José C Riquelme

José C Riquelme
Verified
José verified their affiliation via an institutional email.
Verified
José verified their affiliation via an institutional email.
  • PhD Computer Science
  • Professor (Full) at University of Seville

About

301
Publications
135,994
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,089
Citations
Current institution
University of Seville
Current position
  • Professor (Full)
Additional affiliations
University of Seville
Position
  • Professor (Full)
September 1987 - present
University of Seville
Position
  • Professor (Full)

Publications

Publications (301)
Article
Full-text available
Visual anomaly detection plays a crucial role in manufacturing to ensure product quality by identifying image patterns that deviate from the expected ones. Existing methods that rely on distribution estimation struggle with the complexity of real-world images, resulting in complex and inefficient procedures. This study leverages normalizing flow te...
Article
Full-text available
Industrial activities are transitioning towards decarbonization, focusing on renewable energy sources, particu-larly photovoltaic solar energy. However, the inherent high variability of photovoltaic energy poses challenges.Some of them can be partially addressed by predicting electricity production, which in the case of photovoltaicsolar energy is...
Article
Full-text available
CO2 emissions play a crucial role in international politics. Countries enter into agreements to reduce the amount of pollution emitted into the atmosphere. Energy generation is one of the main contributors to pollution and is generally considered the main cause of climate change. Despite the interest in reducing emissions, few studies have focused...
Article
Full-text available
The global surge in energy demand, driven by technological advances and population growth, underscores the critical need for effective management of electricity supply and demand. In certain developing nations, a significant challenge arises because the energy demand of their population exceeds their capacity to generate, as is the case in Iraq. Th...
Article
Full-text available
Sepsis is a life-threatening condition whose early recognition is key to improving outcomes for patients in intensive care units (ICUs). Artificial intelligence can play a crucial role in mining and exploiting health data for sepsis prediction. However, progress in this field has been impeded by a lack of comparability across studies. Some studies...
Article
Renewable energies, such as solar power, offer a clean and cost-effective energy source. However, their integration into national electricity grids poses challenges due to their dependence on climate and geography. While numerous studies have focused on solar energy time series, few have specifically addressed the critical task of forecasting solar...
Article
Full-text available
Background The complex process of liver graft assessment is one point for improvement in liver transplantation. The main objective of this study is to develop a tool that supports the surgeon who is responsible for liver donation in the decision-making process whether to accept a graft or not using the initial variables available to it. Material a...
Chapter
Successful crop production in greenhouses is determined mainly by not only internal and external climatic variables but also by the characteristics of the greenhouse itself. One of the most important variables is the internal temperature, as it greatly determines whether or not the crop will succeed. The objective of this work is to use machine lea...
Chapter
Time series forecasting is crucial in various domains, including finance, meteorology, economics, and energy management. Regression trees and deep learning models are among the techniques developed to tackle these challenges. This paper presents a comparative analysis of these approaches in terms of efficacy and efficiency, using real-world dataset...
Chapter
Sarcomas are rare mesodermal tumors of heterogeneous nature and have a higher incidence in children. The relative 5-year survival rate for patients with metastatic sarcoma is usually low. Standard treatment for sarcomas involves surgical resection, and investigating the genetic basis of these tumors through genome-wide analysis is crucial due to th...
Conference Paper
Full-text available
Cluster analysis is a popular technique used to identify patterns in data mining. However, evaluating the accuracy of a clustering task is a challenging process which remains to be an open issue. In this work, we focus on two factors that significantly influence clustering performance: the optimal number of clusters and the subset of relevant attri...
Article
Background and purpose: Radiation-induced toxicities are common adverse events in lung cancer (LC) patients undergoing radiotherapy (RT). An accurate prediction of these adverse events might facilitate an informed and shared decision-making process between patient and radiation oncologist with a clearer view of life-balance implications in treatme...
Chapter
Most of the current data sources generate large amounts of data over time. Renewable energy generation is one example of such data sources. Machine learning is often applied to forecast time series. Since data flows are usually large, trends in data may change and learned patterns might not be optimal in the most recent data. In this paper, we anal...
Article
Autonomous vehicles are equipped with complimentary sensors to perceive the environment accurately. Deep learning models have proven to be the most effective approach for computer vision problems. Therefore, in autonomous driving, it is essential to design reliable networks to fuse data from different sensors. In this work, we develop a novel data...
Article
Full-text available
Background and Objectives: The burst of high-throughput omics technologies has given rise to a new era in systems biology, offering an unprecedented scenario for deriving meaningful biological knowledge through the integration of different layers of information. Methods: We have developed a new software tool, MOMIC, that guides the user through the...
Article
Full-text available
Processing data streams arriving at high speed requires the development of models that can provide fast and accurate predictions. Although deep neural networks are the state-of-the-art for many machine learning tasks, their performance in real-time data streaming scenarios is a research area that has not yet been fully addressed. Nevertheless, much...
Chapter
Electricity consumption is an issue that concerns us all. How we use electricity daily affects both the economy and the environment. Many studies analyse the use of electricity in households to predict the energy that will be consumed. Electricity companies are aware of the consumption of households and have estimated the energy that will be needed...
Chapter
Solar energy is currently among the most important and convenient renewable sources, with a great potential to reduce the use of fossil fuels. However, power generation from solar panels is very irregular and highly dependent on weather conditions. Therefore, solar irradiance forecasting is a fundamental task to ensure an efficient power management...
Article
Full-text available
The morphology of nanoparticles governs their properties for a range of important applications. Thus, the ability to statistically correlate this key particle performance parameter is paramount in achieving accurate control of nanoparticle properties. Among several effective techniques for morphological characterization of nanoparticles, transmissi...
Article
Full-text available
Background: A clinical decision support system (CDSS ) has been designed to predict the outcome (overall survival) by extracting and analyzing information from routine clinical activity as a complement to clinical guidelines in lung cancer patients. Materials and methods: Prospective multicenter data from 543 consecutive (2013-2017) lung cancer...
Article
Generally, classification problems catalog instances according to their target variable without considering the relation among the different labels. However, there are real problems in which the different values of the class are related to each other. Because of interest in this type of problem, several solutions have been proposed, such as cost-se...
Preprint
Full-text available
Object detection has been one of the most active topics in computer vision for the past years. Recent works have mainly focused on pushing the state-of-the-art in the general-purpose COCO benchmark. However, the use of such detection frameworks in specific applications such as autonomous driving is yet an area to be addressed. This study presents a...
Article
Full-text available
Object detection has been one of the most active topics in computer vision for the past years. Recent works have mainly focused on pushing the state-of-the-art in the general-purpose COCO benchmark. However, the use of such detection frameworks in specific applications such as autonomous driving is yet an area to be addressed. This study presents a...
Preprint
Full-text available
In recent years, deep learning techniques have outperformed traditional models in many machine learning tasks. Deep neural networks have successfully been applied to address time series forecasting problems, which is a very important topic in data mining. They have proved to be an effective solution given their capacity to automatically learn the t...
Conference Paper
Full-text available
A new transfer learning strategy is proposed for image classification in this work, based on an 8-layer convolutional neural network. The transfer learning process consists in a training phase of the neural network on a source dataset of images. Then, the last two layers are retrained using a different small target dataset of images. A preliminary...
Chapter
Full-text available
Processing data streams arriving at high speed requires the development of models that can provide fast and accurate predictions. Although deep neural networks are the state-of-the-art for many machine learning tasks, their performance in real-time data streaming scenarios is a research area that has not yet been fully addressed. Nevertheless, ther...
Chapter
A new transfer learning strategy is proposed for image classification in this work, based on an 8-layer convolutional neural network. The transfer learning process consists in a training phase of the neural network on a source dataset of images. Then, the last two layers are retrained using a different small target dataset of images. A preliminary...
Book
This book constitutes the refereed proceedings of the 19th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2020, which was cancelled due to the COVID-19 pandemic, amalgamated with CAEPIA 2021, and held in Malaga, Spain, during September 2021. The 25 full papers presented were carefully selected from 40 submissions. The Co...
Article
Full-text available
In recent years, deep learning techniques have outperformed traditional models in many machine learning tasks. Deep neural networks have successfully been applied to address time series forecasting problems, which is a very important topic in data mining. They have proved to be an effective solution given their capacity to automatically learn the t...
Article
Full-text available
https://authors.elsevier.com/a/1c0AE3KEGaD6fQ Breast cancer is the most frequent cancer in women and the second most frequent overall after lung cancer. Although the 5-year survival rate of breast cancer is relatively high, recurrence is also common which often involves metastasis with its consequent threat for patients. DNA methylation-derived da...
Article
Full-text available
This study proposes a novel bioinspired metaheuristic simulating how the coronavirus spreads and infects healthy people. From a primary infected individual (patient zero), the coronavirus rapidly infects new victims, creating large populations of infected people who will either die or spread infection. Relevant terms such as reinfection probability...
Preprint
Full-text available
A novel bioinspired metaheuristic is proposed in this work, simulating how the Coronavirus spreads and infects healthy people. From an initial individual (the patient zero), the coronavirus infects new patients at known rates, creating new populations of infected people. Every individual can either die or infect and, afterwards, be sent to the reco...
Article
Full-text available
Featured Application Energy demand forecasting to improve power generation management. Abstract Modern energy systems collect high volumes of data that can provide valuable information about energy consumption. Electric companies can now use historical data to make informed decisions on energy production by forecasting the expected demand. Many de...
Preprint
Full-text available
Processing data streams arriving at high speed requires the development of models that can provide fast and accurate predictions. Although deep neural networks are the state-of-the-art for many machine learning tasks, their performance in real-time data streaming scenarios is a research area that has not yet been fully addressed. Nevertheless, ther...
Preprint
Full-text available
Modern energy systems collect high volumes of data that can provide valuable information about energy consumption. Electric companies can now use historical data to make informed decisions on energy production by forecasting the expected demand. Many deep learning models have been proposed to deal with these type of time series forecasting problems...
Article
Full-text available
This paper presents a workbench to get simple neural classification models based on product evolutionary networks via a prior data preparation at attribute level by means of filter-based feature selection. Therefore, the computation to build the classifier is shorter, compared to a full model without data pre-processing, which is of utmost importan...
Article
Full-text available
Data streaming classification has become an essential task in many fields where real-time decisions have to be made based on incoming information. Neural networks are a particularly suitable technique for the streaming scenario due to their incremental learning nature. However, the high computation cost of deep architectures limits their applicabil...
Chapter
Full-text available
The generation of synthetic data is becoming a fundamental task in the daily life of any organization due to new protection data laws that are emerging. Generative Adversarial Networks (GANs) and its variants have attracted many researchers in their research work due to its elegant theoretical basis and its great performance in the generation of ne...
Chapter
Full-text available
Clustering analysis is one of the most commonly used techniques for uncovering patterns in data mining. Most clustering methods require establishing the number of clusters beforehand. However, due to the size of the data currently used, predicting that value is at a high computational cost task in most cases. In this article, we present a clusterin...
Article
Full-text available
The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, sinc...
Article
Full-text available
Unemployment in Spain is one of the biggest concerns of its inhabitants. Its unemployment rate is the second highest in the European Union, and in the second quarter of 2018 there is a 15.2% unemployment rate, some 3.4 million unemployed. Construction is one of the activity sectors that have suffered the most from the economic crisis. In addition,...
Article
https://authors.elsevier.com/c/1Yg1X4ZQDzkEk Clustering is one of the most commonly used techniques in data mining. Its main goal is to group objects into clusters so that each group contains objects that are more similar to each other than to objects in other clusters. The evaluation of a clustering solution is a task carried out through the appl...
Chapter
Full-text available
The continuous evaluation allows for the assessment of the progressive assimilation of concepts and the competences that must be achieved in a course. There are several ways to implement such continuous evaluation system. We propose auto-evaluation tests as a valuable tool for the student to judge his level of knowledge. Furthermore, these tests ar...
Article
This paper explores widely the data preparation stage within the process of knowledge discovery and data mining via feature subset selection in the context of two very well-known neural models: radial basis function neural networks and multi-layer perceptron. It is known the best performance of wrapper attribute selection methods based on the evalu...
Article
Full-text available
Analyzing land use and land cover (LULC) using remote sensing (RS) imagery is essential for many environmental and social applications. The increase in availability of RS data has led to the development of new techniques for digital pattern classification. Very recently, deep learning (DL) models have emerged as a powerful solution to approach many...
Article
Full-text available
This editorial summarizes the performance of the special issue entitled Data Science and Big Data in Energy Forecasting, which was published at MDPI’s Energies journal. The special issue took place in 2017 and accepted a total of 13 papers from 7 different countries. Electrical, solar and wind energy forecasting were the most analyzed topics, intro...
Conference Paper
Full-text available
El clustering es una de las técnicas más utilizadas en minería de datos. Tiene como objetivo principal agrupar datos en clusters de manera que los objetos que pertenecen al mismo clúster sean más similares que los que pertenecen a diferentes clusters. La validación de un clustering es una tarea que se realiza aplicando los llamados índices de valid...
Article
Full-text available
Surface ozone (O3) is considered an hazard to human health, affecting vegetation crops and ecosystems. Accurate time and location O3 forecasting can help to protect citizens to unhealthy exposures when high levels are expected. Usually, forecasting models use numerous O3 precursors as predictors, limiting the reproducibility of these models to the...
Chapter
Full-text available
The main objective of this paper is the application of big data analytics to a real case in the field of smart electric networks. Smart meters are not only elements to measure consumption, but they also constitute a network of millions of sensors in the electricity network. These sensors provide a huge amount of data that, once analyzed, can lead t...
Article
Full-text available
La introducción de los contadores eléctricos inteligentes proporciona una enorme cantidad de información que, además de por las compañías eléctricas, puede ser aprovechada por los usuarios para reducir su factura. Los análisis realizados hasta ahora se centran en el caso de la empresa eléctrica o, a lo sumo, al impacto del tratamiento de esta infor...
Article
Many algorithms have emerged to address the discovery of quantitative association rules from datasets in the last years. However, this task is becoming a challenge because the processing power of most existing techniques is not enough to handle the large amount of data generated nowadays. These vast amounts of data are known as Big Data. A number o...
Article
Full-text available
New technologies such as sensor networks have been incorporated into the management of buildings for organizations and cities. Sensor networks have led to an exponential increase in the volume of data available in recent years, which can be used to extract consumption patterns for the purposes of energy and monetary savings. For this reason, new ap...
Article
Clustering analysis is one of the most used Machine Learning techniques to discover groups among data objects. Some clustering methods require the number of clusters into which the data is going to be partitioned. There exist several cluster validity indices that help us to approximate the optimal number of clusters of the dataset. However, such in...
Article
This paper presents an evolutionary method for modifying the behaviour of the k-Nearest-Neighbour classifier (kNN) called Simultaneous Weighting of Attributes and Neighbours (SWAN). Unlike other weighting methods, SWAN presents the ability of adjusting the contribution of the neighbours and the significance of the features of the data. The optimiza...
Chapter
This chapter describes a forecasting methodology based on the Weighted nearest neighbors (WNNs) techniques. This technique provides a very simple approach to forecast power system variables characterized by daily and weekly repetitive patterns, such as energy demand and prices. Three case studies are used in the chapter to illustrate the potential...
Article
Full-text available
This editorial summarizes the performance of the special issue entitled Energy Time Series Forecasting, which was published in MDPI’s Energies journal. The special issue took place in 2016 and accepted a total of 21 papers from twelve different countries. Electrical, solar, or wind energy forecasting were the most analyzed topics, introducing brand...
Article
Breast cancer is the most common cause of cancer death in women. Today, post-transcriptional protein products of the genes involved in breast cancer can be identified by immunohistochemistry. However, this method has problems arising from the intra-observer and inter-observer variability in the assessment of pathologic variables, which may result i...
Conference Paper
This paper addresses the situation that may happen after the application of feature subset selection in terms of a reduced number of selected features or even same solutions obtained by different algorithms. The data mining community has been working for a long time with the assumption that meaningful attributes are either highly correlated with th...
Article
Alzheimer’s disease is a complex progressive neurodegenerative brain disorder, being its prevalence expected to rise over the next decades. Unconventional strategies for elucidating the genetic mechanisms are necessary due to its polygenic nature. In this work, the input information sources are five: a public DNA microarray that measures expression...
Article
Full-text available
This work aims at correcting flaws existing in multi-objective evolutionary schemes to discover quantitative association rules, specifically those based on the well-known non-dominated sorting genetic algorithm-II (NSGA-II). In particular, a methodology is proposed to find the most suitable configurations based on the set of objectives to optimize...
Conference Paper
Full-text available
K-Means and Bisecting K-Means clustering algorithms need the optimal number into which the dataset may be divided. Spark implementations of these algorithms include a method that is used to calculate this number. Unfortunately, this measurement presents a lack of precision because it only takes into account a sum of intra-cluster distances misleadi...
Conference Paper
A framework that combines feature selection with evolutionary artificial neural networks is presented. This paper copes with neural networks that are applied in classification tasks. In machine learning area, feature selection is one of the most common techniques for pre-processing the data. A set of filters have been taken into consideration to as...
Conference Paper
Full-text available
Light Detection and Ranging (LiDAR) is a remote sensor able to extract three-dimensional information about forest structure. Biophysical models have taken advantage of the use of LiDAR-derived information to improve their accuracy. Multiple Linear Regression (MLR) is the most common method in the literature regarding biomass estimation to define th...
Article
This paper presents a quality enhancement of the selected features by a hybrid filter-based jointly on feature ranking and feature subset selection (FR-FSS) using a consistency-based measure via merging new features which are obtained applying other FR-FSS evaluated with a correlation metric. The goal is to overcome the accuracy of a neural network...
Article
Full-text available
Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting...
Conference Paper
Full-text available
Resumen En este trabajo se propone el uso de conocimiento a priori como heurística en métodos de inferencia de redes de genes a partir de datos de expresión obtenidos con tecnología de Microarray. Utilizamos Gene Ontology [15] como fuente de conocimiento a priori. Este reposito-rio se nutre de la información de anotaciones de relaciones en el mater...
Article
Full-text available
Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting...
Conference Paper
Full-text available
This paper presents a novel procedure to apply in a sequential way two data preparation techniques from a different nature such as data cleansing and feature selection. For the former we have experienced with a partial removal of outliers via inter-quartile range whereas for the latter we have chosen relevant attributes with two widespread feature...
Article
In this paper a kernel for time-series data is introduced so that it can be used for any data mining task that relies on a similarity or distance metric. The main idea of our kernel is that it should recognize as highly similar time-series that are essentially the same but may be slightly perturbed from each other: for example, if one series is shi...
Article
Data classification is a critical step to convert remotely sensed data into thematic information. Environmental researchers have recently maximized the synergy between passive sensors and LiDAR (Light Detection and Ranging) for land cover classification by means of machine learning. Although object-based paradigm is frequently used to classify high...
Article
Full-text available
Association rule mining is a well-known methodology to discover significant and apparently hidden relations among attributes in a subspace of instances from datasets. Genetic algorithms have been extensively used to find interesting association rules. However, the rule-matching task of such techniques usually requires high computational and memory...
Conference Paper
Full-text available
This paper introduces the use of an ant colony optimization (ACO) algorithm, called Ant System, as a search method in two well-known feature subset selection methods based on correlation or consistency measures such as CFS (Correlation-based Feature Selection) and CNS (Consistency-based Feature Selection). ACO guides the search using a heuristic ev...
Conference Paper
Full-text available
This paper introduces two statistical outlier detection approaches by classes. Experiments on binary and multi-class classification problems reveal that the partial removal of outliers improves significantly one or two performance measures for C4.5 and 1-nearest neighbour classifiers. Also, a taxonomy of problems according to the amount of outliers...
Conference Paper
Full-text available
This work presents an evolutionary approach to modify the voting system of the k-Nearest Neighbours (kNN). The main novelty of this article lies on the optimization process of voting regardless of the distance of every neighbour. The calculated real-valued vector through the evolutionary process can be seen as the relative contribution of every nei...
Article
Full-text available
Imbalanced data is a common problem in data mining when dealing with classification problems, where samples of a class vastly outnumber other classes. In this situation, many data mining algorithms generate poor models as they try to optimize the overall accuracy and perform badly in classes with very few samples. Software Engineering data in gener...
Article
Full-text available
Digital forensics research includes several stages. Once we have collected the data the last goal is to obtain a model in order to predict the output with unseen data. We focus on supervised machine learning techniques. This chapter performs an experimental study on a forensics data task for multi-class classification including several types of met...
Article
ContextAlthough many papers have been published on software defect prediction techniques, machine learning approaches have yet to be fully explored.Objective In this paper we suggest using a descriptive approach for defect prediction rather than the precise classification techniques that are usually adopted. This allows us to characterise defective...
Conference Paper
Full-text available
There exist several fitness function proposals based on a combination of weighted objectives to optimize the discovery of association rules. Nevertheless, some differences in the measures used to assess the quality of association rules could be obtained according to the values of such weights. Therefore, in such proposals it is very important the u...

Network

Cited By