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Purpose: It has been demonstrated that mutations in deafness, autosomal recessive 31 (DFNB31), the gene encoding
whirlin, is responsible for nonsyndromic hearing loss (NSHL; DFNB31) and Usher syndrome type II (USH2D). We
screened DFNB31 in a large cohort of patients with different clinical subtypes of Usher syndrome (USH) to determine
the prevalence of DFNB31 mutations among USH patients.
Methods: DFNB31 was screened in 149 USH2, 29 USH1, six atypical USH, and 11 unclassified USH patients from
diverse ethnic backgrounds. Mutation detection was performed by direct sequencing of all coding exons.
Results: We identified 38 different variants among 195 patients. Most variants were clearly polymorphic, but at least two
out of the 15 nonsynonymous variants (p.R350W and p.R882S) are predicted to impair whirlin structure and function,
suggesting eventual pathogenicity. No putatively pathogenic mutation was found in the second allele of patients with these
mutations.
Conclusions: DFNB31 is not a major cause of USH.

Usher syndrome (OMIM 276900–2; OMIM 276905;
OMIM 605472) is the most common cause of genetic
deafblindness. This syndrome follows an autosomal recessive
pattern of inheritance and is characterized by retinitis
pigmentosa (RP), sensorineural hearing impairment, and in
some cases vestibular dysfunction. Three clinical types can be
distinguished [1]. Patients with Usher syndrome type I
(USH1) show severe to profound congenital hearing loss,
early onset RP, and vestibular areflexia. Patients with type II
(USH2) suffer from moderate to severe congenital hearing
loss, onset of RP around puberty or in adulthood, but normal
vestibular function. Usher type III (USH3) patients present
with progressive hearing loss, RP, and variable vestibular
function. Furthermore, some Usher syndrome patients cannot
be classified into any of these three subtypes and are
considered atypical Usher (USHA) patients. To date, nine
genes are known to be involved in USH: MYO7A (USH1B),
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USH1C, CDH23 (USH1D), PCDH15 (USH1F), and USH1G
for USH1; USH2A,GPR98 (USH2C), and DFNB31 (USH2D)
for USH2; and USH3A for USH3 [2-14]. The eight genes
responsible for USH1 and USH2 encode proteins that interact
in a functional network.

The DFNB31 gene was initially found to be responsible
for recessive nonsyndromic sensorineural hearing impairment
(NSHI), underlying the DFNB31 locus [15]. DFNB31
comprises 12 exons and encodes the whirlin protein. Two
isoforms of whirlin are known. The short isoform is encoded
by exons 6–12 and contains one PDZ domain (PDZ3) and a
proline-rich region. The long isoform is encoded by all 12
DFNB31 exons and contains three PDZ domains (PDZ1,
PDZ2, and PDZ3) and a proline-rich region [15]. PDZ1 and
PDZ2 have been shown to interact with usherin, myosin VIIa,
G-Protein coupled Receptor 98 (GPR98), Scaffold protein
containing Ankyrin repeats and SAM domain (SANS), and
myosin XVa, while PDZ3 interacts only with myosin XVa
[16-18]. All these findings made DFNB31 an excellent
candidate for Usher syndrome. More recently, Ebermann et
al. [14] described a novel genetic subtype for Usher syndrome
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type II (USH2D) caused by truncating mutations in the long
isoform of whirlin.

The protein whirlin is thought to play an important role
in the elongation of stereocilia and development of cochlear
hair cells and has been demonstrated to be the major scaffold
protein of an Usher protein network in the ankle link complex
of inner hair cells [15,17,19]. In the retina, whirlin is a key
partner of another USH interactome in the periciliary region
of photoreceptor cells. This Usher protein network is
hypothesized to be essential for the regulation of cargo
transfer from the photoreceptor inner segment to the outer
segment by the ciliary transport system [18].

The recent finding that mutations in DFNB31 cause
USH2 prompted us to screen the 12 exons of this gene in 195
patients from diverse origins who have USH1, USH2, and
USHA. Our aim was to elucidate the prevalence of DFNB31
mutations in the pathogenesis of USH.

METHODS
Patients: We included 149 patients with USH2, 29 patients
with USH1, and six patients with USHA in this study.
Furthermore, 11 unclassified USH patients were included
from whom clinical data were not available. Of the 195
unrelated patients, 74 were of Spanish origin, 47 of German,
39 of Dutch, 17 of Hungarian, and 13 of other different origins
(see Table 1).

Most of these patients were selected for DFNB31
screening after discarding the presence of pathologic
mutations in the most prevalent USH genes. Of the 195
patients, 116 patients correspond to those briefly mentioned
in previous studies [13,16]. Clinical diagnosis of Usher
syndrome patients was performed in different hospitals
according to standard ophthalmologic, otorhinolaryngologic,
and electroretinographic procedures. Written informed
consent was obtained for each participant, and the study was
approved by the review board of the Ethics Committee of each
institution that participated in this work.

Mutation screening: Venous blood samples were obtained
and genomic DNA was extracted by standard protocols [7].
For mutation analysis of DFNB31, the 12 coding exons were
PCR amplified using primers located in flanking introns and
untranslated region (UTR) sequences (Table 2). PCR products
were directly sequenced using standard procedures (Table 2).
The obtained sequences were compared with the consensus
sequence NM_015404.

Isocoding and missense changes found in a low frequency
were analyzed with the program RESCUE-ESE (Christopher
Burge Laboratory, Massachusetts Institute of Technology;
Cambridge, MA). This program predicts the creation or
elimination of exonic splicing enhancer sites (ESEs).

To assess the effect of the amino acid substitutions on the
protein and to study the degree of interspecies amino acid
conservation we used the software Alamut v1.5 Interactive
Biosoftware (Rouen, France).

Intronic, isocoding, and missense changes were also
analyzed using the programs NNSPLICE (Berkeley
Drosophila Genome Project [BDGP] University of California
Berkeley; Berkeley, CA) and Splice View (Institute of
Biomedical Technologies, Milano, Italy) to predict if those
changes could be affecting, creating, or eliminating donor/
acceptor splice sites.

RESULTS
Mutation screening of DFNB31 in 195 USH patients of
diverse origins identified 38 different sequence variants: eight
synonymous, 15 missense, and 15 intronic variants. Most of
these changes are clearly polymorphic as they were detected
in high frequencies and represent known single nucleotide
polymorphisms (SNPs). Twelve sequence variants were
found only once in our series, five changes were found twice,
one variant was identified in three alleles, and another one in
four (see Table 3). None of these 19 rare changes were found
in the homozygous state or in trans to another putatively
pathogenic variation.
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TABLE 1. CLINICAL CLASSIFICATION OF USH PATIENTS.

Origin USH1 USH2 USHA USH NC* Total
The Netherlands 0 27 2 10 39
Spain 21 51 2 0 74
Germany 2 44 0 1 47
Hungary 2 13 2 0 17
Canada 1 4 0 0 5
Russia 1 2 0 0 3
Arabia 0 1 0 0 1
Egypt 2 2 0 0 4
Turkey 0 3 0 0 3
Unknown 0 2 0 0 2
Total 29 149 6 11 195

*USH NC: Clinical data not available to classify the patients into any subtype.
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Isocoding changes: Only three out of the eight silent
changes were found with an allele frequency ≤0.01 (see Table
3 for more details). Variant c.1486C>T was only found in one
USH2 patient from uncertain origin, and c.2307C>T was
found in one USH1 patient from Spain and in one USH2
patient from Germany. Variant c.1455G>A was detected in
four alleles of patients from the Netherlands and Germany.
These three rare isocoding variants were analyzed using the
RESCUE-ESE program, but none were found to create or
eliminate any ESEs.

These three changes were also analyzed with NNSPLICE
and Splice View. Both programs predicted the creation of one
new donor site when introducing the change c.2307C>T
(NNSPLICE score of 0.66 [0.00–1.00] and Splice View score
of 86 [0–100])

Missense changes: From the 15 missense variants
detected, only p.T77S, p.R350W, p.T383N, p.T383S,
p.D447H, p.S628R, p.S648Y, p.M723I, and p.R882S showed
a frequency ≤0.01 (see Table 3).

These nine variants were analyzed using the Alamut
program. For two of these changes (p.R350W and p.R882S),

this program predicted possible implications in protein
structure and function. The amino acid substitution p.R350W
(c.1048C>T) affected a highly conserved nucleotide at the
cDNA level with a score of 0.9 (0–1). The amino acid
conservation among 13 species was moderate, and the
Grantham distance between amino acids Arg and Trp was 101
(0–215). Furthermore, this variation was found to be located
in the PDZ2 protein domain. The change p.R882S (c.
2644C>A at the cDNA level) affects a highly conserved
nucleotide (score 1.0 [0–1]) and an amino acid highly
conserved up to the fruit fly (considering 13 species). The
physicochemical difference between Arg and Ser was found
to be moderate since a Grantham distance of 110 (0–215) was
obtained. Also this variation was located in the PDZ3 domain.

These nine rare missense variants were further evaluated
for an effect on exonic splice enhancers by using the
RESCUE-ESE program. The change c.1148C>A (p.T383N),
found in two unrelated USH2 patients from the Netherlands,
creates four new putative ESE sites, whereas c.1339G>A
(p.D447H), detected in one USH2 patient from Hungary,
suppresses one existing ESE sequence and creates two new
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TABLE 2. PRIMER SEQUENCES FOR THE AMPLIFICATION OF THE CODING REGION OF DFNB31.

Primer name Sequence (5′-3′) Annealing temperature
Exon 1 F: CAGCAGCCAACTCTTGTGTC 55 °C

R: CCAGAAAGGCCAAGTGATTC
Exon 2 F: ACTCCCCAAATCCAAGTTCC 58 °C

R: CAGAACCAGCCTCTTCTTGC
Exon 3 F: CTCCTTGCCAGTCGGATAAG 55 °C

R: GAGTGCTGATTGCTCTGCTG
Exon 4 F: ATAAGGGGACCCTTGGAATG 55 °C

R: TCCCCACTTTTTGGATGAAG
Exon 5 F: GTCCGGAGTTTCCTTTACCC 55 °C

R: TGGTCTGCTCTGTTCATTGC
Exon 6 F: TGGCAATGAACAGAGCAGAC 58 °C

R: GGAGGGCTTGTGAAGATGAC
Exon 7 F: GACAGGGAAGCAGGAGTGAG 58 °C

R: GATTCGAACTCAGGCTGGTC
Exon 8 F: CAGCATCTCTGGCAGTTCAG 58 °C

R: GGCTGTCATGGAGAGGAGAG
Exon 9 F: GTGACAAGCTCTGGCTGATG 58 °C

R: TTCAAACTGGGGTCTCCAAC
Exon 10 F: GGTCTGGTTGAAAGGACAGG 58 °C

R: GGCCTCCAGATTCCTAATCC
Exon 11 F: GAGGCTGAGATTGGTCTTGG 55 °C

R: CCTAGGTCTGCCCTTGAGTG
Exon 12 F: CCCTTTCTCAGCATCTCCAG 58 °C

R: GTCTGCCTTGTCCTGCTCTC
Amplification conditions were 95 °C 5 min followed by 35 cycles of 30 s at 95 °C, 30 s at an annealing temperature specific
for each exon (column 3) and 30 s at 72 °C.

http://genes.mit.edu/burgelab/rescue-ese/
http://www.interactive-biosoftware.com/Alamut-brochure.pdf
http://www.interactive-biosoftware.com/Alamut-brochure.pdf
http://genes.mit.edu/burgelab/rescue-ese/
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putative ESE sites. The remaining variants were not found to
affect any ESE site.

These changes were also analyzed with NNSPLICE and
Splice View, but neither was found to affect, create, or
eliminate any donor or acceptor splice site.

Intronic changes: All intronic variants were detected in
frequencies ≥0.01, except for c.619–41A>G, c.837+41A>G,
c.1203+114C>T, c.1416+62delC, c.2237–44C>T
(rs766835), c.2419–16T>C, and c.2644–157C>T (Table 3).
None of these changes were predicted to affect or create splice
donor or splice acceptor sites in the analysis with the
NNSPLICE and Splice View programs.

DISCUSSION
To date only one Usher family with clearly pathogenic,
truncating, DFNB31 mutations has been described [14]. Here,
we describe additional sequence variants in USH patients
tested for mutations in DFNB31 and discuss their putative
pathologic effects.

A total of 38 different variants were found in the DFNB31
sequence, but no variant was a frameshift or a nonsense
change. Out of these, 19 rare variants were found with allelic
frequency ≤0.01; two of them were located in PDZ protein
domains (p.R350W and p.R882S), and four were predicted to
create or abrogate splice sites (c.2307C>T, p.T383N,
p.D447H, and p.R882S).

By the introduction of p.R350W and p.R882S, uncharged
amino acids may affect the three-dimensional structure of the
protein, which is important for the adequate function of
interacting domains. Furthermore, both the amino acids R350
and R882 were well conserved throughout evolution,
indicating these residues have an important role in protein
structure and function. All these factors point to a possible
pathologic effect for these two variants.

Segregation analysis for the variants p.R350W,
p.G769G, p.T383N, and p.D447H could not be performed. In
some cases, we only had a DNA sample from a patient without
any family history. In other cases, the patient was a sporadic
case and segregation analysis did not reveal any information
about the pathogenicity of the variant (e.g., in the case of
p.R882S). We found variant p.R882S in a sporadic Spanish
USH2 patient together with the variant p.S648Y. Segregation
analysis for these changes was performed in healthy relatives
and revealed that both variants were located on the same allele.
In addition, p.R882S and p.S648Y were present in the patient,
in his healthy brother and sister, and in his two healthy
children.

To explore the possibility of yet unidentified exons of
DFNB31, which may contain mutations in the second allele
of patients with a potentially pathogenic mutation on one
allele, we performed an in silico search by using Geneid
(Genome Bioinformatics Research Lab; Center for Genomic
Regulation, Barcelona, Spain), N-SCAN (Computational

Genomics Laboratory; Washington University of St. Louis,
St. Louis; MO) and we also searched in the UCSC Genome
Browser (University of California Santa Cruz Genome
Bioinformatics Web Site, Santa Cruz, CA), but no additional
exons were predicted in the DFNB31 locus.

In summary, this study did not reveal evidence for the
involvement of DFNB31 mutations in 195 unrelated USH
patients. However, total or partial gene deletions and
duplications can escape the screening method applied herein
and therefore cannot be excluded. Our results indicate a minor
causative role for DFNB31 in Usher syndrome. However,
modifying effects of the variants we detected might contribute
to the phenotype of Usher syndrome.

Regarding the implication of this gene in nonsyndromic
hearing loss, the studies performed so far also indicate that
DFNB31 is a rare form of deafness [15,20]. We previously
hypothesized that DFNB31 mutations may also be causative
for nonsyndromic retinal degenerations. This remains to be
confirmed.
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