About
13
Publications
643
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
42
Citations
Publications
Publications (13)
We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting the corresponding boundary value problems as boundary integral equations, we prove that their so...
We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting the corresponding boundary value problems as boundary integral equations, we prove that their so...
We study the elastic time-harmonic wave scattering problems on unbounded domains with boundaries composed of finite collections of disjoints finite open arcs (or cracks) in two dimensions. Specifically, we present a fast spectral Galerkin method for solving the associated weakly- and hyper-singular boundary integral equations (BIEs) arising from Di...
We solve first-kind Fredholm boundary integral equations arising from Helmholtz and Laplace problems on bounded, smooth screens in three dimensions with either Dirichlet or Neumann conditions. The proposed Galerkin–Bubnov methods take as discretization elements pushed-forward weighted azimuthal projections of standard spherical harmonics onto the u...
We present a fast spectral Galerkin scheme for the discretization of boundary integral equations arising from two-dimensional Helmholtz transmission problems in multi-layered periodic structures or gratings. Employing suitably parametrized Fourier basis and excluding cut-off frequen- cies (also known as Rayleigh-Wood frequencies), we rigorously est...
Multilayered diffraction gratings are an essential component in many optical devices due to their ability to engineer light. We propose a first-order optimization strategy to maximize diffraction efficiencies of such structures by a fast approximation of the underlying boundary integral equations for polarized electromagnetic fields. A parametric r...
We solve first-kind Fredholm boundary integral equations arising from Helmholtz and Laplace problems on bounded, smooth screens in three-dimensions with either Dirichlet or Neumann conditions. The proposed Galerkin-Bubnov method takes as discretization elements pushed-forward weighted azimuthal projections of standard spherical harmonics onto the c...
We present a fast spectral Galerkin scheme for the discretization of boundary integral equations arising from two-dimensional Helmholtz transmission problems in multi-layered periodic structures or gratings. Employing suitably parametrized Fourier basis and excluding Rayleigh-Wood anomalies, we rigorously establish the well-posedness of both contin...
We present a spectral Galerkin numerical scheme for solving Helmholtz and Laplace problems with Dirichlet boundary conditions on a finite collection of open arcs in two-dimensional space. A boundary integral method is employed, giving rise to a first kind Fredholm equation whose variational form is discretized using weighted Chebyshev polynomials....
We study the mapping properties of boundary integral operators arising when solving two-dimensional, time-harmonic waves scattered by periodic domains. For domains assumed to be at least Lipschitz regular, we propose a novel explicit representation of Sobolev spaces for quasi-periodic functions that allows for an analysis analogous to that of Helmh...
We present a spectral numerical scheme for solving Helmholtz and Laplace problems with Dirichlet boundary conditions on an unbounded non-Lipschitz domain $$\mathbb {R}^2 \backslash \overline {\Gamma }$$ ℝ 2 ∖ Γ ¯ , where Γ is a finite collection of open arcs. Through an indirect method, a first kind formulation is derived whose variational form is...
We provide a novel ready-to-precondition boundary integral formulation to solve Helmholtz scattering problems by heterogenous penetrable objects in two dimensions exhibiting high-contrast ratios. By weakly imposing transmission conditions and integral representations per subdomain, we are able to devise a robust Galerkin-Petrov formulation employin...
We present an efficient method to solve high-frequency scattering problems by heterogeneous penetrable objects in two dimensions. This is achieved by extending the so-called Local Multiple Traces Formulation, introduced recently by Hiptmair and Jerez-Hanckes, to purely spectral discretizations employing weighted Chebyshev polynomials. Together with...