SU T = 84 C = 140 N = color I = 11;
SU T = 88 C = 140 N = color I = 1;
T = 79 C = 141 N = color I = 11;
T = 80 C = 141 N = color I = 11;
T = 81 C = 141 N = color I = 11;
T = 82 C = 141 N = color I = 11;
T = 83 C = 141 N = color I = 11;
T = 84 C = 141 N = color I = 11;
T = 87 C = 141 N = color I = 11;
T = 88 C = 141 N = color I = 11;
T = 79 C = 142 N = color I = 11;
T = 80 C = 142 N = color I = 11;
T = 81 C = 142 N = color I = 11;
T = 82 C = 142 N = color I = 11;
T = 83 C = 142 N = color I = 11;
T = 84 C = 142 N = color I = 11;
T = 87 C = 142 N = color I = 11;
T = 88 C = 142 N = color I = 11;
T = 79 C = 143 N = color I = 11;
T = 80 C = 143 N = color I = 11;
T = 81 C = 143 N = color I = 11;
T = 82 C = 143 N = color I = 11;
T = 83 C = 143 N = color I = 11;
T = 84 C = 143 N = color I = 11;
T = 87 C = 143 N = color I = 11;
T = 88 C = 143 N = color I = 11;
T = 79 C = 144 N = color I = 11;
T = 80 C = 144 N = color I = 11;
T = 81 C = 144 N = color I = 11;
T = 82 C = 144 N = color I = 11;
T = 83 C = 144 N = color I = 11;
T = 84 C = 144 N = color I = 11;
T = 87 C = 144 N = color I = 11;
T = 88 C = 144 N = color I = 11;
T = 79 C = 145 N = color I = 11;
T = 80 C = 145 N = color I = 11;
T = 81 C = 145 N = color I = 11;
T = 82 C = 145 N = color I = 11;
T = 83 C = 145 N = color I = 11;
T = 84 C = 145 N = color I = 11;
T = 87 C = 145 N = color I = 11;
T = 88 C = 145 N = color I = 11;
T = 79 C = 146 N = color I = 11;
T = 80 C = 146 N = color I = 11;
T = 81 C = 146 N = color I = 11;
T = 82 C = 146 N = color I = 11;
T = 83 C = 146 N = color I = 11;
T = 84 C = 146 N = color I = 11;
T = 87 C = 146 N = color I = 11;
T = 88 C = 146 N = color I = 11;

```
```

SU T = 79 C = 147 N = color I = 11;
SU T = 80 C = 147 N = color I = 11;
SU T = 81 C = 147 N = color I = 11;
SU T = 82 C = 147 N = color I = 11;
SU T = 83 C = 147 N = color I = 11;
SU T = 84 C = 147 N = color I = 11;
SU T = 87 C = 147 N = color I = 11;
SU T = 88 C = 147 N = color I = 11;
T = 79 C = 148 N = color I = 11;
T = 80 C = 148 N = color I = 11;
T = 81 C = 148 N = color I = 11;
T = 82 C = 148 N = color I = 11;
T = 83 C = 148 N = color I = 11;
T = 84 C = 148 N = color I = 11;
T = 87 C = 148 N = color I = 11;
T = 88 C = 148 N = color I = 11;
T = 79 C = 149 N = color I = 11;
T = 80 C = 149 N = color I = 11;
T = 81 C = 149 N = color I = 11;
T = 82 C = 149 N = color I = 11;
T = 83 C = 149 N = color I = 11;
T = 84 C = 149 N = color I = 11;
T = 87 C = 149 N = color I = 11;
T = 88 C = 149 N = color I = 11;
T = 79 C = 150 N = color I = 11;
T = 80 C = 150 N = color I = 11;
T = 81 C = 150 N = color I = 11;
T = 82 C = 150 N = color I = 11;
T = 83 C = 150 N = color I = 11;
T = 84 C = 150 N = color I = 11;
T = 87 C = 150 N = color I = 11;
T = 88 C = 150 N = color I = 11;
T = 79 C = 151 N = color I = 11;
T = 80 C = 151 N = color I = 11;
T = 81 C = 151 N = color I = 11;
T = 82 C = 151 N = color I = 11;
T = 83 C = 151 N = color I = 11;
T = 84 C = 151 N = color I = 11;
T = 87 C = 151 N = color I = 11;
T = 88 C = 151 N = color I = 11;
T = 79 C = 152 N = color I = 11;
T = 80 C = 152 N = color I = 11;
T = 81 C = 152 N = color I = 11;
T = 82 C = 152 N = color I = 11;
T = 83 C = 152 N = color I = 11;
T = 84 C = 152 N = color I = 11;
T = 87 C = 152 N = color I = 11;
T = 88 C = 152 N = color I = 11;
T = 79 C = 153 N = color I = 11;
T = 80 C = 153 N = color I = 11;
T = 81 C = 153 N = color I = 11;
T = 82 C = 153 N = color I = 11;
T = 83 C = 153 N = color I = 11;

```
```

SU T = 84 C = 153 N = color I = 11;
SU T = 87 C = 153 N = color I = 11;
SU T = 88 C = 153 N = color I = 11;
T = 79 C = 154 N = color I = 11;
T = 80 C = 154 N = color I = 11;
T = 81 C = 154 N = color I = 11;
T = 82 C = 154 N = color I = 11;
T = 83 C = 154 N = color I = 11;
T = 84 C = 154 N = color I = 11;
T = 87 C = 154 N = color I = 11;
T = 88 C = 154 N = color I = 11;
T = 79 C = 155 N = color I = 11;
T = 80 C = 155 N = color I = 11;
T = 81 C = 155 N = color I = 11;
T = 82 C = 155 N = color I = 11;
T = 83 C = 155 N = color I = 11;
T = 84 C = 155 N = color I = 11;
T = 87 C = 155 N = color I = 11;
T = 88 C = 155 N = color I = 11;
T = 79 C = 156 N = color I = 11;
T = 80 C = 156 N = color I = 11;
T = 81 C = 156 N = color I = 11;
T = 82 C = 156 N = color I = 11;
T = 83 C = 156 N = color I = 11;
T = 84 C = 156 N = color I = 11;
T = 87 C = 156 N = color I = 11;
T = 88 C = 156 N = color I = 11;
T = 79 C = 157 N = color I = 11;
T = 80 C = 157 N = color I = 11;
T = 81 C = 157 N = color I = 11;
T = 82 C = 157 N = color I = 11;
T = 83 C = 157 N = color I = 11;
T = 84 C = 157 N = color I = 11;
T = 87 C = 157 N = color I = 11;
T = 88 C = 157 N = color I = 11;
T = 79 C = 158 N = color I = 11;
T = 80 C = 158 N = color I = 11;
T = 81 C = 158 N = color I = 11;
T = 82 C = 158 N = color I = 11;
T = 83 C = 158 N = color I = 11;
T = 84 C = 158 N = color I = 11;
T = 87 C = 158 N = color I = 11;
T = 88 C = 158 N = color I = 11;
T = 79 C = 159 N = color I = 11;
T = 80 C = 159 N = color I = 11;
T = 81 C = 159 N = color I = 11;
T = 82 C = 159 N = color I = 11;
T = 83 C = 159 N = color I = 11;
T = 84 C = 159 N = color I = 11;
T = 87 C = 159 N = color I = 11;
T = 88 C = 159 N = color I = 11;
SU T = 79 C = 160 N = color I = 11;
SU T = 80 C = 160 N = color I = 11;

```
```

SU T = 81 C = 160 N = color I = 11;
SU T = 82 C = 160 N = color I = 11;
SU T = 83 C = 160 N = color I = 11;
SU T = 84 C = 160 N = color I = 11;
SU T = 86 C = 160 N = color I = 11;
SU T = 87 C = 160 N = color I = 11;
SU T = 88 C = 160 N = color I = 11;
T = 79 C = 161 N = color I = 11;
T = 80 C = 161 N = color I = 11;
T = 81 C = 161 N = color I = 11;
T = 82 C = 161 N = color I = 11;
T = 83 C = 161 N = color I = 11;
T = 84 C = 161 N = color I = 11;
T = 86 C = 161 N = color I = 11;
T = 87 C = 161 N = color I = 11;
T = 88 C = 161 N = color I = 11;
T = 79 C = 162 N = color I = 11;
T = 80 C = 162 N = color I = 11;
T = 81 C = 162 N = color I = 11;
T = 82 C = 162 N = color I = 11;
T = 83 C = 162 N = color I = 11;
T = 84 C = 162 N = color I = 11;
T = 86 C = 162 N = color I = 11;
T = 87 C = 162 N = color I = 11;
T = 88 C = 162 N = color I = 11;
T = 79 C = 163 N = color I = 11;
T = 80 C = 163 N = color I = 11;
T = 81 C = 163 N = color I = 11;
T = 82 C = 163 N = color I = 11;
T = 83 C = 163 N = color I = 11;
T = 84 C = 163 N = color I = 11;
T = 86 C = 163 N = color I = 11;
T = 87 C = 163 N = color I = 11;
T = 88 C = 163 N = color I = 11;
T = 79 C = 164 N = color I = 11;
T = 80 C = 164 N = color I = 11;
T = 81 C = 164 N = color I = 11;
T = 82 C = 164 N = color I = 11;
T = 83 C = 164 N = color I = 11;
T = 84 C = 164 N = color I = 11;
T = 86 C = 164 N = color I = 11;
T = 87 C = 164 N = color I = 11;
T = 88 C = 164 N = color I = 11;
T = 79 C = 165 N = color I = 11;
T = 80 C = 165 N = color I = 11;
T = 81 C = 165 N = color I = 11;
T = 82 C = 165 N = color I = 11;
T = 83 C = 165 N = color I = 11;
T = 84 C = 165 N = color I = 11;
T = 86 C = 165 N = color I = 11;
T = 87 C = 165 N = color I = 11;
T = 88 C = 165 N = color I = 11;
SU T = 79 C = 166 N = color I = 11;
SU T = 80 C = 166 N = color I = 11;

```
```

SU T = 81 C = 166 N = color I = 11;
SU T = 82 C = 166 N = color I = 11;
SU T = 83 C = 166 N = color I = 11;
SU T = 84 C = 166 N = color I = 11;
SU T = 86 C = 166 N = color I = 11;
SU T = 87 C = 166 N = color I = 11;
SU T = 88 C = 166 N = color I = 11;
T = 79 C = 167 N = color I = 11;
T = 80 C = 167 N = color I = 11;
T = 81 C = 167 N = color I = 11;
T = 82 C = 167 N = color I = 11;
T = 83 C = 167 N = color I = 11;
T = 84 C = 167 N = color I = 11;
T = 86 C = 167 N = color I = 11;
T = 87 C = 167 N = color I = 11;
T = 88 C = 167 N = color I = 11;
T = 79 C = 168 N = color I = 11;
T = 80 C = 168 N = color I = 11;
T = 81 C = 168 N = color I = 11;
T = 82 C = 168 N = color I = 11;
T = 83 C = 168 N = color I = 11;
T = 84 C = 168 N = color I = 11;
T = 86 C = 168 N = color I = 11;
T = 87 C = 168 N = color I = 11;
T = 88 C = 168 N = color I = 11;
T = 79 C = 169 N = color I = 11;
T = 80 C = 169 N = color I = 11;
T = 81 C = 169 N = color I = 11;
T = 82 C = 169 N = color I = 11;
T = 83 C = 169 N = color I = 11;
T = 84 C = 169 N = color I = 11;
T = 86 C = 169 N = color I = 11;
T = 87 C = 169 N = color I = 11;
T = 88 C = 169 N = color I = 11;
T = 79 C = 170 N = color I = 11;
T = 80 C = 170 N = color I = 11;
T = 81 C = 170 N = color I = 11;
T = 82 C = 170 N = color I = 11;
T = 83 C = 170 N = color I = 11;
T = 84 C = 170 N = color I = 11;
T = 86 C = 170 N = color I = 11;
T = 87 C = 170 N = color I = 11;
T = 88 C = 170 N = color I = 11;
T = 79 C = 171 N = color I = 11;
T = 80 C = 171 N = color I = 11;
T = 81 C = 171 N = color I = 11;
T = 82 C = 171 N = color I = 11;
T = 83 C = 171 N = color I = 11;
T = 84 C = 171 N = color I = 11;
T = 86 C = 171 N = color I = 11;
T = 87 C = 171 N = color I = 11;
T = 88 C = 171 N = color I = 11;
SU T = 79 C = 172 N = color I = 11;
SU T = 80 C = 172 N = color I = 11;

```
```

SU T = 81 C = 172 N = color I = 11;
SU T = 82 C = 172 N = color I = 11;
SU T = 83 C = 172 N = color I = 11;
SU T = 84 C = 172 N = color I = 11;
SU T = 86 C = 172 N = color I = 11;
SU T = 87 C = 172 N = color I = 11;
SU T = 88 C = 172 N = color I = 11;
T = 79 C = 173 N = color I = 11;
T = 80 C = 173 N = color I = 11;
T = 81 C = 173 N = color I = 11;
T = 82 C = 173 N = color I = 11;
T = 83 C = 173 N = color I = 11;
T = 84 C = 173 N = color I = 11;
T = 86 C = 173 N = color I = 11;
T = 87 C = 173 N = color I = 11;
T = 88 C = 173 N = color I = 11;
T = 79 C = 174 N = color I = 11;
T = 80 C = 174 N = color I = 11;
T = 81 C = 174 N = color I = 11;
T = 82 C = 174 N = color I = 11;
T = 83 C = 174 N = color I = 11;
T = 84 C = 174 N = color I = 11;
T = 86 C = 174 N = color I = 11;
T = 87 C = 174 N = color I = 11;
T = 88 C = 174 N = color I = 11;
T = 79 C = 175 N = color I = 11;
T = 80 C = 175 N = color I = 11;
T = 81 C = 175 N = color I = 11;
T = 82 C = 175 N = color I = 11;
T = 83 C = 175 N = color I = 11;
T = 84 C = 175 N = color I = 11;
T = 86 C = 175 N = color I = 11;
T = 87 C = 175 N = color I = 11;
T = 88 C = 175 N = color I = 11;
T = 79 C = 176 N = color I = 11;
T = 80 C = 176 N = color I = 11;
T = 81 C = 176 N = color I = 11;
T = 82 C = 176 N = color I = 11;
T = 83 C = 176 N = color I = 11;
T = 84 C = 176 N = color I = 11;
T = 86 C = 176 N = color I = 11;
T = 87 C = 176 N = color I = 11;
T = 88 C = 176 N = color I = 11;
T = 79 C = 177 N = color I = 11;
T = 80 C = 177 N = color I = 11;
T = 81 C = 177 N = color I = 11;
T = 82 C = 177 N = color I = 11;
T = 83 C = 177 N = color I = 11;
T = 84 C = 177 N = color I = 11;
T = 86 C = 177 N = color I = 11;
T = 87 C = 177 N = color I = 11;
T = 88 C = 177 N = color I = 11;
SU T = 79 C = 178 N = color I = 11;
SU T = 80 C = 178 N = color I = 11;

```
```

SU T = 81 C = 178 N = color I = 11;
SU T = 82 C = 178 N = color I = 11;
SU T = 83 C = 178 N = color I = 11;
SU T = 84 C = 178 N = color I = 11;
SU T = 86 C = 178 N = color I = 11;
SU T = 87 C = 178 N = color I = 11;
SU T = 88 C = 178 N = color I = 11;
T = 79 C = 179 N = color I = 11;
T = 80 C = 179 N = color I = 11;
T = 81 C = 179 N = color I = 11;
T = 82 C = 179 N = color I = 11;
T = 83 C = 179 N = color I = 11;
T = 84 C = 179 N = color I = 11;
T = 86 C = 179 N = color I = 11;
T = 87 C = 179 N = color I = 11;
T = 88 C = 179 N = color I = 11;
T = 79 C = 180 N = color I = 11;
T = 80 C = 180 N = color I = 11;
T = 81 C = 180 N = color I = 11;
T = 82 C = 180 N = color I = 11;
T = 83 C = 180 N = color I = 11;
T = 84 C = 180 N = color I = 11;
T = 86 C = 180 N = color I = 11;
T = 87 C = 180 N = color I = 11;
T = 88 C = 180 N = color I = 11;
T = 79 C = 181 N = color I = 11;
T = 80 C = 181 N = color I = 11;
T = 81 C = 181 N = color I = 11;
T = 82 C = 181 N = color I = 11;
T = 83 C = 181 N = color I = 11;
T = 84 C = 181 N = color I = 11;
T = 86 C = 181 N = color I = 11;
T = 87 C = 181 N = color I = 11;
T = 88 C = 181 N = color I = 11;
T = 79 C = 182 N = color I = 11;
T = 80 C = 182 N = color I = 11;
T = 81 C = 182 N = color I = 11;
T = 82 C = 182 N = color I = 11;
T = 83 C = 182 N = color I = 11;
T = 84 C = 182 N = color I = 11;
T = 86 C = 182 N = color I = 11;
T = 87 C = 182 N = color I = 11;
T = 88 C = 182 N = color I = 11;
T = 79 C = 183 N = color I = 11;
T = 80 C = 183 N = color I = 11;
T = 81 C = 183 N = color I = 11;
T = 82 C = 183 N = color I = 11;
T = 83 C = 183 N = color I = 11;
T = 84 C = 183 N = color I = 11;
T = 86 C = 183 N = color I = 11;
T = 87 C = 183 N = color I = 11;
T = 88 C = 183 N = color I = 11;
SU T = 79 C = 184 N = color I = 11;
SU T = 80 C = 184 N = color I = 11;

```
```

SU T = 81 C = 184 N = color I = 11;
SU T = 82 C = 184 N = color I = 11;
SU T = 83 C = 184 N = color I = 11;
SU T = 84 C = 184 N = color I = 11;
SU T = 86 C = 184 N = color I = 11;
SU T = 87 C = 184 N = color I = 11;
SU T = 88 C = 184 N = color I = 11;
T = 79 C = 185 N = color I = 11;
T = 80 C = 185 N = color I = 11;
T = 81 C = 185 N = color I = 11;
T = 82 C = 185 N = color I = 11;
T = 83 C = 185 N = color I = 11;
T = 84 C = 185 N = color I = 11;
T = 86 C = 185 N = color I = 11;
T = 87 C = 185 N = color I = 11;
T = 88 C = 185 N = color I = 11;
T = 79 C = 186 N = color I = 11;
T = 80 C = 186 N = color I = 11;
T = 81 C = 186 N = color I = 11;
T = 82 C = 186 N = color I = 11;
T = 83 C = 186 N = color I = 11;
T = 84 C = 186 N = color I = 11;
T = 86 C = 186 N = color I = 11;
T = 87 C = 186 N = color I = 11;
T = 88 C = 186 N = color I = 11;
T = 79 C = 187 N = color I = 11;
T = 80 C = 187 N = color I = 11;
T = 81 C = 187 N = color I = 11;
T = 82 C = 187 N = color I = 11;
T = 83 C = 187 N = color I = 11;
T = 84 C = 187 N = color I = 11;
T = 86 C = 187 N = color I = 11;
T = 87 C = 187 N = color I = 11;
T = 88 C = 187 N = color I = 11;
T = 79 C = 188 N = color I = 11;
T = 80 C = 188 N = color I = 11;
T = 81 C = 188 N = color I = 11;
T = 82 C = 188 N = color I = 11;
T = 83 C = 188 N = color I = 11;
T = 84 C = 188 N = color I = 11;
T = 86 C = 188 N = color I = 11;
T = 87 C = 188 N = color I = 11;
T = 88 C = 188 N = color I = 11;
T = 79 C = 189 N = color I = 11;
T = 80 C = 189 N = color I = 11;
T = 81 C = 189 N = color I = 11;
T = 82 C = 189 N = color I = 11;
T = 83 C = 189 N = color I = 11;
T = 84 C = 189 N = color I = 11;
T = 86 C = 189 N = color I = 11;
T = 87 C = 189 N = color I = 11;
T = 88 C = 189 N = color I = 11;
SU T = 79 C = 190 N = color I = 11;
SU T = 80 C = 190 N = color I = 11;

```
```

SU T = 81 C = 190 N = color I = 11;
SU T = 82 C = 190 N = color I = 11;
SU T = 83 C = 190 N = color I = 11;
SU T = 84 C = 190 N = color I = 11;
SU T = 86 C = 190 N = color I = 11;
SU T = 87 C = 190 N = color I = 11;
SU T = 88 C = 190 N = color I = 11;
T = 79 C = 191 N = color I = 11;
T = 80 C = 191 N = color I = 11;
T = 81 C = 191 N = color I = 11;
T = 82 C = 191 N = color I = 11;
T = 83 C = 191 N = color I = 11;
T = 84 C = 191 N = color I = 11;
T = 86 C = 191 N = color I = 11;
T = 87 C = 191 N = color I = 11;
T = 88 C = 191 N = color I = 11;
T = 79 C = 192 N = color I = 11;
T = 80 C = 192 N = color I = 11;
T = 81 C = 192 N = color I = 11;
T = 82 C = 192 N = color I = 11;
T = 83 C = 192 N = color I = 11;
T = 84 C = 192 N = color I = 11;
T = 86 C = 192 N = color I = 11;
T = 87 C = 192 N = color I = 11;
T = 88 C = 192 N = color I = 11;
T = 79 C = 193 N = color I = 11;
T = 80 C = 193 N = color I = 11;
T = 81 C = 193 N = color I = 11;
T = 82 C = 193 N = color I = 11;
T = 83 C = 193 N = color I = 11;
T = 84 C = 193 N = color I = 11;
T = 86 C = 193 N = color I = 11;
T = 87 C = 193 N = color I = 11;
T = 88 C = 193 N = color I = 11;
T = 79 C = 194 N = color I = 11;
T = 80 C = 194 N = color I = 11;
T = 81 C = 194 N = color I = 11;
T = 82 C = 194 N = color I = 11;
T = 83 C = 194 N = color I = 11;
T = 84 C = 194 N = color I = 11;
T = 86 C = 194 N = color I = 11;
T = 87 C = 194 N = color I = 11;
T = 88 C = 194 N = color I = 11;
T = 79 C = 195 N = color I = 11;
T = 80 C = 195 N = color I = 11;
T = 81 C = 195 N = color I = 11;
T = 82 C = 195 N = color I = 11;
T = 83 C = 195 N = color I = 11;
T = 85 C = 195 N = color I = 11;
T = 86 C = 195 N = color I = 11;
T = 87 C = 195 N = color I = 11;
T = 88 C = 195 N = color I = 11;
SU T = 79 C = 196 N = color I = 11;
SU T = 80 C = 196 N = color I = 11;

```
```

SU T = 81 C = 196 N = color I = 11;
SU T = 82 C = 196 N = color I = 11;
SU T = 83 C = 196 N = color I = 11;
SU T = 86 C = 196 N = color I = 11;
SU T = 87 C = 196 N = color I = 11;
SU T = 88 C = 196 N = color I = 11;
T = 79 C = 197 N = color I = 11;
T = 80 C = 197 N = color I = 11;
T = 81 C = 197 N = color I = 11;
T = 82 C = 197 N = color I = 11;
T = 83 C = 197 N = color I = 11;
T = 86 C = 197 N = color I = 11;
T = 87 C = 197 N = color I = 11;
T = 88 C = 197 N = color I = 11;
T = 79 C = 198 N = color I = 11;
T = 80 C = 198 N = color I = 11;
T = 81 C = 198 N = color I = 11;
T = 82 C = 198 N = color I = 11;
T = 83 C = 198 N = color I = 11;
T = 86 C = 198 N = color I = 11;
T = 87 C = 198 N = color I = 11;
T = 88 C = 198 N = color I = 11;
T = 79 C = 199 N = color I = 11;
T = 80 C = 199 N = color I = 11;
T = 81 C = 199 N = color I = 11;
T = 82 C = 199 N = color I = 11;
T = 83 C = 199 N = color I = 11;
T = 86 C = 199 N = color I = 11;
T = 87 C = 199 N = color I = 11;
T = 88 C = 199 N = color I = 11;
T = 79 C = 200 N = color I = 11;
T = 80 C = 200 N = color I = 11;
T = 81 C = 200 N = color I = 11;
T = 82 C = 200 N = color I = 11;
T = 83 C = 200 N = color I = 11;
T = 86 C = 200 N = color I = 11;
T = 87 C = 200 N = color I = 11;
T = 88 C = 200 N = color I = 11;
T = 79 C = 201 N = color I = 11;
T = 80 C = 201 N = color I = 11;
T = 81 C = 201 N = color I = 11;
T = 82 C = 201 N = color I = 11;
T = 83 C = 201 N = color I = 11;
T = 86 C = 201 N = color I = 11;
T = 87 C = 201 N = color I = 11;
T = 88 C = 201 N = color I = 11;
T = 79 C = 202 N = color I = 11;
T = 80 C = 202 N = color I = 11;
T = 81 C = 202 N = color I = 11;
T = 82 C = 202 N = color I = 11;
T = 83 C = 202 N = color I = 11;
T = 86 C = 202 N = color I = 11;
T = 87 C = 202 N = color I = 11;
T = 88 C = 202 N = color I = 11;

```
```

SU T = 79 C = 203 N = color I = 11;
SU T = 80 C = 203 N = color I = 11;
SU T = 81 C = 203 N = color I = 11;
SU T = 82 C = 203 N = color I = 11;
SU T = 83 C = 203 N = color I = 11;
SU T = 86 C = 203 N = color I = 11;
SU T = 87 C = 203 N = color I = 11;
SU T = 88 C = 203 N = color I = 11;
T = 79 C = 204 N = color I = 11;
T = 80 C = 204 N = color I = 11;
T = 81 C = 204 N = color I = 11;
T = 82 C = 204 N = color I = 11;
T = 83 C = 204 N = color I = 11;
T = 86 C = 204 N = color I = 11;
T = 87 C = 204 N = color I = 11;
T = 88 C = 204 N = color I = 11;
T = 79 C = 205 N = color I = 11;
T = 80 C = 205 N = color I = 11;
T = 81 C = 205 N = color I = 11;
T = 82 C = 205 N = color I = 11;
T = 83 C = 205 N = color I = 11;
T = 86 C = 205 N = color I = 11;
T = 87 C = 205 N = color I = 11;
T = 88 C = 205 N = color I = 11;
T = 79 C = 206 N = color I = 11;
T = 80 C = 206 N = color I = 11;
T = 81 C = 206 N = color I = 11;
T = 82 C = 206 N = color I = 11;
T = 83 C = 206 N = color I = 11;
T = 86 C = 206 N = color I = 11;
T = 87 C = 206 N = color I = 11;
T = 88 C = 206 N = color I = 11;
T = 79 C = 207 N = color I = 11;
T = 80 C = 207 N = color I = 11;
T = 81 C = 207 N = color I = 11;
T = 82 C = 207 N = color I = 11;
T = 83 C = 207 N = color I = 11;
T = 86 C = 207 N = color I = 11;
T = 87 C = 207 N = color I = 11;
T = 88 C = 207 N = color I = 11;
T = 79 C = 208 N = color I = 11;
T = 80 C = 208 N = color I = 11;
T = 81 C = 208 N = color I = 11;
T = 82 C = 208 N = color I = 11;
T = 83 C = 208 N = color I = 11;
T = 86 C = 208 N = color I = 11;
T = 87 C = 208 N = color I = 11;
T = 88 C = 208 N = color I = 11;
T = 79 C = 209 N = color I = 11;
T = 80 C = 209 N = color I = 11;
T = 81 C = 209 N = color I = 11;
T = 82 C = 209 N = color I = 11;
T = 83 C = 209 N = color I = 11;

```
```

SU T = 86 C = 209 N = color I = 11;
SU T = 87 C = 209 N = color I = 11;
SU T = 88 C = 209 N = color I = 11;
T = 79 C = 210 N = color I = 11;
T = 80 C = 210 N = color I = 11;
T = 81 C = 210 N = color I = 11;
T = 82 C = 210 N = color I = 11;
T = 83 C = 210 N = color I = 11;
T = 86 C = 210 N = color I = 11;
T = 87 C = 210 N = color I = 11;
T = 88 C = 210 N = color I = 11;
T = 79 C = 211 N = color I = 11;
T = 80 C = 211 N = color I = 11;
T = 81 C = 211 N = color I = 11;
T = 82 C = 211 N = color I = 11;
T = 83 C = 211 N = color I = 11;
T = 86 C = 211 N = color I = 11;
T = 87 C = 211 N = color I = 11;
T = 88 C = 211 N = color I = 11;
T = 79 C = 212 N = color I = 11;
T = 80 C = 212 N = color I = 11;
T = 81 C = 212 N = color I = 11;
T = 82 C = 212 N = color I = 11;
T = 83 C = 212 N = color I = 11;
T = 86 C = 212 N = color I = 11;
T = 87 C = 212 N = color I = 11;
T = 88 C = 212 N = color I = 11;
T = 79 C = 213 N = color I = 11;
T = 80 C = 213 N = color I = 11;
T = 81 C = 213 N = color I = 11;
T = 82 C = 213 N = color I = 11;
T = 83 C = 213 N = color I = 11;
T = 86 C = 213 N = color I = 11;
T = 87 C = 213 N = color I = 11;
T = 88 C = 213 N = color I = 11;
T = 79 C = 214 N = color I = 11;
T = 80 C = 214 N = color I = 11;
T = 81 C = 214 N = color I = 11;
T = 82 C = 214 N = color I = 11;
T = 83 C = 214 N = color I = 11;
T = 86 C = 214 N = color I = 11;
T = 87 C = 214 N = color I = 11;
T = 88 C = 214 N = color I = 11;
T = 79 C = 215 N = color I = 11;
T = 80 C = 215 N = color I = 11;
T = 81 C = 215 N = color I = 11;
T = 82 C = 215 N = color I = 11;
T = 83 C = 215 N = color I = 11;
T = 86 C = 215 N = color I = 11;
T = 87 C = 215 N = color I = 11;
T = 88 C = 215 N = color I = 11;
SU T = 79 C = 216 N = color I = 11;
SU T = 80 C = 216 N = color I = 11;

```
```

SU T = 81 C = 216 N = color I = 11;
SU T = 82 C = 216 N = color I = 11;
SU T = 83 C = 216 N = color I = 11;
SU T = 86 C = 216 N = color I = 11;
SU T = 87 C = 216 N = color I = 11;
SU T = 88 C = 216 N = color I = 11;
T = 79 C = 217 N = color I = 11;
T = 80 C = 217 N = color I = 11;
T = 81 C = 217 N = color I = 11;
T = 82 C = 217 N = color I = 11;
T = 83 C = 217 N = color I = 11;
T = 86 C = 217 N = color I = 11;
T = 87 C = 217 N = color I = 11;
T = 88 C = 217 N = color I = 11;
T = 79 C = 218 N = color I = 11;
T = 80 C = 218 N = color I = 11;
T = 81 C = 218 N = color I = 11;
T = 82 C = 218 N = color I = 11;
T = 83 C = 218 N = color I = 11;
T = 86 C = 218 N = color I = 11;
T = 87 C = 218 N = color I = 11;
T = 88 C = 218 N = color I = 11;
T = 79 C = 219 N = color I = 11;
T = 80 C = 219 N = color I = 11;
T = 81 C = 219 N = color I = 11;
T = 82 C = 219 N = color I = 11;
T = 83 C = 219 N = color I = 11;
T = 86 C = 219 N = color I = 11;
T = 87 C = 219 N = color I = 11;
T = 88 C = 219 N = color I = 11;
T = 79 C = 220 N = color I = 11;
T = 80 C = 220 N = color I = 11;
T = 81 C = 220 N = color I = 11;
T = 82 C = 220 N = color I = 11;
T = 83 C = 220 N = color I = 11;
T = 86 C = 220 N = color I = 11;
T = 87 C = 220 N = color I = 11;
T = 88 C = 220 N = color I = 11;
T = 79 C = 221 N = color I = 11;
T = 80 C = 221 N = color I = 11;
T = 81 C = 221 N = color I = 11;
T = 82 C = 221 N = color I = 11;
T = 83 C = 221 N = color I = 11;
T = 86 C = 221 N = color I = 11;
T = 87 C = 221 N = color I = 11;
T = 88 C = 221 N = color I = 11;
T = 79 C = 222 N = color I = 11;
T = 80 C = 222 N = color I = 11;
T = 81 C = 222 N = color I = 11;
T = 82 C = 222 N = color I = 11;
T = 83 C = 222 N = color I = 11;
T = 86 C = 222 N = color I = 11;
T = 87 C = 222 N = color I = 11;
T = 88 C = 222 N = color I = 11;

```
```

SU T = 79 C = 223 N = color I = 11;
SU T = 80 C = 223 N = color I = 11;
SU T = 81 C = 223 N = color I = 11;
SU T = 82 C = 223 N = color I = 11;
SU T = 83 C = 223 N = color I = 11;
SU T = 86 C = 223 N = color I = 11;
SU T = 87 C = 223 N = color I = 11;
SU T = 88 C = 223 N = color I = 11;
T = 79 C = 224 N = color I = 11;
T = 80 C = 224 N = color I = 11;
T = 81 C = 224 N = color I = 11;
T = 82 C = 224 N = color I = 11;
T = 83 C = 224 N = color I = 11;
T = 86 C = 224 N = color I = 11;
T = 87 C = 224 N = color I = 11;
T = 88 C = 224 N = color I = 11;
T = 79 C = 225 N = color I = 11;
T = 80 C = 225 N = color I = 11;
T = 81 C = 225 N = color I = 11;
T = 82 C = 225 N = color I = 11;
T = 83 C = 225 N = color I = 11;
T = 86 C = 225 N = color I = 11;
T = 87 C = 225 N = color I = 11;
T = 88 C = 225 N = color I = 11;
T = 79 C = 226 N = color I = 11;
T = 80 C = 226 N = color I = 11;
T = 81 C = 226 N = color I = 11;
T = 82 C = 226 N = color I = 11;
T = 83 C = 226 N = color I = 11;
T = 86 C = 226 N = color I = 11;
T = 87 C = 226 N = color I = 11;
T = 88 C = 226 N = color I = 11;
T = 79 C = 227 N = color I = 11;
T = 80 C = 227 N = color I = 11;
T = 81 C = 227 N = color I = 11;
T = 82 C = 227 N = color I = 11;
T = 83 C = 227 N = color I = 11;
T = 86 C = 227 N = color I = 11;
T = 87 C = 227 N = color I = 11;
T = 88 C = 227 N = color I = 11;
T = 79 C = 228 N = color I = 11;
T = 80 C = 228 N = color I = 11;
T = 81 C = 228 N = color I = 11;
T = 82 C = 228 N = color I = 11;
T = 83 C = 228 N = color I = 11;
T = 86 C = 228 N = color I = 11;
T = 87 C = 228 N = color I = 11;
T = 88 C = 228 N = color I = 11;
T = 79 C = 229 N = color I = 11;
T = 80 C = 229 N = color I = 11;
T = 81 C = 229 N = color I = 11;
T = 82 C = 229 N = color I = 11;
T = 83 C = 229 N = color I = 11;

```
```

SU T = 86 C = 229 N = color I = 11;
SU T = 87 C = 229 N = color I = 11;
SU T = 88 C = 229 N = color I = 11;
T = 79 C = 230 N = color I = 11;
T = 80 C = 230 N = color I = 11;
T = 81 C = 230 N = color I = 11;
T = 82 C = 230 N = color I = 11;
T = 83 C = 230 N = color I = 11;
T = 86 C = 230 N = color I = 11;
T = 87 C = 230 N = color I = 11;
T = 88 C = 230 N = color I = 11;
T = 79 C = 231 N = color I = 11;
T = 80 C = 231 N = color I = 11;
T = 81 C = 231 N = color I = 11;
T = 82 C = 231 N = color I = 11;
T = 83 C = 231 N = color I = 11;
T = 86 C = 231 N = color I = 11;
T = 87 C = 231 N = color I = 11;
T = 88 C = 231 N = color I = 11;
T = 79 C = 232 N = color I = 11;
T = 80 C = 232 N = color I = 11;
T = 81 C = 232 N = color I = 11;
T = 82 C = 232 N = color I = 11;
T = 83 C = 232 N = color I = 11;
T = 86 C = 232 N = color I = 11;
T = 87 C = 232 N = color I = 11;
T = 88 C = 232 N = color I = 11;
T = 79 C = 233 N = color I = 11;
T = 80 C = 233 N = color I = 11;
T = 81 C = 233 N = color I = 11;
T = 82 C = 233 N = color I = 11;
T = 83 C = 233 N = color I = 11;
T = 86 C = 233 N = color I = 11;
T = 87 C = 233 N = color I = 11;
T = 88 C = 233 N = color I = 11;
T = 79 C = 234 N = color I = 11;
T = 80 C = 234 N = color I = 11;
T = 81 C = 234 N = color I = 11;
T = 82 C = 234 N = color I = 11;
T = 83 C = 234 N = color I = 11;
T = 84 C = 234 N = color I = 11;
T = 86 C = 234 N = color I = 11;
T = 87 C = 234 N = color I = 11;
T = 88 C = 234 N = color I = 11;
T = 79 C = 235 N = color I = 11;
T = 80 C = 235 N = color I = 11;
T = 81 C = 235 N = color I = 11;
T = 82 C = 235 N = color I = 11;
T = 83 C = 235 N = color I = 11;
T = 84 C = 235 N = color I = 11;
T = 86 C = 235 N = color I = 11;
T = 87 C = 235 N = color I = 11;
T = 88 C = 235 N = color I = 11;

```
```

SU T = 79 C = 236 N = color I = 11;
SU T = 80 C = 236 N = color I = 11;
SU T = 81 C = 236 N = color I = 11;
SU T = 82 C = 236 N = color I = 11;
SU T = 84 C = 236 N = color I = 11;
T = 86 C = 236 N = color I = 11;
T = 87 C = 236 N = color I = 11;
T = 88 C = 236 N = color I = 11;
T = 79 C = 237 N = color I = 11;
T = 80 C = 237 N = color I = 11;
T = 81 C = 237 N = color I = 11;
T = 82 C = 237 N = color I = 11;
T = 84 C = 237 N = color I = 11;
T = 86 C = 237 N = color I = 11;
T = 87 C = 237 N = color I = 11;
T = 88 C = 237 N = color I = 11;
T = 79 C = 238 N = color I = 11;
T = 80 C = 238 N = color I = 11;
T = 81 C = 238 N = color I = 11;
T = 82 C = 238 N = color I = 11;
T = 84 C = 238 N = color I = 11;
T = 86 C = 238 N = color I = 11;
T = 87 C = 238 N = color I = 11;
T = 88 C = 238 N = color I = 11;
T = 79 C = 239 N = color I = 11;
T = 80 C = 239 N = color I = 11;
T = 81 C = 239 N = color I = 11;
T = 82 C = 239 N = color I = 11;
T = 84 C = 239 N = color I = 11;
T = 86 C = 239 N = color I = 11;
T = 87 C = 239 N = color I = 11;
T = 88 C = 239 N = color I = 11;
T = 79 C = 240 N = color I = 11;
T = 80 C = 240 N = color I = 11;
T = 81 C = 240 N = color I = 11;
T = 82 C = 240 N = color I = 11;
T = 84 C = 240 N = color I = 11;
T = 86 C = 240 N = color I = 11;
T = 87 C = 240 N = color I = 11;
T = 88 C = 240 N = color I = 11;
T = 79 C = 241 N = color I = 11;
T = 80 C = 241 N = color I = 11;
T = 81 C = 241 N = color I = 11;
T = 82 C = 241 N = color I = 11;
T = 84 C = 241 N = color I = 11;
T = 86 C = 241 N = color I = 11;
T = 87 C = 241 N = color I = 11;
T = 88 C = 241 N = color I = 11;
T = 79 C = 242 N = color I = 11;
T = 80 C = 242 N = color I = 11;
T = 81 C = 242 N = color I = 11;
T = 82 C = 242 N = color I = 11;
T = 84 C = 242 N = color I = 11;
T = 86 C = 242 N = color I = 11;

```
```

SU T = 87 C = 242 N = color I = 11;
SU T = 88 C = 242 N = color I = 11;
T = 79 C = 243 N = color I = 11;
T = 80 C = 243 N = color I = 11;
T = 81 C = 243 N = color I = 11;
T = 82 C = 243 N = color I = 11;
T = 84 C = 243 N = color I = 11;
T = 86 C = 243 N = color I = 11;
T = 87 C = 243 N = color I = 11;
T = 88 C = 243 N = color I = 11;
T = 79 C = 244 N = color I = 11;
T = 80 C = 244 N = color I = 11;
T = 81 C = 244 N = color I = 11;
T = 82 C = 244 N = color I = 11;
T = 84 C = 244 N = color I = 11;
T = 86 C = 244 N = color I = 11;
T = 87 C = 244 N = color I = 11;
T = 88 C = 244 N = color I = 11;
T = 79 C = 245 N = color I = 11;
T = 80 C = 245 N = color I = 11;
T = 81 C = 245 N = color I = 11;
T = 82 C = 245 N = color I = 11;
T = 84 C = 245 N = color I = 11;
T = 86 C = 245 N = color I = 11;
T = 87 C = 245 N = color I = 11;
T = 88 C = 245 N = color I = 11;
T = 79 C = 246 N = color I = 11;
T = 80 C = 246 N = color I = 11;
T = 81 C = 246 N = color I = 11;
T = 82 C = 246 N = color I = 11;
T = 84 C = 246 N = color I = 11;
T = 86 C = 246 N = color I = 11;
T = 87 C = 246 N = color I = 11;
T = 88 C = 246 N = color I = 11;
T = 79 C = 247 N = color I = 11;
T = 80 C = 247 N = color I = 11;
T = 81 C = 247 N = color I = 11;
T = 82 C = 247 N = color I = 11;
T = 84 C = 247 N = color I = 11;
T = 86 C = 247 N = color I = 11;
T = 87 C = 247 N = color I = 11;
T = 88 C = 247 N = color I = 11;
T = 79 C = 248 N = color I = 11;
T = 80 C = 248 N = color I = 11;
T = 81 C = 248 N = color I = 11;
T = 82 C = 248 N = color I = 11;
T = 84 C = 248 N = color I = 11;
T = 86 C = 248 N = color I = 11;
T = 87 C = 248 N = color I = 11;
T = 88 C = 248 N = color I = 11;
SU T = 79 C = 249 N = color I = 11;
SU T = 80 C = 249 N = color I = 11;
SU T = 81 C = 249 N = color I = 11;

```
```

SU T = 82 C = 249 N = color I = 11;
SU T = 84 C = 249 N = color I = 11;
SU T = 86 C = 249 N = color I = 11;
SU T = 87 C = 249 N = color I = 11;
SU T = 88 C = 249 N = color I = 11;
SU T = 79 C = 250 N = color I = 11;
SU T = 80 C = 250 N = color I = 11;
SU T = 81 C = 250 N = color I = 11;
T = 82 C = 250 N = color I = 11;
T = 84 C = 250 N = color I = 11;
T = 86 C = 250 N = color I = 11;
T = 87 C = 250 N = color I = 11;
T = 88 C = 250 N = color I = 11;
T = 79 C = 251 N = color I = 11;
T = 80 C = 251 N = color I = 11;
T = 81 C = 251 N = color I = 11;
T = 82 C = 251 N = color I = 11;
T = 84 C = 251 N = color I = 11;
T = 86 C = 251 N = color I = 11;
T = 87 C = 251 N = color I = 11;
T = 88 C = 251 N = color I = 11;
T = 79 C = 252 N = color I = 11;
T = 80 C = 252 N = color I = 11;
T = 81 C = 252 N = color I = 11;
T = 82 C = 252 N = color I = 11;
T = 84 C = 252 N = color I = 11;
T = 86 C = 252 N = color I = 11;
T = 87 C = 252 N = color I = 11;
T = 88 C = 252 N = color I = 11;
T = 79 C = 253 N = color I = 11;
T = 80 C = 253 N = color I = 11;
T = 81 C = 253 N = color I = 11;
T = 82 C = 253 N = color I = 11;
T = 84 C = 253 N = color I = 11;
T = 86 C = 253 N = color I = 11;
T = 87 C = 253 N = color I = 11;
T = 88 C = 253 N = color I = 11;
T = 79 C = 254 N = color I = 11;
T = 80 C = 254 N = color I = 11;
T = 81 C = 254 N = color I = 11;
T = 82 C = 254 N = color I = 11;
T = 84 C = 254 N = color I = 11;
T = 86 C = 254 N = color I = 11;
T = 87 C = 254 N = color I = 11;
T = 88 C = 254 N = color I = 11;
T = 79 C = 255 N = color I = 11;
T = 80 C = 255 N = color I = 11;
T = 81 C = 255 N = color I = 11;
T = 82 C = 255 N = color I = 11;
T = 84 C = 255 N = color I = 11;
T = 86 C = 255 N = color I = 11;
T = 87 C = 255 N = color I = 11;
T = 88 C = 255 N = color I = 11;

```
```

SU T = 79 C = 256 N = color I = 11;
SU T = 80 C = 256 N = color I = 11;
SU T = 81 C = 256 N = color I = 11;
SU T = 82 C = 256 N = color I = 11;
SU T = 84 C = 256 N = color I = 11;
T = 86 C = 256 N = color I = 11;
T = 87 C = 256 N = color I = 11;
T = 88 C = 256 N = color I = 11;
T = 79 C = 257 N = color I = 11;
T = 80 C = 257 N = color I = 11;
T = 81 C = 257 N = color I = 11;
T = 82 C = 257 N = color I = 11;
T = 84 C = 257 N = color I = 11;
T = 86 C = 257 N = color I = 11;
T = 87 C = 257 N = color I = 11;
T = 88 C = 257 N = color I = 11;
T = 79 C = 258 N = color I = 11;
T = 80 C = 258 N = color I = 11;
T = 81 C = 258 N = color I = 11;
T = 82 C = 258 N = color I = 11;
T = 84 C = 258 N = color I = 11;
T = 86 C = 258 N = color I = 11;
T = 87 C = 258 N = color I = 11;
T = 88 C = 258 N = color I = 11;
T = 79 C = 259 N = color I = 11;
T = 80 C = 259 N = color I = 11;
T = 81 C = 259 N = color I = 11;
T = 82 C = 259 N = color I = 11;
T = 84 C = 259 N = color I = 11;
T = 86 C = 259 N = color I = 11;
T = 87 C = 259 N = color I = 11;
T = 88 C = 259 N = color I = 11;
T = 79 C = 260 N = color I = 11;
T = 80 C = 260 N = color I = 11;
T = 81 C = 260 N = color I = 11;
T = 82 C = 260 N = color I = 11;
T = 84 C = 260 N = color I = 11;
T = 86 C = 260 N = color I = 11;
T = 87 C = 260 N = color I = 11;
T = 88 C = 260 N = color I = 11;
T = 79 C = 261 N = color I = 11;
T = 80 C = 261 N = color I = 11;
T = 81 C = 261 N = color I = 11;
T = 82 C = 261 N = color I = 11;
T = 84 C = 261 N = color I = 11;
T = 86 C = 261 N = color I = 11;
T = 87 C = 261 N = color I = 11;
T = 88 C = 261 N = color I = 11;
T = 79 C = 262 N = color I = 11;
T = 80 C = 262 N = color I = 11;
T = 81 C = 262 N = color I = 11;
T = 82 C = 262 N = color I = 11;
T = 84 C = 262 N = color I = 11;
T = 86 C = 262 N = color I = 11;

```
```

SU T = 87 C = 262 N = color I = 11;
SU T = 88 C = 262 N = color I = 11;
SU T = 79 C = 263 N = color I = 11;
SU T = 80 C = 263 N = color I = 11;
SU T = 81 C = 263 N = color I = 11;
SU T = 82 C = 263 N = color I = 11;
SU T = 86 C = 263 N = color I = 11;
SU T = 87 C = 263 N = color I = 11;
SU T = 88 C = 263 N = color I = 11;
T = 79 C = 264 N = color I = 11;
T = 80 C = 264 N = color I = 11;
T = 81 C = 264 N = color I = 11;
T = 82 C = 264 N = color I = 11;
T = 86 C = 264 N = color I = 11;
T = 87 C = 264 N = color I = 11;
T = 88 C = 264 N = color I = 11;
T = 79 C = 265 N = color I = 11;
T = 80 C = 265 N = color I = 11;
T = 81 C = 265 N = color I = 11;
T = 82 C = 265 N = color I = 11;
T = 86 C = 265 N = color I = 11;
T = 87 C = 265 N = color I = 11;
T = 88 C = 265 N = color I = 11;
T = 79 C = 266 N = color I = 11;
T = 80 C = 266 N = color I = 11;
T = 81 C = 266 N = color I = 11;
T = 82 C = 266 N = color I = 11;
T = 86 C = 266 N = color I = 11;
T = 87 C = 266 N = color I = 11;
T = 88 C = 266 N = color I = 11;
T = 79 C = 267 N = color I = 11;
T = 80 C = 267 N = color I = 11;
T = 81 C = 267 N = color I = 11;
T = 82 C = 267 N = color I = 11;
T = 86 C = 267 N = color I = 11;
T = 87 C = 267 N = color I = 11;
T = 88 C = 267 N = color I = 11;
T = 79 C = 268 N = color I = 11;
T = 80 C = 268 N = color I = 11;
T = 81 C = 268 N = color I = 11;
T = 82 C = 268 N = color I = 11;
T = 86 C = 268 N = color I = 11;
T = 87 C = 268 N = color I = 11;
T = 88 C = 268 N = color I = 11;
T = 79 C = 269 N = color I = 11;
T = 80 C = 269 N = color I = 11;
T = 81 C = 269 N = color I = 11;
T = 82 C = 269 N = color I = 11;
T = 86 C = 269 N = color I = 11;
T = 87 C = 269 N = color I = 11;
T = 88 C = 269 N = color I = 11;
SU T = 79 C = 270 N = color I = 11;

```
```

SU T = 80 C = 270 N = color I = 11;
SU T = 81 C = 270 N = color I = 11;
SU T = 82 C = 270 N = color I = 11;
SU T = 86 C = 270 N = color I = 11;
SU T = 87 C = 270 N = color I = 11;
SU T = 88 C = 270 N = color I = 11;
C = 271 N = color I = 11;
T = 1 C = 271 N = color I = 11;
T = 2 C = 271 N = color I = 11;
T = 3 C = 271 N = color I = 11;
T = 4 C = 271 N = color I = 11;
T = 5 C = 271 N = color I = 11;
T = 6 C = 271 N = color I = 11;
T = 7 C = 271 N = color I = 11;
T = 8 C = 271 N = color I = 11;
T = 9 C = 271 N = color I = 11;
T = 10 C = 271 N = color I = 11;
T = 11 C = 271 N = color I = 11;
T = 12 C = 271 N = color I = 11;
T = 13 C = 271 N = color I = 11;
T = 14 C = 271 N = color I = 11;
T = 15 C = 271 N = color I = 11;
T = 16 C = 271 N = color I = 11;
T = 17 C = 271 N = color I = 11;
T = 18 C = 271 N = color I = 11;
T = 19 C = 271 N = color I = 11;
T = 20 C = 271 N = color I = 11;
T = 21 C = 271 N = color I = 11;
T = 22 C = 271 N = color I = 11;
T = 23 C = 271 N = color I = 11;
T = 24 C = 271 N = color I = 11;
T = 25 C = 271 N = color I = 11;
T = 26 C = 271 N = color I = 11;
T = 27 C = 271 N = color I = 11;
T = 28 C = 271 N = color I = 11;
T = 29 C = 271 N = color I = 11;
T = 30 C = 271 N = color I = 11;
T = 31 C = 271 N = color I = 11;
T = 32 C = 271 N = color I = 11;
T = 33 C = 271 N = color I = 11;
T = 34 C = 271 N = color I = 11;
T = 35 C = 271 N = color I = 11;
T = 36 C = 271 N = color I = 11;
T = 37 C = 271 N = color I = 11;
T = 38 C = 271 N = color I = 11;
T = 39 C = 271 N = color I = 11;
T = 40 C = 271 N = color I = 11;
T = 41 C = 271 N = color I = 11;
T = 42 C = 271 N = color I = 11;
T = 43 C = 271 N = color I = 11;
T = 44 C = 271 N = color I = 11;
T = 45 C = 271 N = color I = 11;
T = 46 C = 271 N = color I = 11;
T = 47 C = 271 N = color I = 11;
T = 48 C = 271 N = color I = 11;
T = 49 C = 271 N = color I = 11;
T = 50 C = 271 N = color I = 11;
T = 51 C = 271 N = color I = 11;
T = 52 C = 271 N = color I = 11;

```
```

SU
SU T = 53 C = 271 N = color I = 11;
T = 54 C = 271 N = color I = 11;
SU T = 55 C = 271 N = color I = 11;
SU T = 56 C = 271 N = color I = 11;
SU T = 57 C = 271 N = color I = 11;
SU T = 58 C = 271 N = color I = 11;
SU T = 59 C = 271 N = color I = 11;
T = 60 C = 271 N = color I = 11;
T = 61 C = 271 N = color I = 11;
T = 62 C = 271 N = color I = 11;
T = 63 C = 271 N = color I = 11;
T = 64 C = 271 N = color I = 11;
T = 65 C = 271 N = color I = 11;
T = 66 C = 271 N = color I = 11;
T = 67 C = 271 N = color I = 11;
T = 68 C = 271 N = color I = 11;
T = 69 C = 271 N = color I = 11;
T = 70 C = 271 N = color I = 11;
T = 71 C = 271 N = color I = 11;
T = 72 C = 271 N = color I = 11;
T = 73 C = 271 N = color I = 11;
T = 74 C = 271 N = color I = 11;
T = 75 C = 271 N = color I = 11;
T = 76 C = 271 N = color I = 11;
T = 77 C = 271 N = color I = 11;
T = 78 C = 271 N = color I = 11;
T = 79 C = 271 N = color I = 11;
T = 80 C = 271 N = color I = 11;
T = 81 C = 271 N = color I = 11;
T = 82 C = 271 N = color I = 11;
T = 83 C = 271 N = color I = 11;
T = 84 C = 271 N = color I = 11;
T = 85 C = 271 N = color I = 11;
T = 86 C = 271 N = color I = 11;
T = 87 C = 271 N = color I = 11;
T = 88 C = 271 N = color I = 11;
T = 89 C = 271 N = color I = 11;
T = 1 C = 272 N = color I = 11;
T = 2 C = 272 N = color I = 11;
T = 3 C = 272 N = color I = 11;
T = 4 C = 272 N = color I = 11;
T = 5 C = 272 N = color I = 11;
T = 6 C = 272 N = color I = 11;
T = 7 C = 272 N = color I = 11;
T = 8 C = 272 N = color I = 11;
T = 9 C = 272 N = color I = 11;
T = 10 C = 272 N = color I = 11;
T = 11 C = 272 N = color I = 11;
T = 12 C = 272 N = color I = 11;
T = 13 C = 272 N = color I = 11;
T = 14 C = 272 N = color I = 11;
T = 16 C = 272 N = color I = 11;
T = 17 C = 272 N = color I = 11;
T = 18 C = 272 N = color I = 11;
T = 59 C = 272 N = color I = 11;
T = 62 C = 272 N = color I = 11;
T = 69 C = 272 N = color I = 11;
T = 77 C = 272 N = color I = 11;
T = 83 C = 272 N = color I = 11;

```
```

 SU T = 83 C = 273 N = color I = 11;
 END;
 BEGIN ASSUMPTIONS;
 TYPESET * UNTITLED = unord: 1 - 275;
 END;
BEGIN MESQUITECHARMODELS;
ProbModelSet * UNTITLED = 'Mk1 (est.)': 1 - 271;
END;
Begin MESQUITE;
MESQUITESCRIPTVERSION 2;
TITLE AUTO;
tell ProjectCoordinator;
timeSaved 1441665947157;
getEmployee \#mesquite.minimal.ManageTaxa.ManageTaxa;
tell It;
setID 0 5346406094115664681;
endTell;
getEmployee \#mesquite.charMatrices.ManageCharacters.ManageCharacters;
tell It;
setID 0 3919740700673883704;
mqVersion 300;
checksumv 0 3 4086242014 null getNumChars 275 numChars 275
getNumTaxa 89 numTaxa 89 short true bits 2305843009213694207 states 255
sumSquaresStatesOnly 105999.0 sumSquares -3.9660499758475536E20 longCompressibleToShort
false usingShortMatrix true NumFiles 1 NumMatrices 1;
mqVersion;
endTell;
getWindow;
tell It;
suppress;
setResourcesState false false 144;
setPopoutState 400;
setExplanationSize 0;
setAnnotationSize 0;
setFontIncAnnot 0;
setFontIncExp 0;
setSize 1362 651;
setLocation -8 0;
setFont SanSerif;
setFontSize 10;
getToolPalette;
tell It;
endTell;
desuppress;
endTell;
getEmployee
\#mesquite.charMatrices.BasicDataWindowCoord.BasicDataWindowCoord;
tell It;
showDataWindow \#3919740700673883704
\#mesquite.charMatrices.BasicDataWindowMaker.BasicDataWindowMaker;
tell It;
getWindow;
tell It;
getTable;

```
```

 tell It;
 columnWidth 4 17;
 columnWidth 5 23;
 columnWidth 48 21;
 columnWidth 49 24;
 columnWidth 271 31;
 columnWidth 272 29;
 endTell;
 setExplanationSize 30;
 setAnnotationSize 20;
 setFontIncAnnot 0;
 setFontIncExp 0;
 setSize 1218 579;
 setLocation -8 0;
 setFont SanSerif;
 setFontSize 10;
 getToolPalette;
 tell It;
 setTool
 mesquite.charMatrices.QuickKeySelector.QuickKeySelector.quickKeySelector;
endTell;
setActive;
setTool
mesquite.charMatrices.QuickKeySelector.QuickKeySelector.quickKeySelector;
colorCells
\#mesquite.charMatrices.NoColor.NoColor;
colorRowNames
\#mesquite.charMatrices.TaxonGroupColor.TaxonGroupColor;
colorColumnNames
\#mesquite.charMatrices.CharGroupColor.CharGroupColor;
colorText \#mesquite.charMatrices.NoColor.NoColor;
setBackground White;
toggleShowNames on;
toggleShowTaxonNames on;
toggleTight off;
toggleThinRows off;
toggleShowChanges on;
toggleSeparateLines off;
toggleShowStates on;
toggleAutoWCharNames on;
toggleAutoTaxonNames off;
toggleShowDefaultCharNames off;
toggleConstrainCW on;
toggleBirdsEye off;
toggleShowPaleGrid off;
toggleShowPaleCellColors off;
toggleShowPaleExcluded off;
togglePaleInapplicable on;
toggleShowBoldCellText off;
toggleAllowAutosize on;
toggleColorsPanel off;
toggleDiagonal on;
setDiagonalHeight 80;
toggleLinkedScrolling on;
toggleScrollLinkedTables off;
endTell;
showWindow;
getWindow;
tell It;
forceAutosize;

```
```

 endTell;
 getEmployee
 \#mesquite.charMatrices.ColorByState.ColorByState;
tell It;
setStateLimit 9;
toggleUniformMaximum on;
endTell;
getEmployee \#mesquite.charMatrices.ColorCells.ColorCells;
tell It;
setColor Red;
removeColor off;
endTell;
getEmployee
\#mesquite.categ.StateNamesStrip.StateNamesStrip;
tell It;
showStrip off;
endTell;
getEmployee \#mesquite.charMatrices.AnnotPanel.AnnotPanel;
tell It;
togglePanel off;
endTell;
getEmployee
\#mesquite.charMatrices.CharReferenceStrip.CharReferenceStrip;
tell It;
showStrip off;
endTell;
getEmployee
\#mesquite.charMatrices.QuickKeySelector.QuickKeySelector;
tell It;
autotabOff;
endTell;
getEmployee
\#mesquite.charMatrices.SelSummaryStrip.SelSummaryStrip;
tell It;
showStrip off;
endTell;
getEmployee
\#mesquite.categ.SmallStateNamesEditor.SmallStateNamesEditor;
tell It;
panelOpen true;
endTell;
endTell;
endTell;
endTell;
end;

```
```


[^0]: A SMALL BODY SIZED NON-ARISTONECTINE ELASMOSAURID (SAUROPTERYGIA, PLESIOSAURIA) FROM THE LATE CRETACEOUS OF PATAGONIA WITH COMMENTS ON THE RELATIONSHIPS OF THE PATAGONIAN AND ANTARCTIC ELASMOSAURIDS J.P. O'GORMAN ${ }^{1,2}$
 ${ }^{1}$ División Paleontología Vertebrados, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n., B1900FWA, La Plata, Argentina.
 ${ }^{2}$ CONICET: Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. joseogorman@fcnym.unlp.edu.ar.

 Pages: 34
 Figures: 10+ 1 appendix
 Tables: 3

 O'Gorman: KAWANECTES, AN ELASMOSAURID FROM PATAGONIA

 Corresponding Author: O'Gorman José Patricio.

