Jose F. Moran

Jose F. Moran
Universidad Pública de Navarra | UPNA · Institute for Research in Multidisciplinary Applied Biology

Professor

About

94
Publications
10,811
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,003
Citations
Introduction
Jose F. Moran currently works at the Institute of Multidisciplinary Applied Biology, Public University of Navarra. Jose does research in Biotechnology and Molecular Biology. Their current project is 'Amino acid oxidation pathways as a source of reactive nitrogen species grown in plants with ammonia and its relation to the signaling functions'.
Additional affiliations
January 2008 - December 2012
Universidad Pública de Navarra-CSIC-GN
Position
  • Instituto de Agrobiotecnología
January 2003 - March 2008
Public University of Navarre
Position
  • Universidad Pública de Navarra

Publications

Publications (94)
Article
Full-text available
The ornithine-urea cycle (urea cycle) makes a significant contribution to the metabolic responses of lower photosynthetic eukaryotes to episodes of high nitrogen availability. We therefore compared the role of the plant urea cycle and its relationships to polyamine metabolism in ammonium-fed and nitrate-fed Medicago truncatula plants. High ammonium...
Article
Full-text available
The aromatic amino acid tryptophan is the main precursor for indole-3-acetic acid (IAA), which involves various parallel routes in plants, with indole-3-acetaldoxime (IAOx) being one of the most common intermediates. Auxin signaling is well known to interact with free radical nitric oxide (NO) to perform a more complex effect, including the regulat...
Article
Indole-3-acetaldoxime (IAOx) is a particularly relevant molecule as an intermediate in the pathway for tryptophan-dependent auxin biosynthesis. The role of IAOx in growth-signalling and root phenotype is poorly studied in cruciferous plants and mostly unknown in non-cruciferous plants. We synthesized IAOx and applied it to M. truncatula plants grow...
Article
Plants differ widely in their growth and tolerance responses to ammonium and urea nutrition, while derived phenotypes seem markedly different from plants grown under nitrate supply. Plant responses to N sources are complex, and the traits involved remain unknown. This work reports a comprehensive and quantitative root proteomic study on the NH4+-to...
Article
A “box‐in‐box” co‐cultivation system was used to investigate plant responses to microbial volatile compounds (VCs), and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures,...
Article
Soybean is a crop of agronomic importance that requires adequate watering during its growth to achieve high production. In this study, we determined physiological, photochemical and metabolic differences in five soybean varieties selected from the parental lines of a Nested Association Mapping (NAM) population during mild drought. These varieties h...
Article
Full-text available
The enzyme-linked immunosorbent assay (ELISA) technique is based on the specific recognition ability of the molecular structure of an antigen (epitope) by an antibody and is likely the most important diagnostic technique used today in bioscience. With this methodology, it is possible to diagnose illness, allergies, alimentary fraud, and even to det...
Article
Ammonium sensitivity of plants is a worldwide problem, constraining crop production. Prolonged application of ammonium as the sole nitrogen source may result in physiological and morphological disorders that lead to decreased plant growth and toxicity. The main causes of ammonium toxicity/tolerance described until now include high ammonium assimila...
Article
Full-text available
We aimed to identify the early stress response and plant performance of Medicago truncatula growing in axenic medium with ammonium or urea as the sole source of nitrogen with respect to nitrate based nutrition through biomass measurements, auxin contents analyses, root system architecture response analyses, and physiological determinations. Both am...
Chapter
Xanthine oxidoreductase (XOR) is among the most-intensively studied enzymes known to participate in the consumption of oxygen in eukaryotic cells. However, it attracted the attention of researchers due its participation in free radical production in vivo, mainly through the production of superoxide radicals. In plants, XOR is a key enzyme involved...
Article
Full-text available
Phosphate starvation compromises electron flow through the cytochrome pathway of the mitochondrial electron transport chain, and plants commonly respond to phosphate deprivation by increasing flow through the alternative oxidase (AOX). To test whether this response is linked to the increase in nitric oxide (NO) production that also increases under...
Article
Carotenoids have traditionally been subscribed to their role as accessory pigments in photosynthesis. However, the large and growing body of literature investigated on the field have revealed that carotenoids fulfill a plethora of essential roles in plants but also in animals and in humans. Recent studies emphasizing the functional role of molecule...
Article
Full-text available
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var...
Article
Full-text available
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa va...
Article
Nitric oxide cytotoxicity arises from its rapid conversion to peroxynitrite (ONOO(-)) in the presence of superoxide, provoking functional changes in proteins by nitration of tyrosine residues. The physiological significance of this post-translational modification is associated to tissue injury in animals, but has not been yet clarified in plants. T...
Article
Gold nanostructures can undergo plasmonic behavior without need of light couplers like in traditional surface plasmon resonance (SPR) systems. This effect, known as LSPR (localized SPR), can be exploited to develop optical biosensors in simple configuration. In this paper, an LSPR system based on gold lines nanopattern as transducer has been develo...
Article
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var...
Article
Full-text available
Ferrous oxygenated hemoglobins (Hb(2+)O2) autoxidize to ferric Hb(3+), but Hb(3+) is reduced to Hb(2+) by enzymatic and non-enzymatic mechanisms. We characterized the interaction between the soybean ferric leghemoglobin reductase 2 (FLbR2) and ferric rice non-symbiotic Hb1 (Hb1(3+)). Spectroscopic analysis showed that FLbR2 reduces Hb1(3+). Analysi...
Article
An understanding of the mechanisms underlying ammonium toxicity in plants requires prior knowledge of the metabolic uses for nitrogen (N) and carbon (C). We have recently shown that pea plants grown at high ammonium concentrations suffer an energy deficiency associated with a disruption of ionic homeostasis. Furthermore, these plants are unable to...
Article
Three main families of SODs in plants may be distinguished according to the metal in the active center: CuZnSODs, MnSOD, and FeSOD. CuZnSODs have two sub-families localized either in plant cell cytosol or in plastids, the MnSOD family is essentially restricted to mitochondria, and the FeSOD enzyme family has been typically localized into the plasti...
Article
Superoxide dismutase enzymes (SODs) are an essential part of the first line of cellular defense system against free radicals species. They catalyze the dismutation of superoxide radicals into oxygen and hydrogen peroxide. Although several studies have examined the attachment of superoxide dismutases to nanoparticles and nanostructures, never has be...
Article
The development of new nitrogen fertilizers is necessary to optimize crop production whilst improving the environmental aspects arising from the use of nitrogenous fertilization as a cultural practice. The use of urease inhibitors aims to improve the efficiency of urea as a nitrogen fertilizer by preventing its loss from the soil as ammonia. Howeve...
Article
In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to N...
Article
The use of urea as an N fertilizer has increased to such an extent that it is now the most widely used fertilizer in the world. However, N losses as a result of ammonia volatilization lead to a decrease in its efficiency, therefore different methods have been developed over the years to reduce these losses. One of the most recent involves the use o...
Article
Full-text available
Two phylogenetically unrelated superoxide dismutase (SOD) families, i.e., CuZnSOD (copper and zinc SOD) and FeMn-CamSOD (iron, manganese, or cambialistic SOD), eliminate superoxide radicals in different locations within the plant cell. CuZnSOD are located within the cytosol and plastids, while the second family of SOD, which are considered to be of...
Data
Full-text available
Calculations appendix. The calculations used to achieve these results have been added to the manuscript to clarify the discussion and conclusions of this work. A) Calculations for obtaining the 15N content as μmol 15N·100 g-1 DW from the δ15N (‰) and total N content (% N). B) The 15N contents from the external NH4+ and NH3 were calculated using the...
Data
Full-text available
Natural isotopic signature data. Tables with plant biomass ratios of plants fed with NH4+/NO3- as the sole N source and δ15N values in shoots and roots of plants fed with NH4+ or NO3- as the sole N source.
Data
Control measures of external pH in all short-term experiments. Initial and final pH values of the external solutions at pH 6 (panels A, C and E) and 9 (panels B, D and F).
Article
Full-text available
In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH...
Conference Paper
Full-text available
Conjugation of biomolecules with inorganic materials provides access to a variety of functional hybrid systems with applications in biotechnology, medicine and catalysis. Coupling gold nanoparticles (AuNPs) and protein/enzymes allow us to design multifunctional nanocarriers for new therapy and sensing technology [1]. In the case of enzymes, the eff...
Article
The widespread use of NO(3)(-) fertilization has had a major ecological impact. NH(4)(+) nutrition may help to reduce this impact, although high NH(4)(+) concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeosta...
Article
The form of nitrogen nutrition affects many biochemical and physiological processes in plants, leading to markedly different growth responses. Many plant species have been characterized as ammonium tolerant or sensitive. The objective of this work was to assess the range of physiological adaptative responses involved in tolerance of ammonium nutrit...
Article
The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism i...
Article
Photosynthesis provides plant metabolism with reduced carbon (C) but is also the main source of oxidative stress in plants. Likewise, high doses of NH(4)(+) as sole N source have been reported to be toxic for most plants, resulting in reduced plant growth and restricting C availability. The combination of high photosynthetic photon flux densities (...
Article
In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH 6.0 and compared it to that from horseradish peroxidas...
Article
Nitrogen fixation (NF) in legume nodules is very sensitive to environmental constraints. Nodule sucrose synthase (SS; EC 2.4.1.13) has been suggested to play a crucial role in those circumstances because its downregulation leads to an impaired glycolytic carbon flux and, therefore, a depletion of carbon substrates for bacteroids. In the present stu...
Article
Ammonium nutrition is of interest as an alternative to that of using nitrate. However, the former has been reported as stressful to many plant species especially to some important crops, as most abiotic stresses may trigger oxidative imbalances in plants. In this work, we investigate the response of oxidative metabolism of two plant species, spinac...
Article
Superoxide dismutases (SODs; EC 1.15.1.1) are a group of metalloenzymes which are essential to protect cells under aerobic conditions. In biological systems, it has been reported that SODs and other proteins are susceptible to be attacked by peroxynitrite (ONOO−) which can be originated from the reaction of nitric oxide with superoxide radical. ONO...
Article
Ferric leghemoglobin reductase (FLbR) is able to reduce ferric leghemoglobin (Lb3+) to ferrous (Lb2+) form. This reaction makes Lb functional in performing its role since only reduced hemoglobins bind O2. FLbR contains FAD as prosthetic group to perform its activity. FLbR-1 and FLbR-2 were isolated from soybean root nodules and it has been postulat...
Article
Superoxide dismutases (SODs) are a family of metalloenzymes that catalyze the dismutation of superoxide anion radicals into molecular oxygen and hydrogen peroxide. Iron superoxide dismutases (FeSODs) are only expressed in some prokaryotes and plants. A new and highly active FeSOD with an unusual subcellular localization has recently been isolated f...
Article
Full-text available
The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in th...
Article
Full-text available
An iron-superoxide dismutase (FeSOD) with an unusual subcellular localization, VuFeSOD, has been purified from cowpea (Vigna unguiculata) nodules and leaves. The enzyme has two identical subunits of 27 kD that are not covalently bound. Comparison of its N-terminal sequence (NVAGINLL) with the cDNA-derived amino acid sequence showed that VuFeSOD is...
Article
Eukaryotic iron superoxide dismutases (FeSODs) are homodimeric proteins that constitute a fundamental protection against free radicals, which can damage essential cellular mechanisms. The protein was cloned and overexpressed in Escherichia coli with an N-terminal His tag. Crystallization experiments of the protein resulted, after several refined sc...
Article
The thiol tripeptide glutathione (GSH; gammaGlu-Cys-Gly) is very abundant in legume nodules where it performs multiple functions that are critical for optimal nitrogen fixation. Some legume nodules contain another tripeptide, homoglutathione (hGSH; gammaGlu-Cys-betaAla), in addition to or instead of GSH. We have isolated from a pea (Pisum sativum L...
Article
Full-text available
Nodule ferric leghemoglobin reductase (FLbR) and leaf dihydrolipoamide reductase (DLDH) belong to the same family of pyridine nucleotide-disulfide oxidoreductases. We report here the cloning, expression, and characterization of a second protein with FLbR activity, FLbR-2, from soybean (Glycine max) nodules. The cDNA is 1,779 bp in length and codes...
Article
Nodule ferric leghemoglobin reductase (FLbR) and leaf dihydrolipoamide reductase (DLDH) belong to the same family of pyridine nucleotide-disulfide oxidoreductases. We report here the cloning, expression, and characterization of a second protein with FLbR activity, FLbR-2, from soybean (Glycine max) nodules. The cDNA is 1,779 bp in length and codes...
Chapter
The proceedings include the Johanna Döbereiner memorial lecture, a note on the discovery in 1965 of inorganic nitrogen complexes, the keynote address, and 68 papers in 15 sections (each mostly introduced by an overview): Chemistry and biochemistry of nitrogenase; Bacterial genomics; Plant genomics; Signal transduction; Developmental biology; Signal...
Article
Reactive oxygen species are a ubiquitous danger for aerobic organisms. This risk is especially elevated in legume root nodules due to the strongly reducing conditions, the high rates of respiration, the tendency of leghemoglobin to autoxidize, the abundance of nonprotein Fe and the presence of several redox proteins that leak electrons to O2. Conse...
Article
Full-text available
The thiol tripeptides glutathione (GSH) and homoglutathione (hGSH) are very abundant in legume root nodules and their synthesis is catalyzed by the enzymes gamma-glutamylcysteine synthetase (gammaECS), GSH synthetase (GSHS), and hGSH synthetase (hGSHS). As an essential step to elucidate the role of thiols in N(2) fixation we have isolated cDNAs enc...
Article
Full-text available
High-performance liquid chromatography (HPLC) with fluorescence detection was used to study thiol metabolism in legume nodules. Glutathione (GSH) was the major non-protein thiol in all indeterminate nodules examined, as well as in the determinate nodules of cowpea (Vigna unguiculata), whereas homoglutathione (hGSH) predominated in soybean (Glycine...
Article
Full-text available
Nitrate-fed and dark-stressed bean (Phaseolus vulgaris) and pea (Pisum sativum) plants were used to study nodule senescence. In bean, 1 d of nitrate treatment caused a partially reversible decline in nitrogenase activity and an increase in O(2) diffusion resistance, but minimal changes in carbon metabolites, antioxidants, and other biochemical para...