
Jose M. Alvarez- PhD, MSc
- National ICT Australia Ltd
Jose M. Alvarez
- PhD, MSc
- National ICT Australia Ltd
About
163
Publications
42,668
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
15,900
Citations
Introduction
Current institution
Publications
Publications (163)
As evidenced by video segmentation and cosegmentation approaches, exploiting multiple images is key to the success of visual scene understanding. With the availability of increasingly large sets of images, there is a clear need for methods that can efficiently analyze the similarities and structure across huge numbers of image pixels. Furthermore,...
The advances in vision-language models (VLMs) have led to a growing interest in autonomous driving to leverage their strong reasoning capabilities. However, extending these capabilities from 2D to full 3D understanding is crucial for real-world applications. To address this challenge, we propose OmniDrive, a holistic vision-language dataset that al...
Current structural pruning methods face two significant limitations: (i) they often limit pruning to finer-grained levels like channels, making aggressive parameter reduction challenging, and (ii) they focus heavily on parameter and FLOP reduction, with existing latency-aware methods frequently relying on simplistic, suboptimal linear models that f...
How can we rely on an end-to-end autonomous vehicle's complex decision-making system during deployment? One common solution is to have a ``fallback layer'' that checks the planned trajectory for rule violations and replaces it with a pre-defined safe action if necessary. Another approach involves adjusting the planner's decisions to minimize a pre-...
Autonomous vehicle safety is crucial for the successful deployment of self-driving cars. However, most existing planning methods rely heavily on imitation learning, which limits their ability to leverage collision data effectively. Moreover, collecting collision or near-collision data is inherently challenging, as it involves risks and raises ethic...
Pruning aims to accelerate and compress models by removing redundant parameters, identified by specifically designed importance scores which are usually imperfect. This removal is irreversible, often leading to subpar performance in pruned models. Dynamic sparse training, while attempting to adjust sparse structures during training for continual re...
Recently, promising progress has been made by open-source vision-language models (VLMs) in bringing their capabilities closer to those of proprietary frontier models. However, most open-source models only publish their final model weights, leaving the critical details of data strategies and implementation largely opaque. In this work, we address VL...
3D object detection is an essential task for computer vision applications in autonomous vehicles and robotics. However, models often struggle to quantify detection reliability, leading to poor performance on unfamiliar scenes. We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bi...
In recent years, the data collected for artificial intelligence has grown to an unmanageable amount. Particularly within industrial applications, such as autonomous vehicles, model training computation budgets are being exceeded while model performance is saturating -- and yet more data continues to pour in. To navigate the flood of data, we propos...
The cornerstone of autonomous vehicles (AV) is a solid perception system, where camera encoders play a crucial role. Existing works usually leverage pre-trained Convolutional Neural Networks (CNN) or Vision Transformers (ViTs) designed for general vision tasks, such as image classification, segmentation, and 2D detection. Although those well-known...
We propose Hydra-MDP, a novel paradigm employing multiple teachers in a teacher-student model. This approach uses knowledge distillation from both human and rule-based teachers to train the student model, which features a multi-head decoder to learn diverse trajectory candidates tailored to various evaluation metrics. With the knowledge of rule-bas...
Data often arrives in sequence over time in real-world deep learning applications such as autonomous driving. When new training data is available, training the model from scratch undermines the benefit of leveraging the learned knowledge, leading to significant training costs. Warm-starting from a previously trained checkpoint is the most intuitive...
Humans naturally retain memories of permanent elements, while ephemeral moments often slip through the cracks of memory. This selective retention is crucial for robotic perception, localization, and mapping. To endow robots with this capability, we introduce 3D Gaussian Mapping (3DGM), a self-supervised, camera-only offline mapping framework ground...
Autonomous vehicles (AV) require that neural networks used for perception be robust to different viewpoints if they are to be deployed across many types of vehicles without the repeated cost of data collection and labeling for each. AV companies typically focus on collecting data from diverse scenarios and locations, but not camera rig configuratio...
View Transformation Module (VTM), where transformations happen between multi-view image features and Bird-Eye-View (BEV) representation, is a crucial step in camera-based BEV perception systems. Currently, the two most prominent VTM paradigms are forward projection and backward projection. Forward projection, represented by Lift-Splat-Shoot, leads...
Recent vision-only perception models for autonomous driving achieved promising results by encoding multi-view image features into Bird's-Eye-View (BEV) space. A critical step and the main bottleneck of these methods is transforming image features into the BEV coordinate frame. This paper focuses on leveraging geometry information, such as depth, to...
This technical report summarizes the winning solution for the 3D Occupancy Prediction Challenge, which is held in conjunction with the CVPR 2023 Workshop on End-to-End Autonomous Driving and CVPR 23 Workshop on Vision-Centric Autonomous Driving Workshop. Our proposed solution FB-OCC builds upon FB-BEV, a cutting-edge camera-based bird's-eye view pe...
We design a new family of hybrid CNN-ViT neural networks, named FasterViT, with a focus on high image throughput for computer vision (CV) applications. FasterViT combines the benefits of fast local representation learning in CNNs and global modeling properties in ViT. Our newly introduced Hierarchical Attention (HAT) approach decomposes global self...
Humans can easily imagine the complete 3D geometry of occluded objects and scenes. This appealing ability is vital for recognition and understanding. To enable such capability in AI systems, we propose VoxFormer, a Transformer-based semantic scene completion framework that can output complete 3D volumetric semantics from only 2D images. Our framewo...
Once deployed in the field, Deep Neural Networks (DNNs) run on devices with widely different compute capabilities and whose computational load varies over time. Dynamic network architectures are one of the existing techniques developed to handle the varying computational load in real-time deployments. Here we introduce LeAF (Legacy Augmentation for...
We propose Mask Auto-Labeler (MAL), a high-quality Transformer-based mask auto-labeling framework for instance segmentation using only box annotations. MAL takes box-cropped images as inputs and conditionally generates their mask pseudo-labels.We show that Vision Transformers are good mask auto-labelers. Our method significantly reduces the gap bet...
Structured channel pruning has been shown to significantly accelerate inference time for convolution neural networks (CNNs) on modern hardware, with a relatively minor loss of network accuracy. Recent works permanently zero these channels during training, which we observe to significantly hamper final accuracy, particularly as the fraction of the n...
Structural pruning can simplify network architecture and improve inference speed. We propose Hardware-Aware Latency Pruning (HALP) that formulates structural pruning as a global resource allocation optimization problem, aiming at maximizing the accuracy while constraining latency under a predefined budget on targeting device. For filter importance...
Modern deep learning systems require huge data sets to achieve impressive performance, but there is little guidance on how much or what kind of data to collect. Over-collecting data incurs unnecessary present costs, while under-collecting may incur future costs and delay workflows. We propose a new paradigm for modeling the data collection workflow...
Retrieving images with objects that are semantically similar to objects of interest (OOI) in a query image has many practical use cases. A few examples include fixing failures like false negatives/positives of a learned model or mitigating class imbalance in a dataset. The targeted selection task requires finding the relevant data from a large-scal...
Given a small training data set and a learning algorithm, how much more data is necessary to reach a target validation or test performance? This question is of critical importance in applications such as autonomous driving or medical imaging where collecting data is expensive and time-consuming. Overestimating or underestimating data requirements i...
Knowledge distillation facilitates the training of a compact student network by using a deep teacher one. While this has achieved great success in many tasks, it remains completely unstudied for image-based 6D object pose estimation. In this work, we introduce the first knowledge distillation method for 6D pose estimation. Specifically, we follow a...
Recent studies show that Vision Transformers(ViTs) exhibit strong robustness against various corruptions. Although this property is partly attributed to the self-attention mechanism, there is still a lack of systematic understanding. In this paper, we examine the role of self-attention in learning robust representations. Our study is motivated by t...
Recent studies show that Vision Transformers(ViTs) exhibit strong robustness against various corruptions. Although this property is partly attributed to the self-attention mechanism, there is still a lack of systematic understanding. In this paper, we examine the role of self-attention in learning robust representations. Our study is motivated by t...
Instance segmentation is a fundamental vision task that aims to recognize and segment each object in an image. However, it requires costly annotations such as bounding boxes and segmentation masks for learning. In this work, we propose a fully unsupervised learning method that learns class-agnostic instance segmentation without any annotations. We...
Deep Neural Networks (DNNs) often rely on vast datasets for training. Given the large size of such datasets, it is conceivable that they contain specific samples that either do not contribute or negatively impact the DNN's optimization. Modifying the training distribution to exclude such samples could provide an effective solution to improve perfor...
We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with lightweight multilayer perceptron (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional enc...
Traditionally, road detection approaches mostly capitalize on RGB images, 3D LiDAR point cloud or their fusion. However, RGB camera is sensitive to light conditions, while LiDAR point cloud is sparse compared with dense image pixels. In this work, a new hybrid image dataset is provided for the task of road detection based on cameras. In this datase...
We present Panoptic SegFormer, a general framework for end-to-end panoptic segmentation with Transformers. The proposed method extends Deformable DETR with a unified mask prediction workflow for both things and stuff, making the panoptic segmentation pipeline concise and effective. With a ResNet-50 backbone, our method achieves 50.0\% PQ on the COC...
Deep neural networks have reached very high accuracy on object detection but their success hinges on large amounts of labeled data. To reduce the dependency on labels, various active-learning strategies have been proposed, typically based on the confidence of the detector. However, these methods are biased towards best-performing classes and can le...
Deep neural networks have reached very high accuracy on object detection but their success hinges on large amounts of labeled data. To reduce the dependency on labels, various active-learning strategies have been proposed, typically based on the confidence of the detector. However, these methods are biased towards best-performing classes and can le...
Knowledge distillation constitutes a simple yet effective way to improve the performance of a compact student network by exploiting the knowledge of a more powerful teacher. Nevertheless, the knowledge distillation literature remains limited to the scenario where the student and the teacher tackle the same task. Here, we investigate the problem of...
We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with lightweight multilayer perception (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional enc...
Active learning aims to reduce labeling costs by selecting only the most informative samples on a dataset. Few existing works have addressed active learning for object detection. Most of these methods are based on multiple models or are straightforward extensions of classification methods, hence estimate an image's informativeness using only the cl...
Deep Neural Networks trained in a fully supervised fashion are the dominant technology in perception-based autonomous driving systems. While collecting large amounts of unlabeled data is already a major undertaking, only a subset of it can be labeled by humans due to the effort needed for high-quality annotation. Therefore, finding the right data t...
In our everyday lives and social interactions we often try to perceive the emotional states of people. There has been a lot of research in providing machines with a similar capacity of recognizing emotions. From a computer vision perspective, most of the previous efforts have been focusing in analyzing the facial expressions and, in some cases, als...
Road detection is an important task in autonomous navigation systems. In this paper, we propose a road detection method via a LiDAR-camera fusion strategy to exploit both the range and color information. The whole system consists of three parts. In the LiDAR based part, we transform the discrete 3D LiDAR point clouds to continuous 2D LiDAR range im...
Semantic segmentation with Convolutional Neural Networks is a memory-intensive task due to the high spatial resolution of feature maps and output predictions. In this paper, we present Quadtree Generating Networks (QGNs), a novel approach able to drastically reduce the memory footprint of modern semantic segmentation networks. The key idea is to us...
Deep Neural Networks (DNNs) often rely on very large datasets for training. Given the large size of such datasets, it is conceivable that they contain certain samples that either do not contribute or negatively impact the DNN's performance. If there is a large number of such samples, subsampling the training dataset in a way that removes them could...
In our everyday lives and social interactions we often try to perceive the emotional states of people. There has been a lot of research in providing machines with a similar capacity of recognizing emotions. From a computer vision perspective, most of the previous efforts have been focusing in analyzing the facial expressions and, in some cases, als...
In this paper, we propose an illumination-invariant nonparametric model for urban road detection based on a monocular camera and a single-line LIDAR sensor. With the monocular camera, we propose a new shadow removal method to obtain an illumination-invariant image representation. Consequently, we can accurately locate road vanishing point after rem...
One of the main challenges of deep learning tools is their inability to capture model uncertainty. While Bayesian deep learning can be used to tackle the problem, Bayesian neural networks often require more time and computational power to train than deterministic networks. Our work explores whether fully Bayesian networks are needed to successfully...
While very deep networks can achieve great performance, they are ill-suited to applications in resource-constrained environments. Knowledge transfer, which leverages a deep teacher network to train a given small network, has emerged as one of the most popular strategies to address this problem. In this paper, we introduce an alternative approach to...
Annotating the right data for training deep neural networks is an important challenge. Active learning using uncertainty estimates from Bayesian Neural Networks (BNNs) could provide an effective solution to this. Despite being theoretically principled, BNNs require approximations to be applied to large-scale problems, and have not been used widely...
In this paper, we introduce Deep Probabilistic Ensembles (DPEs), a scalable technique that uses a regularized ensemble to approximate a deep Bayesian Neural Network (BNN). We do so by incorporating a KL divergence penalty term into the training objective of an ensemble, derived from the evidence lower bound used in variational inference. We evaluat...
Training a deep network to perform semantic segmentation requires large amounts of labeled data. To alleviate the manual effort of annotating real images, researchers have investigated the use of synthetic data, which can be labeled automatically. Unfortunately, a network trained on synthetic data performs relatively poorly on real images. While th...
Curb detection, a significant area of autonomous driving, plays an important role in road detection and obstacle avoidance, etc. However, curb detection is challenging due to the problems like occlusions, shadows and the small size of the target. In this paper, we propose a curb detection paradigm for road and sidewalk detection for mobile robots u...
Training a deep network to perform semantic segmentation requires large amounts of labeled data. To alleviate the manual effort of annotating real images, researchers have investigated the use of synthetic data, which can be labeled automatically. Unfortunately, a network trained on synthetic data performs relatively poorly on real images. While th...
Road detection is an important task in autonomous navigation systems. In this paper, we propose a road detection framework induced by the inverse depth of LiDAR's point cloud. This framework is a fusion of a 3D LiDAR and a monocular camera, where the 3D point cloud of LiDAR is projected onto the camera's image frame, to exploit both range and color...
Optical Character Recognition (OCR) in video stream of flipping pages is a challenging task because flipping at random speed causes difficulties in identifying the frames that contain the open page image (OPI). Also, low resolution, blurring effect, shadow, etc., add significant noise in selection of proper frames for OCR. In this paper, we focus o...
In recent years, intelligent vehicles have been a hot topic for both research and industry communities. Since the whole system is a comprehensive integration of many advanced techniques, their respective development and improvement become fundamentally important.
This paper presents a novel and efficient approach to improve performance of recognizing human actions from video by using an unorthodox combination of stage-level approaches. Feature descriptors obtained from dense trajectory i.e. HOG, HOF and MBH are known to be successful in representing videos. In this work, Fisher Vector Encoding with reduced...
In recent years, great progress has been made in a variety of application domains thanks to the development of increasingly deeper neural networks. Unfortunately, the huge number of units of these networks makes them expensive both computationally and memory-wise. To overcome this, exploiting the fact that deep networks are over-parametrized, sever...
Background:
The goal of the current study is to assess the difference in connective tissue adherence to laser microtextured versus machined titanium abutments.
Material and methods:
Six patients were selected and each of them received 2 implants, one combined with a laser treated abutment and one with a machined abutment. After three months, the...
Semantic segmentation is a challenging task that addresses most of the perception needs of intelligent vehicles (IVs) in an unified way. Deep neural networks excel at this task, as they can be trained end-to-end to accurately classify multiple object categories in an image at pixel level. However, a good tradeoff between high quality and computatio...
Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often pro...
Optical colonoscopy is performed by insertion of a long flexible colonoscope into the colon. Estimating the position of the colonoscope tip with respect to the colon surface is important as it would help localization of cancerous polyps for subsequent surgery and facilitate navigation. Knowing camera pose is also essential for 3D automatic scene re...
Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often pro...
Pixel-level annotations are expensive and time-consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recent years have seen great progress in weakly-supervised semantic segmentation, whether from a single image or from videos. However, most existing methods are designed to handl...