Jorik Jooken

Jorik Jooken
KU Leuven | ku leuven · Department of Computer Science

About

10
Publications
315
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12
Citations
Citations since 2016
10 Research Items
12 Citations
201620172018201920202021202202468
201620172018201920202021202202468
201620172018201920202021202202468
201620172018201920202021202202468

Publications

Publications (10)
Preprint
Decades of research on the 0-1 knapsack problem led to very efficient algorithms that are able to quickly solve large problem instances to optimality. This prompted researchers to also investigate whether relatively small problem instances exist that are hard for existing solvers and investigate which features characterize their hardness. Previousl...
Preprint
We fully disprove a conjecture of Haythorpe on the minimum number of hamiltonian cycles in regular hamiltonian graphs, thereby extending a result of Zamfirescu, as well as correct and complement Haythorpe's computational enumerative results from [Experim. Math. 27 (2018) 426-430]. Thereafter, we use the Lov\'asz Local Lemma to extend Thomassen's in...
Article
In this article we propose a heuristic algorithm to explore search space trees associated with instances of combinatorial optimization problems. The algorithm is based on Monte Carlo tree search, a popular algorithm in game playing that is used to explore game trees and represents the state-of-the-art algorithm for a number of games. Several enhanc...
Article
Full-text available
Predicting and comparing algorithm performance on graph instances is challenging for multiple reasons. First, there is not always a standard set of instances to benchmark performance. Second, using existing graph generators results in a restricted spectrum of difficulty and the resulting graphs are not always diverse enough to draw sound conclusion...
Preprint
We propose a new heuristic algorithm for the Maximum Happy Vertices problem, using tree decompositions. Traditionally, such algorithms construct an optimal solution of the given problem instance through a dynamic programming approach. We modify this procedure by integrating a parameter $W$ that dictates the number of dynamic programming states to c...
Article
The 0-1 knapsack problem is an important optimization problem, because it arises as a special case of a wide variety of optimization problems and has been generalized in several ways. Decades of research have resulted in very powerful algorithms that can solve large knapsack problem instances involving thousands of decision variables in a short amo...
Preprint
In this article, a novel approach to solve combinatorial optimization problems is proposed. This approach makes use of a heuristic algorithm to explore the search space tree of a problem instance. The algorithm is based on Monte Carlo tree search, a popular algorithm in game playing that is used to explore game trees. By leveraging the combinatoria...
Preprint
Full-text available
Predicting and comparing algorithm performance on graph instances is challenging for multiple reasons. First, there is usually no standard set of instances to benchmark performance. Second, using existing graph generators results in a restricted spectrum of difficulty and the resulting graphs are usually not diverse enough to draw sound conclusions...
Article
Full-text available
This paper proposes a local search algorithm for a specific combinatorial optimisation problem in graph theory: the Hamiltonian completion problem (HCP) on undirected graphs. In this problem, the objective is to add as few edges as possible to a given undirected graph in order to obtain a Hamiltonian graph. This problem has mainly been studied in t...
Preprint
This paper proposes a local search algorithm for a specific combinatorial optimisation problem in graph theory: the Hamiltonian Completion Problem (HCP) on undirected graphs. In this problem, the objective is to add as few edges as possible to a given undirected graph in order to obtain a Hamiltonian graph. This problem has mainly been studied in t...

Network

Cited By