
Nanoclays for Biomedical Applications

Laura Peña-Parás, José Antonio Sánchez-Fernández, and
Román Vidaltamayo

Abstract
Clays are naturally occurring layered mineral materials that are low cost and
environmentally friendly. Nanoclays are clay minerals with at least one dimen-
sion in the order of 1–100 nm. In nature, two forms of nanoclays, anionic and
cationic clays, are present depending on the surface layered charge and the types
of interlayer ions. Commonly found nanoclays in the literature are montmoril-
lonite, kaolinite, laponite, halloysite, bentonite, hectorite, laponite, sepiolite,
saponite, and vermiculite, among others. Nanoclays have been widely used as
reinforcements for polymer matrix composites improving mechanical, thermal,
and anticorrosion properties, for example. Due to being nontoxic, nanoclays and
their composites have been studied for biomedical applications such as bone
cement, tissue engineering, drug delivery, wound healing, and enzyme immobi-
lization, among others. This chapter presents the state of the art of biomedical
application of nanoclays and nanoclay-polymer matrix composite materials.
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Introduction

Clay minerals are minerals that constitute sedimentary rocks and derived soils made
of layered silicates [1]. These aluminosilicates have a general chemical formula of
(Ca, Na, H)(Al, Mg, Fe, Zn)2(Si, Al)4O10(OH)2�xH2O, where x represents the
amount of water [2]. The interaction between water and the solid surfaces affects
the properties of both phases [3], and these interactions are of great interest due to
their possible applications in important applied fields, such as for biomedical
applications [3].

Clay minerals may also be broadly classified into two categories: natural and
synthetic clays [4], and their structures consist of alternating tetrahedral SiO2 and
octahedral AlO6 sheets with varying ratios (Table 1) that can be: (a) 1:1, with one
octahedral layer linked to a tetrahedral one; (b) 2:1, with two tetrahedral sheets on
either side of an octahedral, and (c) 2:1:1, with a positively charged brucite sheet
sandwiched between layers that restrict swelling. Chlorites with a 2:1:1 structure are
not always considered clays and are sometimes classified as a separate group within
the phyllosilicates [4].

Clay platelets also undergo structural rearrangements in order to form nanofibers,
nanotubes, and plate-like structures with thicknesses of 1 nm and lateral dimensions
ranging in the order of micrometers [7]. This is largely due to the isomorphic
substitution of alumina cations (Al3+) within the silicate layers [7]. For example,
in the case of a 2:1 structure, the trivalent Al-cation in the octahedral layer is partially
substituted by the divalent Mg-cation to form montmorillonite (MMT) [3].

Saponite, for example, is able to intercalate cationic molecules in its interlayer
spaces, enabling the fabrication of organic�inorganic hybrid materials that can
accommodate functional molecules [8]. An organo-saponite clay containing inter-
calated cetyltrimethylammonium cations was synthesized by Bisio et al. [9] without
affecting the clay morphology. Moreover, the clay structure stabilized and protected
the surfactant molecules.

The sepiolite (another nanoclay) and lipid hybrids include other interaction
mechanisms such as hydrogen bonding of the lipid headgroup moieties with the
Si-OH groups and the coordinated water molecules located at the external channels
of this silicate. These obtained bio-organoclays have been tested for potential
applications in a mycotoxin retention study (Wicklein et al. [10]).

Halloysite nanotubes (HNTs), a nanoclay commonly found in the literature for a
wide range of biomedical applications, have a hollow tubular structure with
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diameters of 50–80 nm, lumen of 10–15 nm, and lengths of ~1 μm [11]. Halloysite is
similar to kaolinite; however, in halloysite the neighboring alumina and silica layers,
and their water of hydration, create a packing disorder causing them to curve and roll
up, forming multilayer tubes [12].

MMT is a widely employed filler for composite materials [2, 13, 14] and for
developing other functional nanomaterials, due to its high specific area and the
ability to be exfoliated into layers with thicknesses in the order of nanometers
[15]. This particular characteristic makes MMT a good candidate for the preparation
of polymer nanocomposites with tunable physical and mechanical properties [15], as
reviewed in section “Polymer–Nanoclay Composites.”

Biocompatibility of Nanoclays

Clay materials are considered to be safe or environmentally friendly [16–18], thus
making them attractive for a range of biomedical applications [16]. The toxicity of
MMT has been evaluated by Li et al. [16], finding that these nanoparticles failed to
affect the mortality rate of Sprague-Dawley (SD) rats by oral feeding at a dose level
of 5,700 nm/kg. No mutagenic effect was observed, and although MMT could
accumulate and adhere onto cell surfaces it showed no apparent changes in cell
morphology. The in vitro toxicity testing of two nanoclays, clinoptilolite and sepi-
olite, demonstrated to be well tolerated in highly phagocytic cultures [19], with
results comparable to talc powder. In this study, clinoptilolite had lower toxic effects.
HNTs, with a fiber-like morphology, have also shown no cytotoxic effect after a 24 h
exposure in C6 glioma cell cultures with concentrations of 500 μg/mL [17]. Fur-
thermore, toxicity measurements with neoplastic cell line models as a function of
concentration and incubation time showed that HNTs are safe for cells at concen-
trations of up to 75 μg/mL [18]. As a reference, asbestos, another fiber-like material,
is highly toxic at concentrations 1,000 times lower [18]. As reported by Vergaro et al.
[18] this is due to the larger length of asbestos of 5–20 μm, compared to the length of
HNTs of ~1 μm that can be more easily removed by macrophages.

Polymer–Nanoclay Composites

Nanoclays have been widely employed for preparing polymer matrix–nanoclay
biomedical composites due to their effect enhancing matrix properties
[20–24]. One of the first works in this field was performed by Blumstein [25] in

Table 1 Common clay types according to structure [5, 6]

Clay structure Common examples

1:1 Halloysite, kaolinite, rectorite

2:1 Bentonite, hectorite, laponite, montmorillonite, sepiolite, saponite, vermiculite

2:1:1 Chlorite
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the 1960s, where he carried out the polymerization of methyl methacrylate that was
adsorbed onto MMT clay and found an oriented growth of the polymer.

Polymer–clay nanocomposites may be prepared by: (a) melt blending, with
partially exfoliated clays, (b) in situ polymerization, and (c) melt intercalation
(Fig. 1) by conventional polymer extrusion process [26], microwave and ultrasound
irradiation [27], among others [7]. Attempts to enhance the biocompatibility of clay
minerals have recently been undertaken, and different types of clays have been
functionalized by assembly with different biopolymers [28].

As mentioned, the properties of polymer matrices (namely, the mechanical
properties) may be enhanced by the addition of nanoclay. Table 2 shows the Young’s
modulus of nanoclays commonly found in the literature for reinforcing polymer
nanocomposite materials, in this case HNTs and MMT. In particular, HNTs with
their tubular shape are very attractive for this purpose due to their superior mechan-
ical properties.

Tables 3–5 show the improvement in the mechanical properties of tensile/flexural
strength and Young’s modulus of polymer–nanoclay composites reported in the
literature. For HNTs (Table 3) loadings ranged from 0.5 to 7.5 wt.% and overall
improvements from 24% to 457% and 17% to 337% in tensile/compressive strength
and modulus, respectively. Very slight decreases were also found for some cases,

Fig. 1 Schematic
representation of a
nanocomposite obtained by
direct melt intercalation and
possible Van der Waals
interaction

Table 2 Mechanical properties of clay materials

Nanoclay Geometry Dimensions Young’s modulus

HNTs Hollow
tubular

Diameter: 50–80 nm, lumen: 10–15 nm, length:
~1 μm [11]

130–140 GPa
[29, 30]

MMT Flake-like Thickness: ~1 nm, length: 10 μm [31] 4–14 GPa [32]
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usually due to the increase in stiffness of the matrix by the harder nanoclay that
reduced the strain at break and tensile strength.

Nanocomposites of polymer matrices filled with concentrations of 1–10 wt.%
MMT achieved increases of 22% to even 400% in Young’s modulus, as shown in
Table 4. Tensile (or flexural) strength has also been greatly improved. Other less
common nanoclay–polymer composites with rectorite, hectorite, laponite, and their
enhancements in mechanical properties can be found in Table 5.

Table 3 Mechanical properties of HNTs–polymer composites for biomedical applications

Nanoclay
content
(wt.%) Polymer matrix

Improvement
in tensile/
flexural
strength (%)

Improvement in
modulus
(tension/
compression)
(%) References

0.5 Gellan gum–glycerol 44 150 1.
Bonifacio
et al. [33]

5.0 Chitosan 34 21 De Silva et
al. [34]

7.5 Chitosan 134 65 Liu et al.
[35]

5.0 Poly(L-lactide) (PLLA) matrix 24 32 Luo et al.
[36]

5.0 Poly (lactic acid) �15 27 Bugatti et
al. [37]

3.0 Poly(lactic-co-glycolic acid) 24 61 Qi et al.
[38]

5.0 Poly(vinyl alcohol) 67 – Zhou et al.
[39]

5.0 Poly(hydroxybutyrate-co-
hydroxyvalerate)

37 63 Carli et al.
[40]

3.0 Poly methyl methacrylate 72 17 Pal et al.
[41]

5.0 Poly methyl methacrylate �10 �4 Wei et al.
[42]

3.0 Polypropylene 95 152 Naffakh et
al. [23]

2.0 Oligo(trimethylene
carbonate)–poly(ethylene
glycol)–oligo(trimethylene
carbonate) diacrylate (TPT)

457 337 Tu et al.
[43]

2.0 Oligo(trimethylene
carbonate)–poly(ethylene
glycol)–oligo(trimethylene
carbonate) diacrylate (TPT),
and alginate sodium (AG)

80 �2.2 Tu et al.
[43]
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Table 5 Mechanical properties of other clay–polymer composites for biomedical applications

Nanoclay

Nanoclay
content
(wt.%)

Polymer
matrix

Improvement
in tensile/
flexural
strength (%)

Improvement in
modulus (tension/
compression) (%) References

Organic
rectorite

2 Chitosan 7 – Wang et al.
[53]

Hectorite 10 Poly (lactic
acid)

�2.85 75 Fukushima
et al. [50]

Laponite 15 P
(MEO2MA-
co-
OEGMA)

1,346 1,406 Xiang et al.
[54]

Table 4 Mechanical properties of MMT–polymer composites for biomedical applications

Nanoclay
content
(wt.%) Polymer matrix

Improvement in
tensile/flexural
strength (%)

Improvement in
modulus (tension/
compression) (%) References

10.0 Chitosan – 22 Katti et al.
[44]

10.0 Chitosan–gelatin/
nanohydroxyapatite

24 20 Olad et al.
[45]

10.0 Chitosan/
hydroxyapatite

– 36 Katti et al.
[44]

10.0 Chitosan/
polygalacturonic
acid

– 400 Ambre et
al. [46]

3.0 Chitosan/poly
(vinyl alcohol)

33 35 Noori et al.
[47]

4.5 Poly (ε-
caprolactone)

�4 74 López-
Arraiza et
al. [48]

5.0 Poly (ester amide)/
polyaniline

99 – Pramanik
et al. [49]

5.0 Poly
(hydroxybutyrate-
co-
hydroxyvalerate)

�19 103 Carli et al.
[40]

10.0 Poly (lactic acid) �14 30 Fukushima
et al. [50]

15.0 Poly (lactic acid) 0 35 Guo et al.
[51]

15.0 Poly (lactic acid) �46 56 Guo et al.
[51]

1.0 Poly methyl
methacrylate

– 76 Kapusetti
et al. [52]

2.0 Polypropylene 22 32 Naffakh et
al. [23]
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Apart from these properties, some major applications of nanoclay–polymer
composites are for enhancing the barrier properties of matrices that are the result
of reduced permeability by the addition of nanoclays [55].

Biomedical Applications of Nanoclays

Nanoclays are been extensively studied for various biomedical applications, such as
wound healing, drug delivery, tissue engineering, preparation of scaffolds and bone
cement, cancer therapy, and enzyme immobilization, among others [56–58]. This
section presents the recent advancements in said applications (4.1–4.5) (Fig. 2).

Bone Cement

Bones are complex materials composed of inorganic calcium phosphates that pro-
vide strength, and organic collagen which provides flexibility, thus they can be
considered to be composite materials [59–61]. Bones can be classified as cancellous
or cortical, where cortical bones represent approximately 80% of the total skeleton
[59–61]. The mechanical properties of strength and flexibility differ for these two
types of bones: for cortical bones the strength and modulus of elasticity ranges
between 70 MPa and 200 MPa and 3 GPa and 30 GPa, respectively, whereas for
cancellous bone much lower values are observed: tensile strength is about
0.1–30MPa, and elastic modulus is 0.02–0.5 GPa [59–61]. Polymethyl methacrylate

Wound healing

Enzyme
immobilization

Biomedical
applications of

nano clays

Tissue
engineering Bone cement

Drug delivery Drug

dressing

Release
Halloysite

Fig. 2 Biomedical applications of nanoclays
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(PMMA) is widely used as a bone cement with the purpose of fixing hip and knee
replacement implants into adjacent bones [62, 63]; however, these materials have
shown poor fatigue strength and overall inadequate mechanical properties for load-
bearing applications [52, 59]. Another disadvantage is that PMMA also possess a
high exothermic temperature during polymerization, which may cause necrosis and
loosening of implants in the body [52, 64].

Nanoclay materials have been studied as reinforcements for PMMA composites
for bone cement applications [41, 42, 62, 63, 65, 66] or bone implants [59] with
improved bioactivity and mechanical properties. For example, Kapusetti et al. [52]
prepared PMMA bone cement/layered silicate nanohybrids with nanoclays based on
MMT in concentrations of 0.5, 1.0, 1.5, and 2.0 wt.% and performed mechanical
testing, cell culture studies, and in vivo studies. Findings demonstrated a decrease of
12 �C (from 84 �C to 72 �C) on the exothermic polymerization temperature, which
could potentially reduce cell necrosis. Young’s modulus and toughness were also
enhanced by the nanoclay filler due to their suppression of crack growth, and
biocompatibility was also enhanced.

HNTs haven been also used as reinforcements due to their excellent mechanical
properties (Table 2), with a reported Young’s modulus of 130–140 GPa [29, 30] and
a tensile strength of 10.8 MPa [66]. Pal et al. [41] analyzed the thermomechanical
performance of PMMA reinforced with HNTs, carbon nanotubes (CNTs), and
carbon nanofibers (CNFs). While HNTs did not improve the thermal decomposition
temperature of PMMA, mechanical properties of tensile strength and tensile modu-
lus approached those obtained with CNTs at the same concentration, with the
advantage of having higher dispersibility and biocompatibility by HNTs. In some
cases, however, slight decreases in mechanical properties were found [42]. Since
HNTs are hollow nanostructures with a lumen of 10–15 nm, they can also be used as
nanocontainers for antibiotics [66–68], improving the antimicrobial activity of
PMMA bone cement [62]. Lvov et al. [67] prepared HNTs nanocarriers loaded
with the antibiotic gentamicin, which showed sustained drug release in PMMA
bone cement. Release time was 250–300 h, thus providing extended antibacterial
protection that complies with orthopedic surgery needs.

Tissue Engineering

The purpose of tissue engineering is to improve, maintain, and restore tissue
functions [46]. Nanoclays have been incorporated to hydrogels such as polysaccha-
rides (i.e., chitosan, gellan gum) due to the polymer’s ability to support adhesion and
proliferation of cells [33, 69]. The addition of nanoclay fillers allows for tunable
physical and mechanical properties according to the desired application [44–46,
70–72]. Bonifacio et al. [33] proposed a hydrogel composed of gellan gum (GG),
glycerol, and HNTs for soft tissue engineering applications like pancreas, liver, and
skin regeneration. The addition of glycerol to GG improved the material viscosity,
while HNTs decreased water uptake by 30–35%. Membranes of chitosan/HNTs
prepared by solution casting by De Silva et al. [34] showed improved mechanical
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properties by the addition of 5% HNTs, as well as enhancement of thermal stability.
Nitya et al. performed in vitro evaluation of a fibrous polycaprolactone/HNT [72]
composite scaffold for bone tissue engineering prepared by electrospinning. These
scaffolds allowed for greater protein adsorption, enhanced mineralization, and faster
proliferation of human mesenchymal stem cells (hMSCs) seeded on these scaffolds.
Moreover, a study by Zhou et al. [39] showed that adding HNTs to poly(vinyl
alcohol) (PVA) bionanocomposite films resulted in changes in nanotopography
and surface chemistry of PVA. These modifications allowed for a significantly higher
level of cell adhesion. Additionally, mechanical properties of the films were signif-
icantly improved.

A biopolymer consisting on chitosan mixed with HAP and MMTwas synthesized
by Katti et al. [44] showed an intercalated structure improving thermal stability and
nanomechanical properties. Scaffolds based on chitosan/polygalacturonic acid
(ChiPgA) complex containing a modified MMT nanoparticles were prepared by
Ambre et al. [46] for bone tissue engineering applications. Results demonstrated
growth and proliferation of human osteoblasts. Here, the results with the modified
MMTwere comparable to those commonly shown by the osteoconductive hydroxy-
apatite (HAP). Porosity of these composites also increased by 90%, facilitating
nutrient transport throughout the scaffold. Other scaffolds with MMT in a
chitosan–gelatin/nanohydroxyapatite matrix [45] were found to be highly porous.
A synergistic effect between MMT and HAP was also determined for swelling ratio,
density, biodegradation and mechanical behavior, as well as a decreased degradation
rate and increased biomineralization. Particularly, the incorporation on MMT was
found to be largely responsible for the moderation of these properties. Furthermore,
biodegradable hybrid 3D scaffold with high porosity prepared by Mkhabela and Ray
[73] with poly(E-caprolactone) (PCL) and chitosan-modified MMT were degraded
and resorbed at a faster rate with increasing nanoclay concentration.

Aliabadi et al. [70] synthesized a biocompatible chitosan ammonium salt N-(2-
hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC)-modified MMT
with antibacterial properties. The samples were efficient with both Gram negative
and Gram positive bacteria. The antibacterial efficiency provided by MMTwas due
to the entrapment of bacteria between the intercalated structures of HTCC in MMT.
Due their outstanding results, these composites were proposed for tissue engineering
applications.

Other innovative applications of clay nanomaterials for tissue engineering have
been explored. For example, sodium-MMT (Na-MMT) was modified by Payne and
coworkers [71] with an amino acid in order to mineralize synthetic HAP, resembling
biogenic HAP in human bone. Another study performed by Ambre et al. [74]
incorporated these HAP-clay materials into chitosan/polygalacturonic acid (Chi/
PgA) scaffolds and films for bone tissue engineering.

Nanoclays for Biomedical Applications 9



Wound Healing

Wound healing applications of nanoclays have also been largely explored to prevent
infection, scarring, and minimizing pain [47, 75–78]. In this sense, properties such as
flexibility and swelling ability are highly important. A biodegradable poly vinyl
alcohol (PVA) composite with carboxymethyl chitosan (CMCh) and MMT prepared
by Sabaa et al. [79] demonstrated increased swelling behavior and good antimicro-
bial potency compared to standard drugs such as penicillin G. Nistor et al. [80]
incorporated MMT nanoparticles into collagen/N-isopropylamide hydrogels with
the purpose of adjusting their stimuli response as scaffold with enhanced healing
and regenerative properties. Here, MMT nanoparticles allowed for the formation of
new bonds and formed a 3D network of interconnected pores. Another PVA com-
posite with Iranian gum tragacanth (IGT) was prepared by electrospinning was
enhanced with a kaolinite-based nanoclay [77]. The addition of nanoclay improved
mechanical properties and chemical stability, making it suitable for wound healing
applications.

Cross-linked nanoclays, such as semi-IPN sericin/poly(NIPAm/LMSH) (HSP)
nanocomposite hydrogels, were also explored as a wound dressing by Yang et al.
[78]. The wound healing area treated with the nanocomposites increased threefold
over the area covered by gauze after 6 days and showed almost complete recovery by
the 13th day. Awound dressing material of gellan gum methacrylate (GG-MA) was
combined with laponite to provide delivery of therapeutic agents at the injury site by
Pacelli et al. [81]. Here, laponite modulated the swelling behavior of the hydrogel
network and was able to lower to the amount of antibiotic released during the first
8 h, compared to unfilled hydrogels.

HNTs/chitosan oligosaccharide nanocomposites were developed by Sandri et al.
[75] for wound healing applications. Nanocomposites of these materials demon-
strated to be biocompatible with normal human fibroblasts and showed an enhance-
ment of cell proliferation in an in vitro wound healing test. In vivo wound healing
demonstrated an advanced degree of revascularization and regeneration of hair
follicles. Thus, this treatment could be used for treating difficult skin lesions and
burns. Nanoclays based in HNTs were also employed by Demirci et al. [82] in
hyaluronic acid (HA) cryogels (hydrogels with enhanced porosity and mechanical
strength) since this biodegradable natural polysaccharide is one of the most impor-
tant components of extracellular matrices. In this study, HNT increased porosity,
drug loading, and long-term water retention. Finally, hybrid hydrogels based on
cross-linked collagen and thermo-responsive poly(N-isopropylacrylamide) with
embedded MMT used for wound healing [80] showed good cytotoxicity and
biocompatibility.

Enzyme Immobilization

Nanoclays have also been studied for their capability to immobilize enzymes [83–85].
In a study by Tzialla et al. [83] the immobilization of lipase B from Candida artactita
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on laponite and two types of MMTs was characterized. Results indicated enhanced
activity and stability in low-water media. MMTwas also employed for immobilization
of microbial phytases from Aspergillus niger and Escherichia coli. Here, HNTs were
functionalized with γ-aminopropyltriethoxysilane for enzyme immobilization and
controlled release.

A biosensor based on atemoya peroxidase immobilized on modified nanoclay for
glyphosate biomonitoring was developed by Oliveira et al. [86]. The antimicrobial
protein lysozyme was also successfully encapsulated into HNTs and incorporated
into PLA nanocomposite by Bugatti et al. [37]. The addition of HNTs improved
barrier properties due to a tortuous path effect and improved the mechanical
properties.

Drug Delivery

A field where nanoclays have attracted increasing interest is in drug delivery
applications [11, 38, 43, 53, 66, 68, 87–102] ranging from antibiotics, antihista-
mines, anti-inflammatories, antimicrobial, antifungal, antialgal, and anticancer
treatments.

Laponite nanoplatelets (LAP) were investigated by Roozbahani et al. [89] as a
possible platform for efficient sustained release of anionic dexamethasone (DEX) by
encapsulating the drug into the interlayer spacing of LAP nanodisks with a very high
efficiency. The release was found to be pH dependent, with faster rates in acidic
environments. Organic rectorite, a modified rectoride modified by cetyltrimethyl
ammonium bromide to increase its affinity with polymers, have been added to
chitosan to obtain nanocomposite films [53]. Films were loaded with bovine serum
albumin (BSA), as a model for a drug, to study drug delivery behavior that was
dependent on the amount and interlayer spacing of organic rectorite. With the same
nanoclay, an encapsulation efficiency of more than 90% was found by Zeynabad et
al. [103] for a pH-dependent dual drug delivery system for cancer therapy. In this
case, the anticancer drug methotrexate and an antibacterial agent ciprofloxacin was
encased in an organo-modified laponite–polymer composite.

Sepiolite, attapulgite, and bentonite were used to prepare “drug – in cyclodextrin –
in nanoclays” hybrid single delivery systems with improved dissolution of oxaprozin
(an anti-inflammatory drug), with sepiolite demonstrating the best properties (Mura
at al. [104]). The use of nanoclays for the entrapment of these drugs proved to be a
good tool for enhancing the therapeutic effectiveness of poorly soluble drugs, such
as oxaprozin, and for reducing the amount of cyclodextrin needed for obtaining the
required drug solubility.

Hydrogels of chitosan and MMT were studied for drug release behavior by
electrostimulation [105]. The exfoliated MMT sheets were able to increase cross-
linking density, enhance the fatigue behavior of chitosan, and improve long-term
drug release performance. Similarly, nanocomposites of poly(ε-caprolactone) filled
with montmorillonite were loaded with paracetamol without affecting the mechan-
ical properties of the polymer matrix (Campbell et al. [102]). In another study by
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Campbell et al. [106], composites of paracetamol-loaded poly-ethylene glycol and
nanoclay were prepared without affecting the structure of paracetamol during the
hot-melt process. Nanoclays successfully encased the paracetamol molecules, hence
retarding diffusion. A hydrogel consisting of poly(2-hydroxyethyl methacrylate)/
matrix and MMTwas developed as a as drug delivery system of paracetamol [107],
where nanoclays acted as polymer cross-linkers and extended the release time of
paracetamol, delaying also drug clearance which also reduces the need for multiple
doses. Also, it was demonstrated that the drug release rate can be adjusted by varying
the MMT content in the nanocomposite.

Perhaps, the more widely studied nanoclay for drug delivery are HNTs, due to
their microtubule shape [11, 66]. It has been found that at a pH above two HNTs bind
cationic drugs to their outer and inner layers for delayed drug release and that
optimum binding occurs in solutions above a pH of 4 [68]. Research have demon-
strated that HNTs are indeed potential carriers for cationic drugs (antibiotics and
antihistamines), with pharmaceutical compound loadings of up to 84 mmol/kg [92].
Porous microspheres of HNTs and chitosan were loaded with up to 42.4 wt.% of
aspirin, higher that the 2.1 wt.% shown by pristine HNTs. This was due to the
interconnected porous structure of HNTs/chitosan composites, with large pore
volume and high specific surface area. Also, these nanocomposites had lower release
in the simulated gastric fluid and more release in the simulated intestinal fluid,
reducing the side effects on the stomach.

Cytocompatible composite nanofibers of HNTs in poly(lactic-co-glycolic acid)
(PLGA) were prepared by Qi et al. [38]. HNTs were loaded with the antibiotic drug
tetracycline hydrochloride (TCH). The composite nanofibers were able to release the
drug in a sustained manner for 42 days. A HNT nanocomposite biodegradable
hydrogel with a matrix consisting of oligo(trimethylene carbonate)–poly(ethylene
glycol)–oligo(trimethylene carbonate) diacrylate (TPT) and alginate sodium (AG)
with enhanced mechanical properties and drug release behavior was prepared by Tu
et al. [43]. Demirci et al. [82] prepared a hydrogel of hyaluronic acid (HA) cryogels
with HNTs with sodium diclofenac as a model drug. The pore volume and porosity
increased 6.2% and 5%, respectively, and the drug release was 31%. In order to
reduce postsurgical infection that results in an early failure of orthopedic and
orthodontic implants, a calcium alginate and calcium phosphate cement with
HNTs loaded with gentamicin were prepared by Karnik et al. [101]. These nano-
clay/hydrogel composites showed a sustained and extended drug release with an
enhanced antimicrobial effect.

Control release of anticancer compounds with HNTs has been achieved by
capping their tube ends [66]. Stimuli-triggered drug delivery vehicles of HNTS for
targeted intracellular drug delivery in cancer therapy were developed by Dzamukova
et al. [97]. Brilliant green HNTs, loaded with an anticancer drug coated with
cleavable dextrin stoppers for controlled release, served as transmembrane carriers.
The accumulation and enzymatically induced release of drug only occurred for
malignant cells; hence, noncancerous cells were not affected. In another study,
polymer grafted-magnetic HNTs loaded with a cationic drug (norfloxacin) for con-
trolled release demonstrated higher drug loading compared to pristine HNTs [93].
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The combination of magnetic properties, high adsorption capacity, and sustained
drug release makes it a potential candidate for targeted drug delivery in different
forms of cancer. Massaro et al. [91] synthesized a stimuli-responsive prodrug based
on HNTs and a covalently linked curcumin, an antioxidant and anticancer com-
pound. Functionalization of HNTs was verified by thermogravimetry studies. Expo-
sure of this prodrug in glutathione-rich or acidic conditions similar to those found in
the microenvironment of hepatocancer cells showed an enhanced release of
curcumin. Hydrogels for colon cancer drug delivery were synthesized by Rao et
al. [108], consisting of sodium hyaluronate in a poly(hydroxyethyl methacrylate)
matrix, and an anticancer drug encapsulated in HNTs. In vitro experiments with
simulated gastric fluid and intestinal gastric fluid showed that these composite
hydrogels had a pH-dependent controlled release, with less than 10% release in
the gastric region and higher release in a controlled manner in the intestinal fluid,
making them more efficient for colon cancer drug delivery. Pramanik et al. [49]
prepared a polymer nanofiber consisting of a poly(ester amide)/polyaniline matrix
and MMT reinforcement with partially exfoliated nanoplatelets. These nano-
composites exhibited efficacy against gram positive and gram negative bacteria, as
well as antifungal and antialgal activity.

Conclusions and Future Outlook

This chapter presents recent advances in biomedical applications of nanoclay mate-
rials. These natural aluminosilicate structures have been shown to be nontoxic and
biocompatible and thus have been widely studied for tissue engineering, drug
delivery, wound healing, fillers for bone cement, and enzyme immobilization,
among others. In drug delivery systems, nanoclays’ excellent biocompatibility,
high anion exchange capacity, and pH-sensitive solubility related to the drug load
content make them great potential candidates for this purpose. It is demonstrated that
inorganic materials such as clays and their intercalated nanocomposite hybrids may
pave the way for the development of new polymer composite materials with tunable
mechanical properties that could be taken advantage for biomedical purposes where
high strength and modulus is required.
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