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ABSTRACT

We present a mathematical analysis of borehole stability
when drilling through rock salt. First, we consider an elastic
transversely isotropic medium and find the optimal mud
weight as a function of the vertical overburden and horizon-
tal tectonic stresses. Then, the Zener and Maxwell mechani-
cal models are used to model the effects of transient and
steady-state creep flow, respectively, in isotropic media.
Under certain conditions such as the absence of dilatational
anelasticity, the Burger model can be used to describe the
steady-state flow, including transient creep effects. The type
of creep is regulated by critical octahedral-stress values that
depend on temperature and pressure. A typical drilling re-
sults in conditions of plane strain, whose solution is given
by Kirsch’s equations. In this case, the borehole is subject to
minimum and maximum horizontal stresses, which differ
from the vertical stress. The analysis provides expressions
for the shape of the borehole-cross section, the borehole-
wall closure time, and the optimal mud weight to avoid wall
collapse or expansion. It is shown that an anisotropic state
of tectonic stress may require mud pressures exceeding the
overburden stress and that the calculation should consider
the joint optimization of the shape and area of the borehole
cross section.

INTRODUCTION

Exploration areas where massive salt bodies are dominating fea-
ures constitute a challenge for drilling operations �Bradley, 1978;
nfante and Chenevert, 1986; Kim, 1988, Leblanc, 1994a, b, c�.
epending on well conditions �tectonic stress, temperature, and
ud weight�, salt shows transient and steady-state creep behavior,
hich may cause hole closure or lost circulation. Rock salt be-
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F31
aves differently from other rocks in that it has the ability to creep
nd flow significantly with time, depending on the stress and tem-
erature conditions. Creep and flow lead to borehole deformations
hich may cause complications such as stuck pipe and casing col-

apse �after drilling and cementation, salt creep and subsequent
asing collapse may occur�. It is therefore clear that significant
enefits can be obtained from quantifying the magnitude and tim-
ng of salt loading �Willson, 2003�.

Rock salt mainly flows when subjected to distortional or devia-
oric stress. Under isotropic stress �often called hydrostatic stress�,
ock salt does not flow appreciably even though it will deform elas-
ically �small strains or deformations�. It flows under isotropic
tress to achieve �minor� porosity reduction. Because the deforma-
ion is small for isotropic stresses, the major flow deformation is
ssociated with the deviatoric stress. The magnitude of the devia-
oric stress is proportional to the octahedral stress �see below�, a
calar that is invariant under coordinate transformations and whose
alue determines the character of the flow of the rock salt around
he borehole.

Our objective is to present a theoretical study of the problem of
tability of a borehole drilled through a salt formation with the pur-
ose of evaluating the optimal mud weight and avoiding creep ef-
ects. Early theoretical studies on borehole stability were based on
odels developed for underground salt cavities �e.g., Serata and
loyna, 1960�. Infante and Chenevert �1986� use an elastic rheol-
gy to obtain the optimal mud weight for boreholes. Their analysis
oes not consider creep flow and assumes that the medium is iso-
ropic and that the �horizontal� tectonic stress is also isotropic and
qual to the overburden stress. Under these conditions, the solution
as azimuthal symmetry around the borehole axis.

We do not consider poroelastic and chemical effects, although
he former can be important in some situations when pore pressure
nduced by anisotropy in rock properties and stress distribution be-
ome significant �Abouleisman et al., 1996; Abouleisman and Cui,
998�. However, the reality is that porosity effects are small and
egligible in most rock salt formations, at least where data are
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F32 Carcione et al.
vailable, implying that stress induced by fluid invasion from the
ell into the formation can be neglected. The extremely low per-
eability of salt clearly demonstrates that. Salt is even less perme-

ble than the most impermeable shales, which have permeabilities
ess than nano Darcies. Hence, poroelastic effects are not important
or salt, at least for the initial behavior. The porosity of the salt
crack porosity when the salt goes to failure� may become impor-
ant when the rock salt has extruded large distances and begins to
ail, but our focus here is the behavior of the salt during drilling
nd before casing.

Near failure, permeability may play a role when the diffusion of
he pore fluid creates stress-induced poroelastic effects. Ghassemi
nd Diek �2001� have shown that, although chemical osmosis in
hales reduces the pore pressure and stabilizes the borehole, ion
iffusion into the formation may induce tensile radial stress. An
mportant extension of the theory is applying the generalization to
nclined boreholes. When the principal stresses are not vertical or
orizontal, corresponding to the axis of the borehole �and the nor-
al to the formation�, the problem becomes truly 3D, because gen-

rally, all the shear components are different from zero �e.g., Cui et
l; 1997; Ekbote and Abouleisman, 2003; Roegiers, 2002�.

In this work, we generalize Infante and Chenevert’s approach in
everal respects. First, we consider a transversely isotropic elastic
edium and a cylindrical stress state; that is, one in which there is

qual horizontal principal stress but a different vertical principal
tress. The solution for this case also has azimuthal symmetry. Sec-
nd, we assume an isotropic viscoelastic medium and a true tri-
xial stress state, i.e., the borehole is subject to minimum and
aximum horizontal — tectonic — principal stresses, which differ

rom the vertical — overburden — principal stresses. In this case,
he solution does not exhibit azimuthal symmetry and describes
ransient and steady-state creep flow and elliptical deformations of
he borehole cross section.

We consider an unbounded homogeneous layer of rock salt and
borehole of infinite length with an initial circular cross section.
rilling a borehole under constant tectonic-stress conditions is

imilar to a creep experiment, so the problem is to obtain the cor-
esponding creep functions or time-varying strains. One principal-
tress direction is vertical, and the problem becomes one of plane
train if the medium has a vertical symmetry axis, i.e., a horizon-
ally layered isotropic medium or a transversely isotropic medium
ith a vertical symmetry �polar� axis.
There is experimental evidence that linear viscoelastic models

re appropriate to describe the behavior of rock salt. Gangi �1981,
983�, among others, obtained exponential functions of time using
inear viscoelastic models to fit data for synthetic and natural rock
alt. Some of these experiments lasted more than 600 hours
25 days�. The viscoelastic creep — with steady-state creep — of
alt can be described by a Burger’s model which includes the tran-
ient creep of the Zener model, which does not exhibit steady-state
reep, and the steady-state creep of a Maxwell model. The Burger
odel, corresponding to the rigidity modulus, is shown in Figure 1

the Maxwell and Zener model are particular cases of the Burger
odel as demonstrated in the figure caption�. The Zener model is

sed under pressure and temperature conditions, where the rock
ehaves as a viscoelastic solid. The choice depends on the value of
he elastic octahedral stress, which determines the limit separating
ransient flow from unrecoverable steady-state flow. When the hole
onditions are such that the octahedral stress exceeds a given
hreshold �the elastic octahedral-stress limit, see below�, we use the
axwell model, which describes the behavior of a viscoelastic
uid.
The procedure to obtain the optimal mud weight and borehole

hrinkage �reduction of the hole radius� is to calculate how the
tress state and octahedral stress vary after drilling. The analysis
lso yields the borehole-section deformation in the case of differ-
ntial horizontal stress. As mentioned above, the goal is to obtain
he time-varying strains or creep functions. For isotropic viscoelas-
ic media, there are two creep functions, related to the two funda-

ental deformations of the medium, i.e., dilatations and distor-
ions. These basic creep functions correspond to the bulk and shear

oduli and viscosities, etc. In the plane-strain �or plane-stress�
roblem, the strain components depend on combinations of these
asic creep functions. The corresponding creep coefficients are cal-
ulated using the method of partial fractions in the frequency do-
ain.

MEAN AND OCTAHEDRAL STRESSES

We use the octahedral-stress theory to describe the deformation
f the borehole in the salt formation. In cylindrical coordinates
r,�,z�, we define the mean stress

�m =
1

3
��rr + ��� + �zz� , �1�

nd the octahedral stress

�o =
1

3
���rr − ����2 + ��rr − �zz�2 + ���� − �zz�2 + 6��r�

2 + �rz
2 + ��z

2 � ,

�2�

here � equals the stress components. The borehole problem can
e treated as a state of plane strain, where the vertical displacement
s constant with radial position, and the horizontal displacements
re independent of z. In a plane state of strain, the strain compo-
ents �rz = ��z = 0. As a consequence, applying Hooke’s law, the
tress components �rz and ��z vanish, at least for media having

igure 1. Burger’s viscoelastic model for the shear modulus. It is
n electric-circuit analog for the mechanical system with stress
nalogous to current and strain analogous to voltage �or potential�.
he stress-strain relations of each constituent are: �1 = �1�1, �2

�1�̇1, � = �2�̇2 and � = �2�3. Using the relations � = �1 + �2

�3 and � = �1 + �2, we obtain equation 100. The Zener model is
btained for �2 → � �i.e., when �̇2 → 0�; the Kelvin-Voigt model
s obtained for �2 → � �when �3 → 0� and �2 → � �when �̇2

0�; and the Maxwell model is obtained for �1 → � �when �1

0�, and � → � �when �̇ → 0�.
1 1
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Borehole stability in salt formations F33
rthorhombic and higher symmetries �e.g., Charlez, 1991�. The
tresses defined in equations 1 and 2 are invariants because they
re independent of the choice of reference axis �e.g., Pande et al.,
990�.

Before drilling, or at r → �, �far-field stresses�, we have

�rr =
��H + �h�

2
+

��H − �h�
2

cos 2� ,

��� =
��H + �h�

2
−

��H − �h�
2

cos 2� ,

�r� = −
��H − �h�

2
sin 2� ,

�zz = �v. �3�

e.g., Jaeger and Cook, 1969; Charlez, 1991�, where �H and �h are
he maximum and minimum horizontal �tectonic� stresses �at �

0 and � = �/2, respectively�, and the vertical overburden stress,
v, can be determined from the density log as

�v = − g�
0

z

	�z�dz , �4�

here 	 is the density and g is the acceleration of gravity.
Figure 2 shows the octahedral stress as a function of the octahe-

ral strain. When the stress vector associated with the normal to the
ctahedral plane is generated, its components in the principal di-
ections are the eigenstresses �or principal stresses�. Alternatively,
t has two components — one normal to the plane, which has a

agnitude equal to the mean stress and one tangential to the plane,
hich has a magnitude equal to the octahedral stress. The latter is
roportional to the magnitude of the deviatoric stress.

The rock starts to yield when �o exceeds the elastic octahedral-
tress limit �oe. Below this limit, there is gradual creep deformation
hen constant stress is applied. Then, if �o is lower than the elastic

imit �oe, the material follows a viscoelastic stress-strain relation. If
o lies between �oe and the plastic limit �op, steady-state flow oc-
urs. Beyond �op failure is likely to occur.

Before drilling, the mean and octahedral stresses are obtained by
ubstituting equation 3 into equations 1 and 2. It gives

�m =
1

3
��H + �h + �v� , �5�

nd

�o =
�2

3
���H + �h

2
− �v�2

+ 3��H − �h

2
�2

. �6�

or brevity, we use the following notation in the case of axisymme-
ry: �r = �rr, �� = ���, �z = �zz, �r = �rr, �� = ���, and �z = �zz.

ELASTIC STRESSES IN
ANISOTROPIC ROCK

There are three main factors to consider rock salt an anisotropic
edium. First, rock salt crystals are intrinsically anisotropic with
ubic symmetry �Sun et al., 1991�. Second, the deformation of salt
uring flow leads to preferred lattice orientation of the constituent
rystals, leading to effective transverse isotropy, according to
aymer et al. �2000�. Third, transverse isotropy can be induced by

he tectonic stress.
The combination of these three effects may lead to lower sym-
etries than transverse isotropy, depending on the orientation of

he princpal axes related to each cause. In this section, we assume
h = �H and a transversely isotropic medium whose symmetry axis

s parallel to the borehole axis, and we generalize the equations
iven by Serata and Gloyna �1960� and Infante and Chenevert
1986�.

The strain-stress relations are

�r = s11�r + s12�� + s13�z,

�� = s12�r + s11�� + s13�z,

igure 2. �a� Mean and octahedral stresses and �b� octahedral stress
ersus octahedral strain. The octahedral-stress vector, which is a
easure of the shear deformation, lies on the octahedral plane. The

ormal to this surface makes the same angle with the direction of
he three principal stresses �1, �2, and �3. The octahedral stress is
roportional to ���1 − �2�2 + ��1 − �3�2 + ��2 − �3�2 while the oc-
aedral strain is proportional to ���1 − �2�2 + ��1 − �3�2 + ��2 − �3�2,
here � , � , and � are the principal strains.
1 2 3
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F34 Carcione et al.
�z = s13��r + ��� + s33�z, �7�

here

s11 =
1

2
� c33

c2 +
1

c11 − c12
� ,

s12 =
1

2
� c33

c2 −
1

c11 − c12
� ,

s13 = −
c13

c2 ,

nd

s33 =
c11 + c12

c2 �8�

re the compliance coefficients, cij are the elastic stiffnesses, and

c2 = c33�c11 + c12� − 2c13
2 �9�

Auld, 1991�.
In the isotropic limit, we have

s11 = s33 =
1

Y
, s12 = s13 = −




Y
, �10�

here Y and 
 are the Young modulus and Poisson ratio, given by

Y =
9k�

3k + �
, and


 =
3k − 2�

2�3k + ��
=

1

2
�1 −

1

1/3 + k/�
� , �11�

here k and � are the bulk and shear moduli, respectively. Because
h = �H, �r� = 0 and the equilibrium condition before drilling is

��r

�r
=

�� − �r

r
, �12�

nd the strain components are

�r =
�ur

�r
and �� =

ur

r
�13�

Jaeger and Cook, 1969; Karasudhi, 1991�, where ur is the radial
isplacement.

Assuming that the stress in the z-direction is not affected by the
rilling, the third equation 7 yields

�z = −
s13

s33
��r + ��� + C , �14�

here C = �z/s33 is a constant. Substituting equation 14 into the
rst two equations of 7 and using 13 gives
�ur

�r
= �s11 − a��r + �s12 − a��� + s13C , �15�

nd

ur

r
= �s12 − a��r + �s11 − a��� + s13C , �16�

here

a =
s13

2

s33
. �17�

ifferentiating equation 16 with respect to r, and using equation 15
ields

��r − ����s11 − s12� = r��s12 − a�
��r

�r
+ �s11 − a�

���

�r
� .

�18�

ubstituting this equation into equation 12 gives

��r

�r
+

���

�r
= 0. �19�

ntegration of equation 19 with respect to r gives

�r + �� = 2C1, �20�

here C1 is an integration constant. From equation 12, we have

��r

�r
=

1

r
�− 2�r + 2C1� . �21�

ntegration of equation 21 results in

�r = C1 +
C2

r2 , �22�

here C2 is another integration constant. Using equations 14 and
0, we obtain the other two stress components,

�� = C1 −
C2

r2 �23�

nd

�z = −
2s13C1

s33
+ C . �24�

hese equations have the same functional form as those for isotro-
ic rock salt �Infante and Chenevert, 1986; Cristescu, 1989�, al-
hough this is not obvious from the beginning mathematical view-
oint. This equivalence results from the azimuthal symmetry in the
orizontal plane.
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Borehole stability in salt formations F35
The boundary conditions are

�r = − p at r = r0,

�r = �� = �h at r = � ,

�z = �v at r = � �25�

see equation 3�, where r0 is the borehole radius and p is the well
ressure. Using equations 22–24, we obtain C1 = �h, C2 = −�p
�h�r0

2, and

�r = �h − �p + �h�� r0

r
�2

,

�� = �h + �p + �h�� r0

r
�2

,

nd

�z = �v. �26�

herefore, the strain components in equation 7 are given by

�r =
1

c2 �c33�h − c13�v� −
1

c11 − c12
�p + �h�� r0

r
�2

,

�� =
1

c2 �c33�h − c13�v� +
1

c11 − c12
�p + �h�� r0

r
�2

,

nd

�z =
1

c2 	− 2c13�h + �c11 + c12��v
 . �27�

here we have used equations 8. The radial displacement is ob-
ained from equation 13:

ur =
1

c2 �c33�h − c13�v�r +
1

c11 − c12
�p + �h�� r0

2

r
� .

�28�

he first term corresponds to the the displacement before drilling
hen �r = �� = �h and �z = �v. After drilling, the relative dis-
lacement is given by the second term.

The mean and octahedral stresses in equations 1 and 2, are
iven, respectively, by equation 5 and

�o =
�2

3
�3�p + �h�2� r0

r
�4

+ ��h − �v�2. �29�

he maximum octahedral stress occurs at the borehole wall, and
his value should be less than �oe, the octahedral shear stress limit
or elastic �transient� behavior. Hence, the borehole pressure to
aintain the elastic behavior of the salt formation should satisfy
�h − �3

2
�oe

2 −
1

3
��h − �v�2

� − p � �h + �3

2
�oe

2 −
1

3
��h − �v�2. �30�

his range of wellbore pressures is the same as the isotropic model
Infante and Chenevert, 1986�. The differences of the isotropic
ase are in the expressions of the radial displacement and strain
omponents, which depend on the values of the elastic constants.
he borehole will be stabilized perfectly for an isotropic �or even
nisotropic� medium when the borehole pressure is equal to the
sotropic tectonic stress. Obviously, this will not apply to an aniso-
ropic state of stress if the medium is linearly viscoelastic at all oc-
ahedral stresses. It will be stabilized if the medium is elastic below
he �oe octahedral stress. There will be a range of borehole pres-
ures to keep the octahedral stress below �oe or �op for an isotropic
edium under anisotropic stress even though the range would be

ifferent than that for the anisotropic medium.

ransient-creep effects in isotropic rock

Viscoelastic flow �creep� is present at all levels of octahedral
tress but becomes important when �o exceeds the elastic octahe-
ral stress �oe. Therefore, we assume that below this level we only
ave transient creep. The �o used to apply this criterion is obtained
rom equation 75 �see below�, i.e., the maximum octahedral stress
t the borehole wall after drilling. In order to include transient
reep, we consider the generalized Zener viscoelastic strain-stress
elation �Ben-Menahem and Singh, 1981; Klausner, 1991; Car-
ione, 2001�. This model gives relaxation and creep functions in
greement with experiments �Zener, 1948�. We define the devia-
oric stress and strain tensors as

�ij = �ij −
1

3
�ij �31�

nd

dij = �ij −
1

3
�ij , �32�

espectively, where, according to the Einstein summation conven-
ion of repeated indices, � = �ii and � = �ii are the traces of the
tress and strain tensors.

The one-mechanism 3D form for isotropic viscoelastic media is

3k0�� + ��
�1��̇� = � + ��

�1��̇ �33�

nd

2�0�dij + ��
�2�ḋij� = �ij + ��

�2��̇ij �34�

Ben-Menahem and Singh, 1981�, where k0 and �0 are the relaxed
ulk and shear moduli; ��

�m� and ��
�m� are material relaxation times,

orresponding to dilatational �m = 1� and shear �m = 2� deforma-
ions; and a dot above a variable denotes time differentiation. The
nrelaxed moduli are
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k� = � ��
�1�

��
�1��k0, and �� = � ��

�2�

��
�2���0, �35�

ith ��
�m� � ��

�m�.
In the frequency domain, the time derivative is replaced by i�,

here � is the angular frequency, and equations 33 and 34 take the
orm

� =
1

3k0
�1 + i���

�1�

1 + i���
�1��� �

�

3k
�36�

nd

dij =
1

2�0
�1 + i���

�2�

1 + i���
�2���ij �

�ij

2�
, �37�

here k��� and ���� are the bulk and shear complex moduli, re-
pectively.

The relaxation times can be expressed as

��
�m� =

�0

Q0
�m� 	�Q0

�m�2 + 1 + 1
, ��
�m� = ��

�m� −
2�0

Q0
�m� ,

�38�

here �0 is a relaxation time such that �0 = 1/�0 is the center fre-
uency of the relaxation peak and Q0

�m� is the minimum quality fac-
or, which can be obtained from the experimental relaxation times.
he overall dilatational and shear quality factors are given by Qd

Re�k�/Im�k� and Qs = Re���/Im���, respectively �Ben-Mena-
em and Singh, 1981; Carcione, 2001�, where Re and Im denote
eal and imaginary parts.

The stress components after drilling for an elastic medium have
een obtained by Kirsch �1898� �see Jaeger and Cook, �1969�;
ristescu, �1989�; and Charlez, �1991��:

�rr =
��H + �h�

2
�1 −

r0
2

r2� +
��H − �h�

2

��1 −
4r0

2

r2 +
3r0

4

r4 �cos 2� −
pr0

2

r2 ,

��� =
��H + �h�

2
�1 +

r0
2

r2� −
��H − �h�

2

��1 +
3r0

4

r4 �cos 2� +
pr0

2

r2 ,

�r� = −
��H − �h�

2
�1 +

2r0
2

r2 −
3r0

4

r4 �sin 2� ,

nd

�zz = �v − 
��H − �h�
2r0

2

r2 cos 2� . �39�

t the borehole wall �r = r � and after drilling,
0
�rr = − p ,

��� = ��H + �h� − 2��H − �h�cos 2� + p ,

�r� = 0,

nd

�zz = �v − 2
��H − �h�cos 2� . �40�

ote that ����� = 0� = 3�h − �H + p � ����� = �/2� = 3�H

�h + p, defining the minimum and maximum-stress concentra-
ions at � = 0 and � = �/2, respectively.

The relative stresses are obtained by subtracting equations 3
rom equations 39:

�rr = −
��H + �h�

2

r0
2

r2 −
��H − �h�

2
�4r0

2

r2 −
3r0

4

r4 �cos 2�

−
pr0

2

r2 ,

��� =
��H + �h�

2

r0
2

r2 −
��H − �h�

2
�3r0

4

r4 �cos 2� +
pr0

2

r2 ,

�r� = −
��H − �h�

2
�2r0

2

r2 −
3r0

4

r4 �sin 2� ,

nd

�zz = − 
��H − �h��2r0
2

r2 �cos 2� . �41�

nvoking the correspondence principle �Ben-Menahem and Singh,
981; Carcione, 2001�, the viscoelastic frequency-domain, strain-
tress relations have the same form of the elastic, time-domain,
train-stress relations. Assuming isotropy, the frequency-domain
train-stress relations are

�rr =
1

Y
	�rr − 
���� + �zz�
 ,

��� =
1

Y
	��� − 
��rr + �zz�
 ,

�zz =
1

Y
	�zz − 
��rr + ����
 ,

�r� =
1

2�
�r� �42�

Ben-Menahem and Singh, 1981�, where here Y and 
 are complex
nd frequency dependent, through equations 11, 36, and 37. Be-
ause for plane strain, �zz = 0, equations 42 become

�rr =
1

2�
�rr −




2�
��rr + ����

=
1

4�
��rr − ���� +

3

4
� 1

� + 3k
���rr + ���� ,
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��� =
1

2�
��� −




2�
��rr + ����

=
1

4�
���� − �rr� +

3

4
� 1

� + 3k
���rr + ���� ,

nd

�r� =
1

2�
�r�, �43�

here we have used equation 11. From equations 36 and 37 and
sing partial fractions, we have

1

�
=

1

�0
�1 + i���

�2�

1 + i���
�2�� , �44�

1

� + 3k
= ��0�1 + i���

�2�

1 + i���
�2�� + 3k0�1 + i���

�1�

1 + i���
�1���−1

=
1

�� + 3k�

+
�1

b1��1 + i��
+

�2

b2��2 + i��
,

�45�

here

b1 =
�1��1 − �2�

a + b�1 − c�1
2 , b2 =

�2��2 − �1�
a + b�2 − c�2

2 ,

a = −
1

3k0��
�1���

�2� + �0��
�2���

�1� ,

b = − a���
�1� + ��

�2��, c = − a��
�1���

�2�,

�1 = −
a

2
�d − �d2 +

4�3k0 + �0�
a

� ,

�2 = −
a

2
�d + �d2 +

4�3k0 + �0�
a

�
nd

d = 3k0���
�1� + ��

�2�� + �0���
�2� + ��

�1�� . �46�

he quantity inside the square root in equation 46 can be shown to
e always positive under the conditions k0 � 0, �0 � 0, ��

�m�

��
�m�, ��

�m� � 0, and ��
�m� � 0.

The shear modulus is related to the creep function �2 by

1

�
= F��̇2� �47�

Carcione, 2001�, where F takes Fourier transform from the time
omain to the frequency domain, and
�2 =
1

�0
�1 − �1 −

��
�2�

��
�2��exp�− t/��

�2���H�t� , �48�

here H�t� is the Heaviside function. A Fourier transform of equa-
ion 45 to the time domain gives the response function,

��t� =
�t�

�� + 3k�

+ ���1

b1
�exp�− �1t�

+ ��2

b2
�exp�− �2t��H�t� , �49�

here �t� is Dirac’s function. The corresponding creep function is

��t� = � 1

�� + 3k�

+
1

b1
	1 − exp�− �1t�


+
1

b2
	1 − exp�− �2t�
H�t� , �50�

uch that �̇ = �, and the following relation holds

1

� + 3k
= F��̇� . �51�

Hence, the time-domain strain-stress relations in equation 43 are

�rr =
1

4
�2 � ��̇rr − �̇��� +

3

4
� � ��̇rr + �̇��� ,

��� =
1

4
�2 � ��̇�� − �̇rr� +

3

4
� � ��̇rr + �̇��� ,

nd

�r� =
1

2
�2 � �̇r�, �52�

here the � denotes time convolution. In a creep process, the
tresses remain constant and have the form �0H�t�, where �0 is
onstant. It follows that equations 52 can be written as

�rr =
1

4
�2��rr − ���� +

3

4
���rr + ���� ,

��� =
1

4
�2���� − �rr� +

3

4
���rr + ���� ,

nd

�r� =
1

2
�2�r�, �53�

here �rr, ���, and �r� are given by equation 39 to obtain the total
train components, and by equation 41 to obtain the relative-strain
omponents.
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The strain-displacement relations in cylindrical coordinates are

�rr =
�ur

�r
,

��� =
1

r
�ur +

�u�

��
� ,

nd

�r� =
1

2
�1

r
� �ur

��
− u�� +

�u�

�r
� . �54�

sing the relative stress components in equation 41 and integrating
he first equation 54 yields

ur =
1

4
�2���H + �h�� r0

2

r
� + ��H − �h��2r0

2

r
−

r0
4

r3�cos 2�

+
2pr0

2

r
 +

3

2
����H − �h�� r0

2

r
�cos 2�� +

df���
d�

,

�55�

here f��� depends only on �. The second equation 54 implies

u� = � �r��� − ur�d� . �56�

sing equations 53 and 55, we obtain

u� = −
1

4
��H − �h�� r0

2

r
���2� r0

2

r2� + 6��sin 2� − f���

+ g�r� , �57�

here g�r� is independent of �. It can be verified that �r� calculated
rom equations 54 and 53 �see equation 41� are equivalent if

d2f���
d�2 + f − g +

dg�r�
dr

= 0.

he solution is

f��� = �1 sin � + �2 cos � − �0,

and g�r� = �3 exp�r� − �0,

here the constants equal �. These constants must be zero, be-
ause the relative displacements should vanish at r → �. Thus, the
elative displacements are

ur�r,�,t� =
1

4
�2�t����H + �h�� r0

2

r
�

+ ��H − �h��2r0
2

r
−

r0
4

r3�cos 2� +
2pr0

2

r


+
3

2
��t����H − �h�� r0

2

r
�cos 2�� �58�

nd

u��r,�,t� = −
1

4
��H − �h�� r0

2

r
���2�t�� r0

2

r2� + 6��t��sin 2� ,

�59�

here �2 and � are given by equations 48 and 50, respectively.
If t → �, �2 → 1/�0, � → 1/��0 + 3k0�, and the relative dis-

lacements at the borehole wall satisfy

ur�r0,��
r0

=
1

4�0
��H + �h + 2p�

+
7�0 + 3k0

4�0��0 + 3k0�
��H − �h�cos 2� �60�

nd

u��r0,��
r0

= −
7�0 + 3k0

4�0��0 + 3k0�
��H − �h�sin 2� . �61�

ptimal mud weight and borehole shrinkage

Let us calculate the optimal mud weights or optimal borehole
ressures to avoid borehole closure. The maximum-stress concen-
ration at the borehole wall occurs at � = �/2, where equations 40
ecome

�rr = − p ,

��� = 3�H − �h + p ,

�r� = 0,

nd

�zz = �v + 2
��H − �h� . �62�

e consider the unrelaxed and the relaxed states. In the latter case,
e should replace 
 by 
0 = 	1 − 1/�1/3 − k0/�0�
/2, i.e., the re-

axed Poisson ratio. The maximum octahedral stress after drilling
s obtained by substituting the preceding equations into equation 2.
his gives the following relation:

− 9�o
2 + 6p2 + 6�3�H − �h�p + 2�3�H − �h − �zz�2

+ 2�3�H − �h��zz = 0, �63�

here �zz is given by equation 62. The maximum octahedral stress
hould be less than �oe, the octahedral-stress limit for unrelaxed
elastic� behavior or less than �or, the octahedral-stress limit for re-
axed behavior if 
 is replaced by its relaxed value 
0. Solving
quation 63 for p, we obtain the following condition for the bore-
ole pressure:
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p1 � − p � p2, �64�

here

1 =
3�H − �h

2

−
1

6
�54�o

2 − 3�3�H − �h�2 − 12�zz
2 + 12�3�H − �h��zz,

�65�

nd

2 =
3�H − �h

2

+
1

6
�54�o

2 − 3�3�H − �h�2 − 12�zz
2 + 12�3�H − �h��zz.

�66�

f �H = �h, we obtain condition equation 30.
In the following, we determine the change in the shape of the

orehole cross section �Cristescu, 1989�. A point in this surface,
ith initial coordinates x0 = r0 cos � and y0 = r0 sin �, has the fol-

owing coordinates at time t:

x�t� = x0 − 	ur�r0,�,t�cos � − u��r0,�,t�sin �


nd

y�t� = y0 − 	ur�r0,�,t�sin � + u��r0,�,t�cos �
 . �67�

e have from equations 58 and 59:

ur�r0,�,t� =
1

4
r0��H + �h + 2p��2

+
1

4
r0��H − �h���2 + 6��cos 2� �68�

nd

u��r0,�,t� = −
1

4
r0��H − �h���2 + 6��sin 2� . �69�

ubstituting these equations into 67 gives

x = r0 cos ��1 −
1

4
��H + �h + 2p��2

−
1

4
��H − �h���2 + 6��� ,

y = r0 sin ��1 −
1

4
��H + �h + 2p��2

+
1

4
��H − �h���2 + 6��� , �70�
hich are the parametric equations of an ellipse. The minor and
ajor semiaxes vary with time and are given by

a�t� = r0�1 −
1

4
��H + �h + 2p��2�t�

−
1

4
��H − �h���2 + 6��t���

nd

b�t� = r0�1 −
1

4
��H + �h + 2p��2�t�

+
1

4
��H − �h���2 + 6��t��� . �71�

he difference between the major and minor semiaxis is

�a�t� = b�t� − a�t� =
r0

2
��H − �h�	�2�t� + 6��t�
 .

�72�

t t = 0 and t = �, the minor semiaxis is

a�0� = r0�1 −
1

4��

��H + �h + 2p�

−
7�� + 3k�

4����� + 3k��
��H − �h�� ,

a��� = r0�1 −
1

4�0
��H + �h + 2p�

−
7�0 + 3k0

4�0��0 + 3k0�
��H − �h�� . �73�

he major semiaxis is

b�0� = r0�1 −
1

4��

��H + �h + 2p�

+
7�� + 3k�

4����� + 3k��
��H − �h��

nd

b��� = r0�1 −
1

4�0
��H + �h + 2p�

+
7�0 + 3k0

4�0��0 + 3k0�
��H − �h�� . �74�

he viscoelastic moduli can be obtained from creep experiments.
he more realistic test is the triaxial one, which brings the rock
ery close to the stress state existing around boreholes. A cylindri-
al sample is first subjected to hydrostatic pressure, and then the
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xial stress is increased and held constant for a very long time.
uring this interval, the variations of the axial and azimuthal

trains are recorded. The relaxed and unrelaxed moduli can be ob-
ained from the strain curves. In some cases, creep can be studied
n situ �e.g., Ladanyi and Gill, 1983�.

teady-state creep effects in isotropic rock

Steady-state creep or significant viscoelastic flow can be de-
cribed by using the Maxwell viscoelastic model �Ben-Menahem
nd Singh, 1981; Klausner, 1991; Carcione, 2001�. We describe the
eformation process by using the transient model of the previous
ection when �o � �oe, and the Maxwell model when �o � �oe,
here �o is the maximum octahedral stress obtained from equation
3, and assuming that the borehole pressure is equal to the vertical
tress −�v. We obtain

�o =
�2

3
��3�H − �h − 2�v�2 + 4
2��H − �h�2 − 2
�3�H − �h − 2�v���H − �h� .

�75�

f �H = �h, we have �o = �8��h − �v�/3.
We consider again the plane-strain equation 43:

�rr =
1

4�
��rr − ���� +

3

4
� 1

� + 3k
���rr + ���� ,

��� =
1

4�
���� − �rr� +

3

4
� 1

� + 3k
���rr + ���� ,

nd

�r� =
1

2�
�r�. �76�

he corresponding complex compliance moduli are

1

�
=

1

��

+
1

i���

�77�

nd

1

k
=

1

k�

+
1

i��k
, �78�

here �� and k� are the unrelaxed moduli and �� and �k are vis-
osity parameters related to the shear and dilatational steady-state
reep rates. Note that the Maxwell model is a particular case of the
ener model if the term i���

�m� � 1 in equations 36 and 37, i.e., if
he relaxation times are very large compared to the overall defor-

ation process.
The shear modulus is related to the creep function �2 by equa-

ion 47, where

�2�t� =
1

��
�1 +

t

�
�H�t�, � =

��

��

. �79�

Ben-Menahem and Singh, 1981; Carcione, 2001� Using partial
ractions, we have
1

� + 3k
=

1

�� + 3k�

+
1

i��
+

�1

b1��1 + i��
, �80�

here

� = 3�k + ��, �1 = � 1

k�

+
3

��
�−1� 1

�k
+

3

��
� ,

�81�

nd

b1 = ����
2

��

+
3�k

2

k�

� 1

�2 −
1

�� + 3k�
�−1

. �82�

Fourier transform of equation 80, to the time domain gives the
ollowing response function:

��t� =
�t�

�� + 3k�

+ � 1

�
+ ��1

b1
�exp�− �1t��H�t� .

�83�

he corresponding creep function is

��t� = � 1

�� + 3k�

+
t

�
+

1

b1
	1 − exp�− �1t�
H�t� .

�84�

he second term describes the steady-state creep process. The ma-
erial responds instantaneously with the modulus �� + 3k� and has
transient creep behavior with relaxation time equal to 1/�1.
The strain-stress relations have the form equation 53, and the

train-displacement relations are given by equation 54. Using the
elative-stress components in equation 41, we obtain the displace-
ents in equations 58 and 59, where �2 and � are given by equa-

ions 79 and 84, respectively.

ptimal mud weight and borehole shrinkage

According to equations 62–66, at the onset of the steady-state
reep process the mud weight must satisfy equation 64, with 


�. In order to obtain the mud weight, we need to calculate the

tress component �zz as a function of time by using equation 62. A
artial-fraction decomposition of the frequency-dependent Poisson
atio �see equation 11� yields


 = 
� +
�1

b
��1 + i��
, �85�

here �1 is given by equation 81,


� =
3k� − 2��

2�3k� + ���
, �86�

nd
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b
 =
2�

3�k − 2�� − 2
��
. �87�

hen, we have

�zz�t� = �v + 2�
�t���H − �h� , �88�

here

�
�t� = �
� +
1

b


	1 − exp�− �1t�
H�t� . �89�

herefore, the optimal mud weight should satisfy equation 64 with
zz given by equation 88. The relaxed value is obtained at � = 0 or
= �, and it is


�0� = �
��� = 
� + 1/b
 =
3�k − 2��

2�3�k + ���
. �90�

sing equations 81 and 87, we obtain

�zz�t = �� = �v + �3�k − 2��

3�k + ��
���H − �h� . �91�

he major and minor semiaxes vary with time as in equation 71,
ith �2 and � given by equations 79 and 84, respectively. At t = 0,

he minor semiaxis, a�0�, is given by the first equation 71. The
all-closure time tc is obtained for a�tc� = 0, i.e., for

1

2
��H + p��2�tc� +

3

2
��H − �h���tc� = 1, �92�

here

�2�tc� =
1

��

+
tc

��

, �93�

nd

��tc� =
1

�� + 3k�

+
tc

�
+

1

b1
	1 − exp�− �1tc�
 . �94�

f �H = �h,

a�t� = b�t� = r0�1 −
1

2
��h + p�� 1

��

+
tc

��
�� , �95�

nd the condition of equation 92 can be solved analytically, giving

tc = � 2

�h + p
−

1

��
���. �96�

f p = −�h, then a�t� = r0 at all times. Wall closure occurs for p
−� .
h
iscosities and steady-state creep rates

The viscosities �k and �� are related to the steady-state creep
ates by

�k =
�o

2ėk

and �� =
�o

2ė�

, �97�

here �o is the octahedral stress in equation 75, and ėk and ė� are
he steady-state creep rates for dilatation and shear. These can be
xpressed as

ėk = Ak�o
nk exp�− Ek/RT� �98�

nd

ė� = A��o
n� exp�− E�/RT� , �99�

.g., Gangi, �1983�, where Ak, A�, nk, and n� are constants; Ek and
� are the activation energies for dilatation and shear, respectively;
is the gas constant; T is the absolute temperature, and �o is given

n MPa. The form of the empirical relations in equations 98 and 99
re determined by performing experiments at different strain rates,
emperatures and/or stresses �e.g., Gangi, 1983; Carter and Han-
en, 1983�.

THE BURGER MODEL

A unique model to describe both the transient- and steady-state
reep process is given by two Zener elements, one of them with
ery large relaxation times, ��

�m�. In practice, this is the Burger
odel, which is formed with a series connection of a Zener ele-
ent and a dash pot, or equivalently, a series connection of a
elvin-Voigt element and a Maxwell element �e.g., Klausner,
991�. The response of the Burger model is instantaneous elastic-
ty, delayed elasticity �or viscoelasticity�, and viscous flow, the lat-
er described by the dash pot. On removal of the perturbation, the
nstantaneous and delayed elasticity are recovered, and a viscous
ow remains.
The creep function corresponding to �� + 3k�−1 cannot be

olved analytically because the decomposition in partial fractions
nvolves the solution of a fourth-order polynomial to find the relax-
tion times. The problem has an analytical solution if the shear or
ulk moduli are frequency independent. Because the viscoelastic
ow mainly results from shear deformations, we assume that the
ulk modulus is constant. Figure 1 shows the Burger model for the
hear modulus. It is easy to show that the creep function and shear
odulus, related by equation 47, are given by the following equa-

ions:

�2�t� = � 1

�2
+

t

�2
+

1

�1
	1 − exp�− t/�B�
H�t�, �B =

�1

�1

�100�

nd
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1

����
=

1

�2
+

1

i��2
+

1

�1 + i��1
. �101�

urthermore, we obtain

1

���� + 3k
=

1

�2 + 3k
+

�1

b1�i� + �1�
+

�2

b2�i� + �2�
,

�102�

here

1 =
b − �b2 − 4ac

2a
, �2 =

b + �b2 − 4ac

2a
,

a = �1�2��2 + 3k�, b = �1�2�2 + 3kd, c = 3k�1�2,

d = �2��1 + �2� + �2�1,

b1 =
a�1��2 − �1�

�1�2 + �1�2�1
2 − �1d

nd

b2 = −
a�2��2 − �1�

�1�2 + �1�2�2
2 − �2d

. �103�

quation 102 is similar to 45, whose creep function is given by
quation 50. In this case, we have

��t� = � 1

�2 + 3k
+

1

b1
	1 − exp�− �1t�


+
1

b2
	1 − exp�− �2t�
H�t� . �104�

As mentioned above, the Burger model can also be described as
series connection of a Zener element and a dash pot, in this case

he dash pot of viscosity �2. In terms of the Zener parameters, we
ave

�B = ��
�2�,�1 = �0�1 −

��
�2�

��
�2��−1

,

�2 = �0� ��
�2�

��
�2��, �1 = �0��

�2��1 −
��

�2�

��
�2��−1

. �105�

he strain-stress relations have the form of equation 53, and the
train-displacement relations are given by equations 54. Using the
elative-stress components 41, we obtain the displacements 58 and
9, where �2 and � are given by equations 100 and 104, respec-
ively.

The major and minor semiaxes vary with time as in equation 71,
ith �2 and � given by equations 100 and 104, respectively. The
all-closure time t is obtained for a�t � = 0, i.e., for
c c
1

2
��H + p��2�tc� +

3

2
��H − �h���tc� = 1. �106�

he optimal mud weight should satisfy equation 64 with �zz given
y equation 62. The relaxed �� = 0� and unrelaxed �� = �� values
f the Poisson ratio are 1/2 and �3k − 2�2�/�3k + �2�/2, respec-
ively. At the relaxed state, it is �zz = �v + �H − �h.

EXAMPLES

To illustrate the theory, we first compute hole-closure times, and
he radius and radial displacements of the borehole wall as a func-
ion of time for typical material properties and in-situ stress and
emperature conditions. The last example considers a model where
young marine-sediment column �e.g., Gulf of Mexico� has been

ntruded by a thick homogeneous layer of salt below 2 km depth.
e consider the Louann Salt formation in the Gulf of Mexico �In-

ante and Chenevert, 1986�. Cores of Louann salt, collected from
n approximate 4-km depth, have been tested in a triaxial compres-
ion cell with the entire surface of the core subject to a fairly con-
tant stress of approximately 91 MPa �the overburden�. This stress
as applied to core ends by a moveable piston and to the side of

he core by hydraulic pressure. The tests were performed for differ-
nt deviatoric stress by varying the hydraulic pressures at levels
elow 91 MPa. The axial deformation was determined as a func-
ion of time for a period of one hour for a range of temperatures.

Figure 3 shows the �a� octahedral stress as a function of effective
train for a range of temperatures, and �b� the elastic and plastic
imits as a function of temperature examples for Louann salt as ob-
ained by Infante and Chenevert �1986�. Good fits of their data of
he octahedral elastic and plastic limits are given by

�oe�MPa� = 11.4 − 4.3�T/100� �107�

nd

�op�MPa� = 14.0 − 4.6�T/100� , �108�

here T is given in degrees Celsius.
The steady-state behavior increases with temperature. The

teady-state region, where rock salt flows, lies between the two
imits. Failure occurs after the plastic limit. The onset of the
teady-state behavior decreases with temperature. For low tem-
eratures �24°C� the Louann salt has linear elastic behavior up to
n octahedral stress of about 10 MPa. For higher levels of stress
he material deforms at a steady-state strain rate and behaves like a
iscous fluid at the plastic limit. Typically, for deeper salt deposits
xposed to high temperatures �177°C�, the octahedral stress–limits
re confined at much lower levels �4–5 MPa�. The plot of �oe and
op in Figure 3b, with the fitting equations 107 and 108, provide a
uide to estimate such stress values at various temperatures.

The physical properties of rocks, including the elastic and plas-
ic limits of rock salt, vary with mean stress as well as with tem-
erature �e.g., Cristescu and Hunsche, 1998�. In particular, at low
onfining pressure �e.g., shallow wells and salt mines�, the sensi-
ivity to pressure may be significant. In oil exploration wells, how-
ver, which are normally deep and with high confining pressure,
he sensitivity to pressure variation is small and thus can be ne-
lected.
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Let us consider first the elastic model. For an overburden aver-
ge density of 	̄ = 2.4 g/cm3 and z = 3 km, the vertical stress is
v = 	̄gz = 71 MPa, where z is the depth. The hydrostatic pressure

s pH = 	wgz = −29 MPa, where 	w = 1 g/cm3. Assuming �h

�H = �v, the borehole pressure to maintain the elastic behavior
hould satisfy 61 MPa � −p � 80 MPa, according to equation
0.

Next, we assume nonuniform horizontal loading with �h

0.8�H and �H = �v. The temperature is a function of depth
hrough the geothermal gradient G as T = zG. If G = 30 °C/km,
e have T = 90 °C, �oe = 7.5 MPa and �op = 9.9 MPa. Because �o

iven by equation 75 is 5.8 MPa, i.e., less than �oe, we use the Ze-
er model to describe the deformation. Reports on the material
roperties of rock salt for oil-well stability problems are scarce.
tudies have generally been performed for underground shallow
avities and salt diapirism �diapir: a relatively mobile mass that in-
rudes into preexisting rocks�. Values of �� versus temperature are
aken from Frost and Ashby �1982�:

���GPa� = 15�1 − 0.73�T�°C� − 27

1070
�� .

f the relaxed Young’s modulus for Louann Salt is assumed to be
0 = 0.3 GPa, and 
� = 
0 = 0.25 during the creep process �a Pois-

igure 3. �a� Octahedral stress as a function of octahedral strain for
range of temperatures and elastic �empty triangles� and plastic

solid triangles� limits as a function of �b� temperature for Louann
alt �data from Infante and Chenevert, 1986�.
on solid for which k = 5�/3�, use of the preceding equation
nd the relations: k = Y /�3 − 6
�, � = Y /�2 + 2
�, and Y
9k�/�3k + �� yields �� = 14 GPa, k� = 24 GPa, Y� = 36

GPa, �0 = 0.08 GPa, and k0 = 0.13 GPa. The value of k� before
reep is close to 24.8 GPa reported by Mavko et al., �1998�.

Urai et al., �1987� have deduced from microstructural studies
hat in most salt bodies the differential stress is small. We assume
ere that �h = 0.9�H. This assumption and equation 64 give the
ondition 65 MPa � −p � 83 MPa. In this case, �oe = �or, be-
ause 
� = 
0 and �zz remains constant during the creep process
see equation 62�. The unrelaxed �t = 0� and relaxed �t = �� minor
nd major semiaxes of the borehole cross section for the hydro-
tatic borehole pressure pH = −29 MPa are a�0�/r0 = 0.998,
�0�/r0 = 0.999 and a���/r0 = 0.74, b���/r0 = 0.79, respectively.
f the borehole pressure is 100 MPa, a�0�/r0 = 1.0009, b�0�/r0

1.0013, and a���/r0 = 1.18, b���/r0 = 1.23, then the borehole
xpands. In the case of an empty borehole �p = 0�, a�0�/r0

0.997, b�0�/r0 = 0.998 and a���/r0 = 0.55, b���/r0 = 0.61, then
he borehole cross section decreases.

Let us assume now that the depth is z = 4 km. The vertical stress
s �v = 	̄gz = 94 MPa, and we assume nonuniform horizontal
oading with �h = 0.8�H and �H = �v. If G = 30 °C/km, we have

= 120 °C, �oe = 6.2 MPa and �op = 8.5 MPa. Because �o, given
y equation 75 is 7.7 MPa, i.e., greater than �oe, we use the Max-
ell model to describe the deformation. In this case, ��

14 GPa, and k� = 23 GPa. We take Ak = 0.462 �MPa�−nk s−1,
� = 0.462 �MPa�−n� s−1, Ek = 27 kcal/mol, E� = 23.3 kcal/mol,
nd nk = n� = 5.5, which correspond to polycrystalline halite �rock
alt�. The values for the shear deformation have been taken from
arrish and Gangi �1981�, and the dilatational deformations have
een assumed to have large activation energy and consequently
ery-high viscosity. Since R = 1.9872 cal/mol/°K, we obtain ėk

1.2 � 10−11 s−1, ė� = 1.4 � 10−9 s−1, �k = 3.2 � 1017 Pa · s,
nd �� = 2.8 � 1015 Pa · s. With these values, the relaxed Poisson
atio 
�� = 0� = �
�t = �� is nearly 0.5 �see equation 90�. If �h

0.9�H, the condition of equation 64 for the optimal mud weight
ives 96 MPa � −p � 111 MPa �unrelaxed case� and 98 MPa

−p � 109 MPa �relaxed case�.
The hole-closure time tc depends on the value of the borehole

ressure p according to equation 94. If �H = �h = �v = 94 GPa,
he closure time is given by equation 96, which gives 1.9 yr and
9 yr for zero borehole pressure �empty hole� and p = −0.9 �h, re-
pectively. The borehole radius is constant and equal to r0 if

p = −�h. If the activation energies are Ek = 27 kcal/mol and
� = 15 kcal/mol, we have ėk = 1.2 � 10−11 s−1, ė� = 5.65

10−5 s−1, �k = 3.2 � 1017 Pa s, and �� = 6.8 � 1010 Pa s. In
his case, the closure times are 4 h and 24 h for an empty hole and

p = −0.9 �h, respectively.
Figure 4 shows the normalized minor and major semiaxis �equa-

ion 71� as a function of time for p = −0.9�h �a� and the closure
ime as a function of mud pressure p �b�. The dashed lines corre-
pond to the elliptical cross section, i.e., when �h = 0.9�H and the
olid line is the case �h = �H. The upper dashed line corresponds to
he major semiaxis. The calculations to obtain Figure 4b simplify,
ince the relaxation frequency �1 = 0.17 l/s and exp�−�1t� � 0 in
quation 84.

Let us now consider the Burger model with k = 23 GPa, �0

0.08 GPa and �� = �2 = �0��
�2�/��

�2� = 14 GPa. If �h = 0.9�H, the
ondition of equation 64 for the optimal mud weight gives nearly
he same values reported before for the Maxwell model. To calcu-
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F44 Carcione et al.
ate closure times, we consider �B = ��
�2� = 5 h and �2 = 6.8

1010 Pa s. Then, from equation 106 and taking �h = 0.9�H

0.9�v, the closure times are 24 min and 4 h for an empty hole
nd p = −0.9�H, respectively.

The normalized radial displacement at r = r0 is obtained from
quation 58:

ur

r0
=

1

4
�2��H + �h + 2p� +

1

2
��H − �h��1

2
�2 + 3��cos 2� .

igure 5 shows the radial displacement as a function of the azi-
uthal angle � and three different times. The horizontal tectonic

tresses are �H = �v and �h = 0.9�H, and the mud pressure is p =
0.9�H.
Next, we consider a realistic example, with Ek = 27 kcal/mol

nd E� = 20 kcal/mol. Typical values of the activation energies
an be found in Parrish and Gangi �1981�. The octahedral-stress
imits are obtained from equations 107 and 108. Figure 6a shows a

odel where a young marine-sediment column �e.g., Gulf of
exico� has been intruded by a 3-km-thick homogeneous layer of

alt at levels below 2-km depth. The salt is characterized by a neg-

igure 4. �a� Minor and major semiaxis, a�t�/r0 and b�t�/r0 �dashed
ines, equation 71�, versus time for p = −0.9�h and �b� closure
ime versus mud pressure p. We have assumed �H = �v. The
ashed lines correspond to the elliptical cross section, i.e., when
h = 0.9�H, and the solid line is the case �h = �H. The upper
ashed line corresponds to the major semiaxis. The depth is 4 km,
nd the medium is described by the Maxwell model.
igible small porosity � and a density of 2.1 g/cm3. Assuming a
rine pore fill �1.03 g/cm3�, we have computed the bulk density 	

nd the corresponding overburden stress �v using common proce-
ures �e.g., Carcione et al., 2003�. To comply with the practice in
rilling engineering, we express the overburden stress and mud
ressure by their equivalent mud weights, or the equivalent densi-
ies of the mud needed to balance pressure at given depths. Using a
eothermal gradient of 30°C/km, we have established the elastic
nd plastic limits �oe and �op, respectively, within the salt layer.

In the first experiment �I� �shown in Figure 6b�, we assume an
sotropic stress distribution where �H = �h = �v, and the resulting
imits p1�I� and p2�I� vary symmetrically versus depth with respect
o �v and with p1�I� well below the overburden pressure. In the
econd experiment �II�, we introduce a nonuniform loading with

h = 0.8�H and �H = 1.1�v. The latter values are consistent with
alues of stress anisotropy at prospective depths provided by He-
ret �1987� and Arjang �1989� for the Canadian Shield, and in
greement with the global picture presented by Engelder �1993,
.91�. In this case, the minimum mud weight p1�II� exceeds the
verburden stress in most of the salt section, except below the
epth where the initial deviatoric stress �o �i.e., equation 6� ap-
roach the plastic limit �op. The elastic-to-plastic transition implies
slow creep that is sufficient to relieve any significant stress differ-
nces over geologic time. Below this critical level, the stress pat-
erns within the salt will tend towards isotropy; hence, elasticity
ill be recovered �see Figure 3a�, and the elastic condition in equa-

ion 64 for the borehole pressure applies.
Drilling in salt with a borehole pressure at the overburden gradi-

nt, even with heavier mud, is a common experience in the Zagros
old Belt �Iran� — one of the motivations for the present study.
ere, a thick layer of salt in the Gachsaran Formation �e.g., see
ahroudi and Koyi, 2004� forms the cap rock covering the major
ydrocarbon reservoirs in the region. A lateral shortening in Zagros
f approximately 10 mm/y, inferred from GPS measurements by
artar et al. �2002�, is associated with a strong nonuniform loading
Bird, 1978�. Hence, experiment II in Figure 6b portrays a realistic
ituation.

Now, suppose that the well has been drilled using the minimum
ud pressure p = −p1 as in case II of Figure 6b. Then, we follow

he development in time of the borehole geometry and eventually
urther adjust the mud pressure to optimize the hole stability as
hown in Figure 7 at 10, 50, and 100 hs after drilling. The Maxwell
iscoelastic model is applied with the viscosities given by equation

igure 5. Normalized radial displacement �ur/r0� versus azimuthal
ngle at three different times. The depth is 4 km, and medium is
escribed by the Burgers model. The horizontal tectonic stresses
re � = � and � = 0.9� , and the mud pressure is p = −0.9� .
H v h H H
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7, but with an upper bound �o � �op �see equation 108� applied to
quations 98 and 99.

For mud pressure p = −p1, the borehole through the top salt sec-
ion remains stable, whereas the lower part expands by about 10%
fter 100 hs at the elastic-plastic transition boundary �4.36 km�.
elow this critical level, the borehole contracts by about 5% in
00 hs. Obviously, a mud pressure of p = −p1 fails to stabilize the
orehole, and we adjust the mud weight to improve the situation as
hown in Figure 8 with p = −1.05p1. Now, with slightly heavier
ud, the changes in the borehole are less than 1% after 100 hs and

nly about 2% after 1000 hs, which normally should be sufficient
ime to drill and set the casing. Setting casing at the transition level
ould be required before drilling with reduced mud weights in the

ower section.
The anisotropic-stress state �i.e., when deviatoric stress exists�

ould require mud weight in excess of overburden �i.e., borehole

igure 6. �a� A realistic �e.g., Gulf of Mexico� sediment-compac-
ion model containing a buried salt layer with negligible porosity �
nd density 	, and the corresponding mud pressure p1 and p2 �in
quivalent mud weight� at the elastic limits �equations 65 and 66�
or two models of the initial stress; I �isotropic�: �H = �h = �v; II
anisotropic�: � = 0.8� ; and � = 1.1� .
h H H v
ressures greater than the overburden pressure� only if the horizon-
al principal stresses �one or both� exceed the overburden stress. If
he horizontal principal stresses are both less than the overburden
vertical principal� stress, then the borehole pressure need not ex-
eed the overburden stress for stability. Obviously, if the horizontal
isotropic� principal stress exceeds the overburden stress, borehole
ressure greater than the overburden will be needed to prevent in-
rusion of the salt. However, the formation would be hydrofrac-
ured; i.e., borehole fluid would be injected into the formation.
owever, fracture pressure in salt has proved to be much higher

han in nonsalt sections at a comparable depth when drilling in the
ulf of Mexico �Barker and Meeks, 2003�.
To our knowledge, the only published caliper measurements of

hrinkage and expansion of a real well bore in a salt layer �prob-
bly Louann salt�, as a function of time for three different mud
eights, were made by Kim �1988�. His results agree qualitatively
ith our theory; i.e., for highly underbalanced mud �14.3 lb/gal�,

he hole shrinkage �18 inches at 17,700 ft� was significant �2.3
nches in 12 hours�, and by increasing the mud weight �to 15.3
b/gal� the shrinkage was reduced �0.6 inches in 12 hours�. With

igure 7. Variation with depth of the minor axis a�t� and major axis
�t� �see equation 71� and normalized cross-section area after 10,
0, and 100 hs. The model corresponds to case II in Figure 6b us-
ng mud pressure p = −p1�II�.

igure 8. Same variations as in Figure 7 but with a small change in
ud pressure to p = −1.05p1�II� in an attempt to stabilize the hole.
ote that after 1000 hs, the change in the hole diameter is less than
%.
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eavier mud weight �17.3 lb/gal�, the caliper indicated stability or
slight expansion of the hole. For operational reasons, each ex-

eriment was terminated with only one caliper run after 12 hours.
he data provided by Kim �1988� are thus not sufficient for a quan-

itative comparison with our theory.
The theory developed here can be used also to evaluate hole sta-

ility when drilling through shale formations. The analysis would
e valid when the shale behaves like rock salt, i.e., when it flows
airly readily, which happens at low effective pressures �for in-
tance, there are shale diapirs in the Gulf of Mexico�. See Johnston
1987� for experimental data for shale on viscoelastic and creep
roperties as a function of pressure and temperature.

CONCLUSION

We have developed a theoretical approach to analyze the stabil-
ty of boreholes during and after drilling. We obtain expressions for
he shape of the borehole cross section, the borehole-wall closure
ime, and the optimal mud weight to avoid wall collapse and ex-
ansion. The theory describes transient creep by the Zener model
nd steady-state creep by the Maxwell model or by the Burger
odel. The Zener model is used under pressure and temperature

onditions, where the rock behaves as a viscoelastic solid. The
hoice depends on the value of the elastic octahedral stress which
etermines the limit separating transient flow from unrecoverable
teady-state flow.

Examples for the Louann Salt formation are given. At 3-km
epth, the vertical overburden stress is 71 MPa, and the octa-
edral-stress limit for elastic or viscoelastic transient behavior is
.5 MPa. Under isotropic tectonic-stress conditions, the theory
redicts a range of mud pressure between 61 and 80 MPa to stabi-
ize the borehole. On the other hand, if the maximum horizontal
tress is equal to the vertical stress and there is a differential hori-
ontal tectonic stress of 20%, the predicted range is �65, 83� MPa.
nder these conditions, the minor semiaxis of the hole elliptical

ross section decreases by 45% if the borehole is empty and by
5% if it is filled with water �a hydrostatic pressure of −29 MPa�.
n the other hand, the semiaxis increases by nearly 20% if the mud
ressure is −100 MPa, i.e., 29 MPa higher than the vertical over-
urden stress.

At a 4-km depth, the vertical overburden stress is 94 MPa, the
ctahedral stress limit is 6.2 MPa, and rock salt shows viscoelastic
ow. The Maxwell and Burger models predict a range of mud pres-
ure of �96,111� MPa and �98,109� MPa for the unrelaxed �imme-
iately after drilling� and relaxed states, respectively. The hole-
losure times depend on the value of the steady-state creep rates
nd viscosities through the activation energies. Assuming that the
hear deformations are dominant, a rock salt viscosity of the order
f 1015 Pa s gives a closure time of a few years for an empty hole,
hile the closure time is 24 min for a viscosity of nearly 1011 Pa s.
By adjusting the mud weight, we may keep constant the ellipti-

al cross-section area, and hence the mud volume, but fail to con-
rol the hole geometry at the same time. For deeply buried salt ex-
osed to tectonic forces, the in-situ octahedral stress may approach
he plastic limit; and thus, the salt will be subject to creep. Since
reep over geologic time is likely to relieve any significant stress
ifferences, the elasticity will recover and hole stability below the
ritical depth is feasible.

In the example presented here, we have defined different re-
imes based on the value of the octahedral stress. We model
teady-state creep effects with the Maxwell or Burger model below
given depth determined by the in-situ temperature conditions. Al-

ernatively, the Maxwell or Burger models can be used over the
hole range of octahedral stresses. In this case, the method re-
uires a precise determination of the activation energies as a func-
ion of the octahedral stress and temperature.

The preceding predicted values are very sensitive to the anelas-
ic properties of rock salt and the in-situ stress and temperature
onditions. A precise evaluation of the borehole stability requires a
etailed characterization of rock salt behavior by means of labora-
ory experiments. The theory has been applied to rock salt but can
lso be used to evaluate hole stability when drilling through shale
ormations. In some cases, the inclusion of poroelastic effects and
orehole inclination can be important.
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