Jorik Jooken

Jorik Jooken
KU Leuven | ku leuven · Department of Computer Science

About

5
Publications
247
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2
Citations

Publications

Publications (5)
Article
The 0-1 knapsack problem is an important optimization problem, because it arises as a special case of a wide variety of optimization problems and has been generalized in several ways. Decades of research have resulted in very powerful algorithms that can solve large knapsack problem instances involving thousands of decision variables in a short amo...
Preprint
In this article, a novel approach to solve combinatorial optimization problems is proposed. This approach makes use of a heuristic algorithm to explore the search space tree of a problem instance. The algorithm is based on Monte Carlo tree search, a popular algorithm in game playing that is used to explore game trees. By leveraging the combinatoria...
Preprint
Full-text available
Predicting and comparing algorithm performance on graph instances is challenging for multiple reasons. First, there is usually no standard set of instances to benchmark performance. Second, using existing graph generators results in a restricted spectrum of difficulty and the resulting graphs are usually not diverse enough to draw sound conclusions...
Article
Full-text available
This paper proposes a local search algorithm for a specific combinatorial optimisation problem in graph theory: the Hamiltonian completion problem (HCP) on undirected graphs. In this problem, the objective is to add as few edges as possible to a given undirected graph in order to obtain a Hamiltonian graph. This problem has mainly been studied in t...
Preprint
This paper proposes a local search algorithm for a specific combinatorial optimisation problem in graph theory: the Hamiltonian Completion Problem (HCP) on undirected graphs. In this problem, the objective is to add as few edges as possible to a given undirected graph in order to obtain a Hamiltonian graph. This problem has mainly been studied in t...

Network