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We introduce the concept of a Majorana molecule, a topological bound state appearing in the
geometry of a double quantum dot (QD) structure flanking a topological superconducting nanowire.
We demonstrate that, if Majorana bound states (MBSs) at opposite edges are probed nonlocally in
a two probe experiment, the spectral density of the system reveals the so-called half-bowtie profiles,
while Andreev bound states (ABSs) become resolved into bonding and antibonding molecular con-
figurations. We reveal that this effect is due to the Fano interference between singlet and triplet
pseudospin pairing channels and propose a protocol for the experimental detection of the predicted
effects.

Introduction.— The recent decade witnessed the in-
creasing interest of the condensed matter community in
Majorana physics. In particular, the concept of Majo-
rana bound states (MBSs) as promising building blocks
for topologically protected and fault-tolerant quantum
computing received special attention [1–6]. MBSs are
zero-modes appearing at topological boundaries of con-
densed matter systems with spinless p-wave supercon-
ductivity, as it was first predicted by A. Y. Kitaev in
his seminal work [7]. They manifest themselves via zero-
bias peak (ZBP) signature in local conductance measure-
ments [8]. As candidates for hosting nonlocal MBSs, such
material platforms as ferromagnetic atomic chains [9–19]
and semiconductor hybrid nanowires [8, 20–24] were pro-
posed. Isolated MBSs are also supposed to be attached
to cores of superconducting vortices[25, 26].

In this work, we propose the concept of a Majorana
molecule. It appears in the configuration similar to
those considered in the end of Ref. [23] and schematically
shown in Fig.1(a) of the current paper. It consists of a
one-dimensional (1D) topological superconductor (TSC)
hosting MBSs at the edges, which hybridize with nor-
mal fermionic states of a pair of quantum dots (QDs)
flanking the TSC wire, placed in the strong longitudinal
magnetic field. If the latter is strong enough, so that Zee-
man splitting becomes much larger than all other char-
acteristic energies of the system, the spinless condition
is fulfilled. In this case, the tuning of the parameters of
the system leads to a crossover between the well-known
regime of individual Andreev bound states (ABSs) [23]
(The Majorana molecule turned-off ), and the regime in
which one witnesses the splitting of the ABS into bond-
ing and antibonding molecular configurations (The Majo-
rana molecule turned-on). The formation of these states
can be described in terms of the so-called pseudospins
(↑, ↓), which determine the structure of the QDs orbitals
by means of superconducting singlet and triplet states.
Note that, contrary to the single QD geometry consid-
ered before [23, 24], in our setup the QDs act as a non-
local two-probe detector which catches the Fano inter-
ference effects [27, 28] between various tunneling paths,
including those involving the MBSs. This can result in

plethora of intriguing transport signatures [29–38], such
as so-called Majorana oscillations [38]. We demonstrate
that, similar to what happens in the system of a pair of
QDs placed within a semiconductor [39] or a Dirac-Weyl
semimetal host [40, 41], the Fano effect in the consid-
ered system defines the novel type of molecular binding
of QD orbitals, and leads to the formation of a Majo-
rana molecule, characterized by the so-called half-bowtie
profiles in the spectral density of states.

The Model.—The geometry we consider is shown in
the Fig.1(a). The system under study consists of a 1D-
TSC nanowire with nonlocal MBSs formed at its edges
and flanked by a pair of QDs. The latter are attached
to metallic leads, serving as source and drain of an elec-
tric current through the system. We suggest that the
external magnetic field applied along the direction of the
wire is large enough, so that only spin up states lie be-
low the Fermi energy, and spin down states can be just
totally excluded from the consideration [42–44]. We ac-
count for the possible coupling between MBSs localized
at the opposite edges of the TSC wire, which can change
their nonlocality degree and lead to the crossover between
highly nonlocal MBSs and more local ABSs.

The Hamiltonian of the system reads:

H =
∑
αk

εkc̃
†
αkc̃αk +

∑
α

ε̃αd̃
†
αd̃α + tc(d̃†Ld̃R + H.c.)

+ V
∑
αk

(c̃†αkd̃α + H.c.) + λL1(d̃L − d̃†L)Ψ1

+ iλL2(d̃L + d̃†L)Ψ2 + iλR1(d̃R + d̃†R)Ψ2

+ λR2(d̃R − d̃†R)Ψ1 + iεMΨ1Ψ2, (1)

where the operators c†αk, cαk correspond to electrons in
the right and left metallic leads α = L,R having mo-
mentum k and energy εk. The operators d̃†α, d̃α describe
the localized orbitals in the right and left QDs with ener-
gies ε̃α, tc is the hopping term corresponding to the nor-
mal direct tunneling between the QDs, which can lead to
the formation of usual molecular orbitals [39] and V de-
scribes the strength of the coupling between the QDs and
the leads (we take it equal for right and left QDs). At
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the edges of the TSC wire, the nonlocal MBSs described

by the operators Ψj = Ψ†j , couple to the QDs with the

amplitudes λαj with j = 1, 2 (the ratio ηα = |λα1/λα2|
defines the nonlocality degree) and to each other via the
overlap term εM .

Linear combination of the Majorana operators

f↑ =
1√
2

(Ψ1 + iΨ2) (2)

forms a regular fermionic state. Performing the rotation
in the pseudospin space σ = ±1 (↑, ↓), corresponding to

R and L states, d̃L = cos θd↑ − sin θd↓, d̃R = sin θd↑ +
cos θd↓, c̃kL = cos θck↑−sin θck↓, c̃kR = sin θck↑+cos θck↓
with cos(2θ) = − 4ε√

4(tc)2+(4ε)2
and 4ε = ε̃L − ε̃R, the

Hamiltonian of the system can be rewritten as:

H =
∑
kσ

εkc
†
kσckσ +

∑
σ

εdσd
†
σdσ + V

∑
kσ

(c†kσdσ + H.c.)

+ εM (f†↑f↑ −
1

2
) +

∑
σ

(V−σ dσf
†
↑ + V+

σ dσf↑ + H.c.),(3)

where εdσ = (ε̃L+ε̃R)
2 − σ

2

√
4(tc)2 + (4ε)2, V∓↑ =

1√
2
[(λR2 ∓ λR1) sin θ + (λL1 ∓ λL2) cos θ] and V∓↓ =

1√
2
[(λR2 ∓ λR1) cos θ − (λL1 ∓ λL2) sin θ].

The Hamiltonian given in Eq. (3) corresponds to the
mapping of the original problem to one equivalent to a
single spinor QD coupled to fermionic state f↑ and char-
acterized by a mixture of superconducting states, having
p and s-wave symmetries. The amplitudes V+

↑ and V+
↓

correspond to the formation of Cooper pairs in triplet
(d↑f↑) and singlet (d↓f↑) configurations, while the terms
V−↑(↓) give the normal coupling between the QD and f↑

with either spin conservation (V−↑ ) or spin flip (V−↓ ). The

sketch of the equivalent geometry is depicted in Fig.1(b).
In the following discussion, we will consider the case

of the identical QDs, corresponding to ε̃L = ε̃R = εd and
θ = π

4 . The QD states corresponding to the opposite
pseudospins are now simply symmetric and antisymmet-
ric combinations between the orbitals of right and left
QDs:

d↑ =
d̃R + d̃L√

2
and d↓ =

d̃R − d̃L√
2

, (4)

which represent the bonding and antibonding molecu-
lar states with the energies εdσ = εd − σtc, respectively.
Moreover,

V∓↑ =
λR2 + λL1 ∓ (λR1 + λL2)

2
(5)

and

V∓↓ =
λR2 − λL1 ∓ (λR1 − λL2)

2
. (6)

As we are interested in the pairing mediated by MBSs
only, we put tc = 0. As we will see, the communica-
tion between the QDs lead to the splitting of the ABSs

Ψ1 Ψ2

λL1 λL2

λR1λR2

N N
εM

ν ν

a)

εL
~

εR
~

b)

Ψ2f

= εM

Ψ1

ν

f

ν-

ν+

ν-

ν+

εM

εd

εd

dσ

Figure 1. (Color online) (a) The sketch of the considered
system with one-dimensional topological superconductor (1D-

TSC) and nonlocal Majorana bound states (MBSs) Ψj = Ψ†j
(j = 1, 2) at the edges and flanked by a pair of QDs with ener-
gies ε̃L and ε̃R coupled to metallic leads, via the hybridization
V. The nonlocal MBSs couple to the QDs via the amplitudes
λαj (α = L,R) and to each other by the overlap term εM .
The system is characterized by spinless and p-wave super-
conductivity in spin up (↑) channel, due to the large Zeeman
splitting. (b) Mapping of the original system into equivalent
geometry with a single QD with pseudospin degree of free-
dom. The amplitudes V+

↑ and V+
↓ refer to triplet (d↑f↑) and

singlet (d↓f↑) channels of the formation of Cooper pairs spa-
tially split into the orbitals with energies εdσ and εM . The
terms V−↑ and V−↓ stand for pseudospin ballistic and spin flip
transport processes through such orbitals, respectively. The
nonlocal orbital f↑ is formed by a pair of the MBSs.

into ABS-↑ and ABS-↓, and formation of a Majorana
molecule.

We characterize the QDs by their normalized spectral
densities

τ jl (ω) = −ΓIm(〈〈dj ; d†l 〉〉), (7)

where j, l = L,R, 〈〈dj ; d†l 〉〉 are retarded Green’s
functions (GFs) in the frequency domain and Γ =
πV2

∑
k δ(ε − εk) [45]. Performing the pseudospin ro-

tation given by Eq. (4), we get

τLL(RR) (ω) =
1

2
{(τ↑↑ + τ↓↓)∓ (τ↑↓ + τ↓↑)} (8)

and

τRL(LR) (ω) =
1

2
{(τ↑↑ − τ↓↓)∓ (τ↑↓ − τ↓↑)} (9)

for the local and nonlocal QDs densities, respectively.
The presence of the terms τ↑↓(τ↓↑) accounts for the Fano
interference in the pseudospin channels. Conversely, the
QDs d̃L and d̃R interfere to each other, thus forming
τ↑↑ (ω) (bonding) and τ↓↓ (ω) (antibonding) orbitals

τ↑↑(↓↓) (ω) =
1

2
{(τLL + τRR)± (τRL + τLR)} (10)
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Figure 2. (Color online) The Majorana molecule turned-
off scenario. Color maps of the spectral density of the QDs
spanned by ω and εd = ε̃L = ε̃R. Panels (a)-(d) correspond
to the case of a right QD decoupled from MBSs, λL1 = 3Γ
and λL2 = λR1 = λR2 = εM = 0. In panel (a) the density
plot of τLL(ω) demonstrates clearly visible horizontal bright
line, corresponding to the ZBP due to the coupling with the
MBS Ψ1, which is robust against changes in εd [43]. In panel
(b) the spectral density τRR (ω) reveals solely the resonant
level of the right QD, uncoupled to MBSs at ω = εd. In
this regime, Fano interference between the QDs is absent and
τRL (ω) = τLR (ω) = 0. Panels (c) and (d) show τ↑↑ (ω) =
τ↓↓ (ω), and τ↑↓ (ω) = τ↓↑ (ω) respectively, which reveal clear
signatures of constructive and destructive Fano interference.
Panel (e) accounts for the coupling of the left QD to the
overlapping MBSs (λL1 = 3Γ, λL2 = 0.001Γ, λR1 = λR2 = 0
and εM = 2Γ). In this case the density plot for τLL reveals the
transformation of the horizontal bright line, corresponding to
the ZBP, into a bowtie profile, characteristic for split ABSs
[23].

and

τ↑↓(↓↑) (ω) =
1

2
{(τRR − τLL)± (τLR − τRL)}. (11)

To evaluate 〈〈dσ; d†σ′〉〉, we apply the equation-of-
motion method[46] to Eq.(3), which gives:

(ω + i0+)〈〈dσ; d†σ′〉〉 = δσσ′ + 〈〈[dσ,H] ; d†σ′〉〉. (12)

The last term in the Eq.(12) will generate the

anomalous Green functions 〈〈d†σ; d†σ′〉〉. As the
Hamiltonian is quadratic, the system of equations
can be closed and written in the matrix form as
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Figure 3. (Color online) The Majorana molecule turned-on
scenario. Color maps of the spectral density of the QDs
spanned by ω and εd = ε̃L = ε̃R. The parameters of the sys-
tem are λL1 = λR1 = 3Γ, λL2 = λR2 = 1.5Γ and εM = 0.05Γ.
Panel (a) shows the profiles of τLL(ω) = τRR(ω), and reveals
the splitting of the upper and lower arcs due to the formation
of the bonding (ABS-↑) and antibonding (ABS-↓) Andreev
molecular states. The pseudospin lifting in τ↑↑(↓↓) (ω) is at-
tributed to the Fano interference between τLL(RR) (ω) and
τLR(RL) (ω), which appears in panel (b). Formation of the
aforementioned molecular states is even more clearly visible
in the panels (c) and (d), corresponding to τ↑↑ (ω) and τ↓↓ (ω),
where at the novel half-bowtie-like structures are formed. In
this regime τ↑↓ (ω) = τ↑↓ (ω) = 0, and Majorana molecular
states are resolved in the pseudospin basis.

Aσ (ω) ( 〈〈dσ; d†σ〉〉 〈〈dσ̄; d†σ〉〉 〈〈d†σ; d†σ〉〉 〈〈d
†
σ̄; d†σ〉〉)T =

(1 0 0 0 )T , with

Aσ (ω) =

 aσ (ω) −kσσ̄2− (ω) kσσ1− (ω) kσσ̄1− (ω)
−kσ̄σ2− (ω) aσ̄ (ω) kσ̄σ1− (ω) kσ̄σ̄1− (ω)
kσσ1+ (ω) kσσ̄1+ (ω) bσ (ω) −kσσ̄2+ (ω)
kσ̄σ1+ (ω) kσ̄σ̄1+ (ω) −kσ̄σ2+ (ω) bσ̄ (ω)

 ,
(13)

where σ̄ = −σ,kσσ
′

1∓ (ω) = V−σ V+
σ′(ω∓εM )−1 +V−σ′V+

σ (ω±
εM )−1,kσσ

′

2∓ (ω) = V−σ V−σ′(ω∓εM )−1 +V+
σ V+

σ′(ω±εM )−1,
aσ (ω) = ω−εdσ−kσσ2−+iΓ and bσ (ω) = ω+εdσ−kσσ2++iΓ.

Results and Discussion.—We assume the temperature
T = 0K and put Γ = 40µeV [43] as the energy scale
of the model parameters of the system. Our aim is to
investigate the spectral function of the considered system
defined by the Eq. (7).

To better understand the situation qualitatively, we
start from the geometry wherein only the left QD is cou-
pled to MBSs, i.e, from the Majorana molecule turned-off
scenario. We present the results for both the case of iso-
lated highly nonlocal MBS [43] (Fig.2(a)) and the case of
overlapping MBSs (Fig.2(e)). For both cases we present
the 2D plots of the spectral functions in the ω and εd
axes.

Fig.2(a) shows the spectral function corresponding to
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the left QD, τLL (ω) in the situation, when it is coupled
only to the closest MBS (λL1 = 3Γ and λR1 = λR2 =
λL2 = εM = 0). In perfect agreement with the Ref.[43],
one can see the bright plateau at ω = 0, corresponding to
the ZBP in the conductance, which is robust against the
εd perturbations and is provided by the presence of highly
nonlocal MBSs. The upper and lower arcs correspond
to the QD states split by the coupling to the MBS Ψ1.
Naturally, as right QD is decoupled from both MBSs, its
spectral function τRR (ω), shown in the Fig.2(b) is trivial
and consists of a single peak corresponding to ω = εd.
As the QDs do not communicate through the 1D-TSC,
τRL (ω) = τLR (ω) = 0.

In the pseudospin basis, the latter condition, according
to the Eqs.(5,6,10,11), imposes the pseudospin degener-
acy, so that τ↑↑ (ω) = τ↓↓ (ω) (shown in the Fig.2(c)),
and τ↓↑ (ω) = τ↑↓ (ω) (Fig.2(d)), |V−↑ | = |V

−
↓ | and |V+

↑ | =
|V+
↓ |, and, besides, |V−σ | = |V+

σ |. Pseudospin degener-
acy, in particular, means, that singlet and triplet Cooper
pairing contribute to the Hamiltonian on the equal foot-
ing. The fact, that τ↓↑(↑↓) (ω) 6= 0 means, that two
pseudospin channels, corresponding to bonding and an-
tibonding states, are non-orthogonal, and thus Majorana
molecule is not formed. Spectral functions in the pseu-
dospin basis are presented in the Figs.2(c)-(d), and reveal
clear signatures of the Fano interference peaks and dips.

If one accounts for the coupling of the left QD to the
MBS Ψ2 (λL2 = 0.001Γ), with finite overlap between the
states Ψ1 and Ψ2 (εM = 2Γ), but keeps right QD de-
coupled (λR1 = λR2 = 0), the spectral function τLL (ω)
reveals characteristic bowtie profile [23, 24] (also referred
as double fork [44]) instead of a robust ZBP. This cor-
responds to the presence in the system of a pair of triv-
ial ABSs, as it is shown in the Fig.2(e). Other spec-
tral functions remain qualitatively the same. The condi-
tion of pseudospin degeneracy still holds and a Majorana
molecule is not formed.

Now, we can consider the symmetric case sketched in
Fig.1(a) with λL1 = λR1 = 3Γ, λL2 = λR2 = 1.5Γ and
εM = 0.05Γ, corresponding to The Majorana molecule
turned-on scenario: both QDs are coupled to both MBSs,
and thus interfere with each other through the 1D-TSC.
In this situation, a bowtie-like signature emerges in the
spectral density τLL(RR) (ω), as it can be seen from
Fig. 3(a). Moreover, the features characteristic to usual
molecular binding can be seen, as upper and lower arcs

provided by the coupling of the QD states, visible in
Fig. 2(e), become split in Fig. 3(a) due to the TSC-
mediated overlap of the states of right and left QDs. Nat-
urally, this leads to τRL (ω) = τLR (ω) 6= 0 (see Fig. 3(b)),
which, according to the Eqs. (10) and (11) means that
τ↑↑ (ω) 6= τ↓↓ and τ↓↑(↑↓) (ω) = 0.

Physically, this means that spin up and spin down
channels become decoupled in the pseudospin basis and
a Majorana molecule, which is a bonding or antibond-
ing superposition of ABSs is formed. The latter manifest
themselves in the spectral profiles of τ↑↑(ω) and τ↓↓(ω)
shown in Figs.3(c) and (d), respectively as half-bowtie
signatures. They are consequences of the Fano inter-
ference between τLR(ω) and τRL(ω), shown in Fig.3(b).
Note that the latter contains both peaks and pronounced
Fano dips, which interfere constructively or destructively
depending on the sign in the Eqs. (10) and (11), with
the peaks in the spectral densities of τLL(ω) and τRR(ω),
which gives in the end the mentioned half-bowtie profiles.

In terms of the effective Hamiltonian (Eq. 3), the con-
sidered regime corresponds to the case, when |V−↓ | 6= 0,

|V−↑ | = 0, |V+
↓ | = 0 and |V+

↑ | 6= 0. This means that

only triplet-type Cooper pairing (|V+
↑ | 6= 0) and normal

electron tunneling with spin flip (|V−↓ | 6= 0) contribute
to the transport assisted by the formation of Majorana
molecules.

Conclusions.—In summary, we have proposed the con-
cept of a Majorana molecule, a bonding or antibonding
state appearing in the system of a pair of QDs flank-
ing a 1D-TSC nanowire. The coupling between QDs
is achieved via the channel provided by the presence
of MBSs. It is demonstrated that these states mani-
fest themselves via half-bowtie spectral fingerprints in the
spectral density of states, which are qualitatively differ-
ent from full bowtie profiles, characteristic to the case of
a single QD.
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