
José María Martín-DuránQueen Mary, University of London | QMUL · School of Biological and Chemical Sciences
José María Martín-Durán
PhD Biology
About
74
Publications
56,450
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,313
Citations
Citations since 2017
Introduction
Evolution of animals, with special focus on invertebrate diversity. Major evolutionary transitions, in particular the origin of bilaterian animals.
Additional affiliations
Education
March 2007 - July 2011
Publications
Publications (74)
Indirect development with an intermediate larva exists in all major animal lineages¹, which makes larvae central to most scenarios of animal evolution2–11. Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We perf...
Background
Osedax, the deep-sea annelid found at sunken whalefalls, is known to host bacterial endosymbionts intracellularly in specialized roots, that help it feed exclusively on vertebrate bones. Past studies, however, have also made mention of external bacteria on their trunks.
Here, we present an examination of the bacterial communities associa...
Osedax , the deep-sea annelid found at sunken whalefalls, is known to host Oceanospirillales bacterial endosymbionts intracellularly in specialized roots, that help it feed exclusively on vertebrate bones. Past studies, however, have also made mention of external bacteria on their trunks. During a 14-year study, we reveal a dynamic, yet persistent,...
Fox genes are a large and conserved family of transcription factors involved in many key biological processes, including embryogenesis and body patterning. Although the role of Fox genes has been studied in an array of model systems, comprehensive comparative studies in Spiralia—a large clade of invertebrate animals including molluscs and annelids—...
Annelids have repeatedly evolved symbioses that allow them to colonise extreme ecological niches, like hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbiotic lifestyles remain unclear. Here we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutriti...
The marine annelid Osedax has evolved a unique heterotrophic symbiosis that allows it to feed exclusively on sunken bones. Yet, the genetic and physiological principles sustaining this symbiosis are poorly understood. Here we show that Osedax frankpressi has a small, AT-rich genome shaped by extensive gene loss. While the Oceanospirillales endosymb...
Animal development is classified as conditional or autonomous based on whether cell fates are specified through inductive signals or maternal determinants, respectively. Yet how these two major developmental modes evolved remains unclear. During spiral cleavage—a stereotypic embryogenesis ancestral to 15 invertebrate groups, including molluscs and...
Fox genes are a large and conserved family of transcription factors involved in many key biological processes, including embryogenesis and body patterning. Although the role of Fox genes has been studied in an array of model systems, comprehensive comparative studies in Spiralia—a large clade of invertebrate animals including molluscs and annelids—...
Indirect development with an intermediate larva exists in all major animal lineages, and thus larvae are central to most scenarios for animal evolution. Yet how larvae evolved remains disputed. Here we show that changes in the timing of trunk formation underpin the diversification of larvae and bilaterian life cycles. Combining chromosome-scale gen...
Indirect development with an intermediate larva exists in all major animal lineages, and thus larvae are central to most scenarios for animal evolution. Yet how larvae evolved remains disputed. Here we show that changes in the timing of trunk formation underpin the diversification of larvae and bilaterian life cycles. Combining chromosome-scale gen...
The decoding of genomes of a larger number of animal species have provided further insights into the genomic Hox gene organization and with this indicated the evolutionary changes during the radiation of several clades. The expansion of gene expression studies during development and life history stages of more species, complete the picture of the r...
We present the Aquatic Symbiosis Genomics Project, a global collaboration to generate high quality genome sequences for a wide range of eukaryotes and their microbial symbionts. Launched under the Symbiosis in Aquatic Systems Initiative of the Gordon and Betty Moore Foundation, the ASG Project brings together researchers from across the globe who h...
Animal development is classified as conditional or autonomous based on whether cell fates are specified through inductive signals or maternal determinants, respectively. Yet how these two major developmental modes evolved remains unclear. During spiral cleavage—a stereotypic embryogenesis ancestral to 15 invertebrate groups, including molluscs and...
Embryonic organisers are signalling centres that instruct the establishment of body plans during animal embryogenesis, thus underpinning animal morphological diversity. In spiral cleavage - a stereotypic developmental programme ancestral to 14, nearly half, of the animal phyla (e.g., molluscs, annelids and flatworms), a cell known as the D-quadrant...
Background
Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis , a member of the...
Background : Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis , a member of t...
Background: Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the...
The causes and consequences of genome reduction in animals are unclear because our understanding of this process mostly relies on lineages with often exceptionally high rates of evolution. Here, we decode the compact 73.8-megabase genome of Dimorphilus gyrociliatus, a meiobenthic segmented worm. The D. gyrociliatus genome retains traits classically...
A Correction to this paper has been published: https://doi.org/10.1038/s41559-020-01327-6.
Animal genomes vary in size by orders of magnitude. While genome size expansion relates to transposable element mobilisation and polyploidisation, the causes and consequences of genome reduction are unclear. This is because our understanding of genome compaction relies on animals with extreme lifestyles, such as parasites, and free-living animals w...
Snails, earthworms and flatworms are remarkably different animals, but they all exhibit a very similar mode of early embryogenesis: spiral cleavage. This is one of the most widespread developmental programs in animals, probably ancestral to almost half of the animal phyla, and therefore its study is essential for understanding animal development an...
Microtubules segregate chromosomes by attaching to macromolecular kinetochores. Only microtubule-end attached kinetochores can be pulled apart; how these end-on attachments are selectively recognised and stabilised is not known. Using the kinetochore and microtubule-associated protein, Astrin, as a molecular probe, we show that end-on attachments a...
Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of re...
The evolution of nervous systems in animals has always fascinated biologists, and thus multiple evolutionary scenarios have been proposed to explain the appearance of neurons and complex neuronal centers. However, the absence of a robust phylogenetic framework for animal interrelationships, the lack of a mechanistic understanding of development, an...
Animals are fascinating in many ways. For centuries scientists have tried to understand animal evolution. How did animals first evolve? How are they related to one another? How is the genotype—the genetic information contained in their DNA—translated into form and function? How do embryonic cells build tissues and organs? What is the biological bas...
Posterior elongation of the developing embryo is a common feature of animal development. One group of genes that is involved in posterior elongation is represented by the Wnt genes, secreted glycoprotein ligands that signal to specific receptors on neighbouring cells and thereby establish cell-to-cell communication. In segmented animals such as ann...
Animal evolution has always been at the core of Biology, but even today many fundamental questions remain open. The field of animal ‘evo-devo’ is leveraging recent technical and conceptual advances in development, paleontology, genomics and transcriptomics to propose radically different answers to traditional evolutionary controversies.
This book...
Flatworms (Platyhelminthes) are a basally branching phylum that harbours a wealth of fascinating biology, including planarians with their astonishing regenerative abilities and the parasitic tape worms and blood flukes that exert a massive impact on human health. PlanMine (http://planmine.mpi-cbg.de/) has the mission objective of providing both a m...
Thanks to their ability to regrow any missing body part after injury, planarians have become a well-established invertebrate model system in regenerative studies. However, planarians are also unique in their embryonic development, displaying ectolecithality, or the accumulation of embryonic nutrients into accessory cells accompanying the zygotes. G...
It has been hypothesized that a condensed nervous system with a medial ventral nerve cord is an ancestral character of Bilateria. The presence of similar dorsoventral molecular patterns along the nerve cords of vertebrates, flies, and an annelid has been interpreted as support for this scenario. Whether these similarities are generally found across...
Background: Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolution...
Gains and losses shape the gene complement of animal lineages and are a fundamental aspect of genomic evolution. Acquiring a comprehensive view of the evolution of gene repertoires is limited by the intrinsic limitations of common sequence similarity searches and available databases. Thus, a subset of the gene complement of an organism consists of...
Significance
Hox genes pattern the anteroposterior axis of all animals that have left and right body sides. In many animals, Hox genes are clustered along the chromosomes and expressed in spatial and temporal order. This coordinated regulation is thought to have preserved the cluster through a developmental constraint. Our study of the genomic orga...
Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have changed several times during animal evolution. Here, we analyze the evolutionary transition from spiral cl...
The mouth opening of bilaterian animals develops either separate from (deuterostomy) or connected to (protostomy) the embryonic blastopore, the site of endomesoderm internalization. Although this distinction preluded the classification of bilaterian animals in Deuterostomia and Protostomia, and has influenced major scenarios of bilaterian evolution...
The group Spiralia includes species with one of the most significant cases of left–right asymmetries in animals: the coiling of the shell of gastropod molluscs (snails). In this animal group, an early event of embryonic chirality controlled by cytoskeleton dynamics and the subsequent differential activation of the genes nodal and Pitx determine the...
The βcatenin-dependent Wnt pathway exerts multiple context-dependent roles in embryonic and adult tissues. In planarians, βcatenin-1 is thought to specify posterior identities through the generation of an anteroposterior gradient. However, the existence of such gradient has not been directly demonstrated. Here, we use a specific polyclonal antibody...
Background
Annelida is a morphologically diverse animal group that exhibits a remarkable variety in nervous system architecture (e.g., number and location of longitudinal cords, architecture of the brain). Despite this heterogeneity of neural arrangements, the molecular profiles related to central nervous system patterning seem to be conserved even...
Gains and losses shape the gene complement of animal lineages and are a fundamental aspect of genomic evolution. Acquiring a comprehensive view of the evolution of gene repertoires is limited by the intrinsic limitations of common sequence similarity searches and available databases. Thus, a subset of the complement of an organism consists of hidde...
Temporal collinearity is often regarded as the force preserving Hox clusters in vertebrate genomes. Studies that combine genomic and gene expression data in invertebrates would allow generalizing this observation across all animals, but are scarce, particularly within Lophotrochozoa (e.g., snails and segmented worms). Here, we use two brachiopod sp...
The EGFR pathway is an essential signaling system in animals, whose core components are the epidermal growth factors (EGF ligands) and their trans-membrane tyrosine kinase receptors (EGFRs). Despite extensive knowledge in classical model organisms, little is known of the composition and function of the EGFR pathway in most animal lineages. Here, we...
The origin and extreme diversification of the animal nervous system is a central
question in biology. While most of the attention has traditionally been paid
to those lineages with highly elaborated nervous systems (e.g. arthropods,
vertebrates, annelids), only the study of the vast animal diversity can deliver
a comprehensive view of the evolution...
Background:
The life cycle of many animals includes a larval stage, which has diversified into an astonishing variety of ecological strategies. The Nemertea is a group of spiralians that exhibits a broad diversity of larval forms, including the iconic pilidium. A pelagic planktotrophic pilidium is the ancestral form in the Pilidiophora, but severa...
Background
The life cycle of many animals includes a larval stage, which has diversified into an astonishing variety of ecological strategies. The Nemertea is a group of spiralians that exhibits a broad diversity of larval forms, including the iconic pilidium. A pelagic planktotrophic pilidium is the ancestral form in the Pilidiophora, but several...
The digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit r...
The digestive tract is an essential organ system that allows animals to efficiently digest food and take up nutrients to maintain growth and sustain the body. While some animal groups possess a sack-like gut, others possess a tube shaped alimentary canal with an opening for food uptake, the mouth, and an opening for defecation, the anus. The evolut...
The phylum Platyhelminthes comprises dorso-ventrally flattened worms commonly known as flatworms (from the Greek platys, meaning flat, and helminthos, meaning worm) (for a general overview of this phylum, see Hyman 1–951; Rieger et al. 1–991). Platyhelminthes are one of the largest animal phyla after arthropods, mollusks, and chordates and includes...
Since the discovery that the TGF-beta signalling molecule Nodal and its downstream effector Pitx have a parallel role in establishing asymmetry between molluscs and deuterostomes the debate over the degree to which this signalling pathway is conserved across the Bilateria as a whole has been ongoing. Further taxon sampling is critical to understand...
Hemerythrins and hemocyanins are respiratory proteins present in some of the most ecologically diverse animal lineages; however the precise evolutionary history of their enzymatic domains (hemerythrin, hemocyanin M and tyrosinase) is still not well understood. We survey a wide dataset of prokaryote and eukaryote genomes and RNAseq data to reconstru...