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1  | INTRODUC TION

Speciation via host‐switching (symbiont speciation after success‐
ful colonization of a new host species) is becoming acknowledged 

as one of the primary drivers for the adaptive radiation and diver‐
sification of symbionts (Bourguignon et al., 2018; Clayton, Bush, & 
Johnson, 2016; de Vienne et al., 2013; Nylin et al., 2017; Ricklefs, 
Fallon, & Bermingham, 2004). This conception, in contrast to strict 
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Abstract
The high relevance of host‐switching for the diversification of highly host‐specific 
symbionts (i.e., those commonly inhabiting a single host species) demands a better 
understanding	of	host-switching	dynamics	at	an	ecological	scale.	Here,	we	used	DNA	
metabarcoding	to	study	feather	mites	on	passerine	birds	in	Spain,	sequencing	mtDNA	
(COI)	for	25,540	individual	mites	(representing	64	species)	from	1,130	birds	(repre‐
senting 71 species). Surprisingly, 1,228 (4.8%) mites from 84 (7.4%) birds were found 
on host species that were not the expected to be a host according to a recent bird–
feather mite associations catalog. Unexpected associations were widespread across 
studied mite (40.6%) and bird (43.7%) species and showed smaller average infrapopu‐
lation sizes than typical associations. Unexpected mite species colonized hosts being 
distantly related to the set of their usual hosts, but with similar body size. The net‐
work of bird–mite associations was modular (i.e., some groups of bird and mite spe‐
cies	tended	to	be	more	associated	with	each	other	than	with	the	others),	with	75.9%	
of the unexpected associations appearing within the module of the typical hosts of 
the	mite	species.	Lastly,	68.4%	of	mite	species	found	on	unexpected	hosts	showed	
signatures of genetic differentiation, and we found evidence for reproduction or the 
potential for it in many of the unexpected associations. Results show host coloniza‐
tion as a common phenomenon even for these putatively highly host‐specific symbi‐
onts. Thus, host‐switching by feather mites, rather than a rare phenomenon, appears 
as a relatively frequent phenomenon shaped by ecological filters such as host mor‐
phology and is revealed as a fundamental component for a dynamic coevolutionary 
and codiversification scenario.
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cospeciation, makes symbionts more active agents of their evolu‐
tion. Mainly by cophylogenetic studies, we now know that the rele‐
vance of host‐switching versus other processes such as cospeciation 
for the diversification of symbionts varies among groups (Clayton et 
al., 2016; de Vienne et al., 2013 and references therein). Evidence 
suggests that factors such as symbiont dispersal or parasite ecomor‐
phology are related to speciation by host switch (Sweet, Bush, et al., 
2018a; Sweet, Chesser, & Johnson, 2017), but we are still far from 
understanding both the genesis of these macroevolutionary pat‐
terns at an ecological and microevolutionary scale and which factors 
influence it.

The process of speciation by host‐switching requires firstly some 
symbionts arriving to a new host (Clayton et al., 2016). These sym‐
biont individuals are known as stragglers (Ròzsa 1993), a term which 
refers explicitly to individual symbionts that ended up on a different 
(new) host species. Stragglers rarely survive nor reproduce on the 
new host, but if they do, and if they eventually succeed spreading 
within the new host species, they are cataloged as host switches 
(Clayton	et	al.,	2016;	Rivera-Parra,	Levin,	Johnson,	&	Parker,	2017;	
Ròzsa 1993). This process may lead to genetic differentiation and 
finally to an event of host‐switching speciation.

The existence of stragglers has been known for a long time, even 
long before the relevance of host‐switching for symbionts specia‐
tion was revealed (Choudhury, Moore, & Marques, 2002; Horak et 
al., 2006; Kellogg, 1896; Ròzsa 1993; Shepherd & Edmonds, 1976). 
Rivera‐Parra et al. (2017) provide a nice recent example. Studying 
feather lice from Galapagos Islands, they found stragglers in ca. 
5%	 of	 the	 individual	 hosts	 examined	 while	 concluding	 that	 most	
stragglers would likely fail to colonize new hosts due to different 
ecological	filters	(see	also	Whiteman,	Santiago-Alarcon,	Johnson,	&	
Parker, 2004). However, stragglers are still poorly documented in 
the literature as their observation is especially challenging because 
of their presumed scarcity and mostly ephemeral nature, especially 
for highly host‐specific symbionts, which are unable to survive for 
long when not on or in their host species. In addition, according 
to these difficulties, stragglers are challenging to distinguish from 
methodological artefacts (e.g., sample contamination when collect‐
ing ectosymbionts from museum host specimens or from living hosts 
held together before sampling; Ròzsa 1993), thus likely being under‐
represented in the literature.

Moreover, even for putatively highly host‐specific symbionts 
such as feather mites on birds, they have been often described as 
multihost (or oligoxenous) symbionts (Dabert, Solarczyk, Badek, & 
Dabert,	 2005;	 Doña,	 Proctor,	 Mironov,	 Serrano,	 &	 Jovani,	 2018),	
and there are some evidence supporting that straggling and even‐
tual host‐switching to a new host may be a common phenomenon 
(Doña, Sweet, et al., 2017; Doña, Proctor, Mironov, et al., 2018; 
Gaud, 1992; Klimov, Mironov, & OConnor BM, 2017; Matthews et 
al., 2018). However, we are still far from quantifying the relevance 
of these processes and understanding the mechanisms governing 
them. In part, the study of stragglers and host switches at these 
scales has been hampered by the lack of appropriate methods to 
study	 this	 phenomenon.	 Here,	 we	 used	 DNA	 metabarcoding	 of	

feather mites to discover unexpected associations according to a 
recent comprehensive bird–feather mite associations catalog (Doña, 
Proctor, Mironov, Serrano, & Jovani, 2016) and study their ecological 
and genetic features to gain insight on host‐switching dynamics at an 
ecological or microevolutionary scale.

Feather	 mites	 (Acariformes:	 Astigmata:	 Analgoidea	 and	
Pterolichoidea) are permanent and putatively highly host‐specific 
ectosymbionts	 of	 birds	 (Dabert	 &	Mironov,	 1999;	 Dubinin,	 1951;	
Gaud	&	Atyeo,	1996;	Proctor,	2003;	Proctor	&	Owens,	2000).	Most	
species inhabit only one or a few, usually closely related, bird species 
(Doña, Proctor, Mironov, et al., 2018). Moreover, feather mites show 
specific adaptations to live on their hosts (Dabert & Mironov, 1999; 
Proctor, 2003): morphological fit to feather microstructure, micro‐
site preferences within host feathers, fine‐tuned distributions along 
entire bird wings, and behaviours to avoid feathers close to being 
moulted (Fernández‐González, Pérez‐Rodríguez, Hera, Proctor, & 
Pérez-Tris,	2015;	Jovani	&	Serrano,	2001,	2004;	Stefan	et	al.,	2015).	
Feather mites lack specific life‐history stages for transmission and 
except some members of the family Epidermoptidae and the genus 
Strelkoviacarus	Dubinin,	1953	(Analgidae)	are	not	known	to	disperse	
by phoresis on parasitic insects associated with birds, such as hip‐
poboscid flies (Dabert & Mironov, 1999; Doña, Potti, et al., 2017; 
Jovani, Tella, Sol, & Ventura, 2001; Proctor, 2003). Current knowl‐
edge suggests that their primary mode of transmission is vertical 
from parents to offspring in the nest (Doña, Potti, et al., 2017). In 
addition, they likely maintain a mutualistic relationship with birds in 
which they feed upon fungi and bacteria and likely on the uropygial 
gland oil that birds smear on the plumage (Doña, Proctor, Serrano, 
et al., 2018). Thus, such host‐specific symbionts have all the ingre‐
dients to be diversifying mainly by cospeciation. Interestingly, and 
contrary to this expectation, there is also evidence of horizontal 
transfer	 within	 and	 between	 bird	 species	 (Dubinin,	 1951;	 Gaud,	
1992; Jovani & Blanco, 2000), and recent studies have inferred that 
host‐switching with subsequent speciation is the primary process 
driving their evolutionary diversification (Doña, Sweet, et al., 2017; 
Doña, Proctor, Mironov, et al., 2018; Klimov et al., 2017; Matthews 
et al., 2018). These results suggest that host‐switching, despite its 
apparent difficulty for feather mites, has left macroevolutionary 
fingerprints along millions of years (Doña, Proctor, Mironov, et al., 
2018; Doña, Sweet, et al., 2017). Our specific aims here were (a) to 
quantify the extent of unexpected associations in feather mites; (b) 
to study their performance (abundance) and genetic differentiation 
in the atypical hosts; and (c) to gain insight on the host–symbiont and 
mite infracommunity‐level interactions that govern host‐switching.

2  | MATERIAL S AND METHODS

2.1 | Sampling and DNA metabarcoding pipeline

We	 sampled	 feather	 mites	 during	 2010–2015	 from	 live	 passer‐
ine birds captured with mist nets in different localities in Spain 
(Supporting information Table S1). We collected the feather mites 
found in primary, secondary and tertial feathers from the right wing 
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of each bird using a cotton swab impregnated with ethanol and pre‐
served	mites	at	−20°C	in	tubes	with	96%	ethanol.

We took particular attention to our sampling protocol to avoid 
the risk of artificial mite cross‐contaminations between bird species 
(i.e., methodological artefacts rather than true unexpected mites). 
A	previous	study	did	not	find	feather	mites	detached	from	birds	in	
cloth bags used to transport them from the mist net to the field sta‐
tion (Fernández‐González, 2013). So, for 491 birds (of those from 
which we succeed sequencing their mites), we used “normal” field 
procedures. That is, we extracted birds from the mist net with bare 
hands, placed them in standard bird banding cloth bags and then 
handled them again with bare hands when sampling their mites using 
disposable cotton swabs (because of the obvious risk of cross‐con‐
tamination by reusing them). Moreover, to test whether the prev‐
alence found with this protocol came from cross‐contamination 
when using bare hands or even reused cloth bags, we also applied 
a “refined” protocol to 639 birds where (a) we used single‐use latex 
gloves	 for	extracting	each	bird	 from	 the	mist	net.	 (b)	A	 single-use	
paper envelope to carry the bird until the field workstation (some 
meters	away)	and	store	it	till	processing.	(c)	A	new	pair	of	disposable	
latex gloves for handling the bird during feather mite sampling using 
disposable cotton swabs. We found that the prevalence of unex‐
pected mites did not differ between both protocols (“normal”: 7.1% 
(35	out	of	491)	of	samples	with	unexpected	mites,	versus	7.7%	(49	
out of 639) in “refined” samples; χ2 = 0.04; df = 1; p = 0.8). We also 
explored potential tagging errors (i.e., sticker tags which may have 
been mistakenly pasted to a different sample) by retrospectively 
checking whether natural hosts of stragglers were handled up to 
two birds before or after the focal bird with stragglers (i.e., birds po‐
tentially overlapping in time during sampling and thus susceptible of 
potential	tagging	interchanges).	We	found	that	in	70.5%	of	the	cases,	
unexpected mites were unequivocally found even when a potential 
tagging error was highly unlikely (note that this does not mean that 
tagging	errors	are	 the	cause	of	 the	 remaining	29.5%).	Overall,	 this	
shows that our field procedures were not introducing false‐positive 
bird–mite associations, and therefore, we used samples from both 
protocols for downstream analyses.

Mites from each sample, representing a bird's mite infracommu‐
nity (i.e., each field microtube with feather mites from each bird), 
were counted under the stereomicroscope; that is, we counted the 
total number of feather mites from each individual bird, not the num‐
ber of mites per mite species from each bird as identification of lar‐
vae, nymphs and some adult females by morphology is unfeasible. 
Then,	we	analysed	each	sample	following	the	DNA	metabarcoding	
pipeline for feather mites described in Vizcaíno et al. (2018). Briefly, 
each bird's mite infracommunity was placed into one well of a 96‐
well plate and filled with 96% ethanol, leaving two empty wells for a 
DNA-negative	extraction	control	and	a	PCR-negative	control.	Then,	
DNA	was	isolated	using	the	HotSHOT	method	(Truett	et	al.,	2000).	
DNA-sequencing	libraries	were	prepared	by	amplifying	a	region	of	
the	 mitochondrial	 COI	 gene	 (Doña,	 Diaz-Real	 et	 al.,	 2015;	 Doña,	
Moreno-García,	Criscione,	Serrano,	&	Jovani,	2015;	Doña,	Proctor,	
Serrano, et al., 2018), and by adding the Illumina‐specific sequencing 

primers, indices and adaptors in a two‐step PCR. Finally, libraries 
were pooled together and analysed in a total of eight MiSeq 300PE 
runs (miseq reagent kit v3).	Wet-lab	work	was	carried	out	at	Al lGenetics	
&	Biology,	SL	(A	Coruña,	Spain)	and	sequencing	at	Macrogen	(Seoul,	
Korea). Note that all libraries were pooled, that is, irrespectively of 
whether	they	were	successfully	amplified	or	not	as	most	of	the	DNA	
quantifications were out of range for quantification but still poten‐
tially	with	enough	DNA	for	high-throughput	sequencing.	Obtained	
reads were quality‐checked and quality‐trimmed. Specifically, the 
forward (R1) and reverse (R2) fastq reads of each MiSeq run were 
quality‐checked with fastqc	 (Andrews,	2010).	And	 they	were	 then	
imported into geneious v.8.1.7 (Kearse et al., 2012) for visual inspec‐
tion and quality‐trimming. We trimmed a region of variable length 
at	 the	 3′	 end	 of	 each	 file,	 according	 to	 the	 average	 Phred	 score	
(minimum quality score of 28) of each MiSeq run. The Python script 
(MMIS; Vizcaíno et al., 2018) was then used to automatize sequence 
concatenation, OTU picking and to eliminate mistagging events (i.e., 
a recently described sequencing artefact that results in 1% to 10% 
of	 reads	misassigned	 to	 the	wrong	 sample;	 Esling,	 Lejzerowicz,	 &	
Pawlowski,	2015;	Sinha,	Stanley,	&	Gulati,	2017;	Owens,	Todesco,	
Drummond,	 Yeaman,	 &	 Rieseberg,	 2018).	 Moreover,	 only	 OTUs	
with more than 100 identical reads were kept. We also checked 
whether representative sequences contained stop codons. Overall, 
this sequencing‐bioinformatic approach allowed us to get more than 
300–400 bp of COI sequenced (after quality‐trimming), a sequence 
length over the 200 bp minibarcode known to give similar results in 
species identification than the total length barcode (Doña, Diaz‐Real 
et	al.,	2015).

We did not find any evidence of cross‐contamination in our 
blanks when visualizing PCR gels (i.e., no band was visualized). 
Despite this, we sequenced each of the blanks. We did not find any 
read	in	54	out	of	55	blanks,	and	the	one	with	reads	contained	a	small	
number	of	reads	 (155)	from	Pteronysoides parinus. In particular, for 
this mite species, we only retrieved reads (16,746) in another sam‐
ple from the same plate (i.e., among the 384 samples multiplexed in 
the same sequencing run). However, in that sample, this mite spe‐
cies was expected (i.e., these mites were collected from a Cyanistes 
caeruleus individual, a typical host for that mite species; Doña et al., 
2016). On the other hand, these samples were distant wells (D1 vs. 
H12), suggesting that this not be a case of contamination due to pi‐
petting. Thus, this case may be the single case in which we noticed 
our bioinformatic filter was not able to remove artefactual reads due 
to mistagging (see Vizcaíno et al., 2018 for more details). Mistagging 
is still relatively poorly understood (e.g., Costello et al., 2018), and 
further advances may be used to refine our analyses and identify our 
blank contamination as such. In any case, we are confident that this 
blank contamination do not compromise the validity of our study 
because the number of reads in the unexpected associations was 
much	larger	than	the	155	reads	retrieved	in	the	contaminated	blank	
(mean	=	3,972;	 range	=	106–33,102);	 1	 out	 of	 55	 (1.8%)	 potential	
contaminations is much lower than the 7.8% of unexpected asso‐
ciations we have found (see Results); and more importantly, S.M. a 
posteriori checked the actual presence of unexpected mites with a 
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morphological	 examination	of	 the	mites,	 finding	 them	 in	70.5%	of	
the instances (see below).

2.2 | Data analyses

Unless otherwise stated, all analyses were carried out in the R en‐
vironment	 (R	 Core	 Team,	 2015).	 We	 labelled	 a	 bird–feather	 mite	
association as “unexpected” when this was not reported with con‐
fidence in the global catalog of bird–feather mite associations (i.e., 
data quality = 2 in Doña et al., 2016, hereafter “typical association”). 
This database reviews all available information on bird–feather mite 
associations from the literature, and S.M. taxonomically curated it 
carefully.

Samples containing representative sequences unclassified at the 
species level or containing unexpected mites were further analysed 
by S.M. based on morphological characters of the exoskeletons, 
thanks	to	the	fact	that	our	DNA	extraction	protocol	preserves	this	
material	(Doña,	Diaz-Real	et	al.,	2015);	that	is,	the	same	mite	individ‐
uals were used for molecular and later on morphological analyses. 
In doing so, we registered the proportions of juveniles and adults 
for each infracommunity containing unexpected mites, although 
larvae and nymphs could not be assigned to any mite species. For 
adults, we also determined the numbers of males and females. 
Morphological identification revealed ten mite species which could 
not be associated with particular species through metabarcoding, 
and species from the pinnatus species complex were identified at the 
species level as they cannot be identified as different species using 
the	COI	region	(Doña,	Diaz-Real	et	al.,	2015).	Among	these	molec‐
ularly unidentified mites, we found five (a 7.2% of the total of mite 
species sampled in this study) putative new species belonging to 
five genera (Alaudicola, Mesalgoides, Proctophyllodes, Scutulanyssus, 
and Trouessartia) which were excluded for downstream analyses 
because of the impossibility of treating them as unexpected as‐
sociations.	 Among	 the	 samples	 containing	 molecularly	 identified	
unexpected	associations,	70.5%	(43	out	of	61)	were	also	validated	
morphologically. From the 18 nonvalidated, eight (44%) contained 
nymphal stages in which species‐level identification by morphology 
was not possible (Supporting information Table S2). In other words, 
the classical taxonomic analysis of the samples corroborated that 
the existence of unexpected bird–mite associations was not due to 
artefacts	 from	 the	molecular	 analyses.	Also,	 note	 that	 there	were	
seven additional samples for which species‐level identification ac‐
cording to morphological characters was inconclusive (Supporting 
information Table S2).

We estimated the intensity or infrapopulation size (i.e., number 
of individual mites) of each feather mite species found within each 
bird's mite infracommunity by multiplying the proportion of reads 
retrieved from each mite species by the total number of feather 
mites counted in each infracommunity and then rounding to the 
nearest integer. Differences in the number of primer mismatches 
in the primer annealing regions may potentially bias some of these 
estimations, especially in those species which were not studied in 
Vizcaíno et al. (2018). However, we have shown elsewhere that this 

yields a reasonable estimate of the number of individual mites (Diaz‐
Real,	Diaz-Real	et	al.,	2015;	Vizcaíno	et	al.,	2018).

For each feather mite species, we calculated when possible (see 
below) the genetic distances between unexpected mites and mites 
inhabiting typical hosts (according to Doña et al., 2016; hereafter 
nonunexpected mites) with the dist.dna function (“raw” model) from 
APE	(Paradis,	Claude,	&	Strimmer,	2004).	First,	we	aligned	represen‐
tative	DNA	sequences	from	unexpected	and	nonunexpected	mites	
of each mite species (only in this analysis we did not use sequences 
with stop codons) with muscle v3.8.31 using default parameters 
(maximum number of iterations, 2) (Edgar, 2004). Then, alignments 
were trimmed to discard those columns which contained a signif‐
icant proportion of gaps (i.e., to discard those sequences having 
different length consequence of having being sequenced and bio‐
informatically processed separately and potential low‐frequency 
indels) using the function msaTrim with default parameters (fraction 
of	gaps	tolerated	at	the	ends	of	the	alignment,	0.5;	fraction	of	gaps	
tolerated inside the alignment, 0.9) from microseq v1.2.2 (Snipen & 
Hovde	Liland	2018).	Also,	we	explored	the	distribution	of	haplotypes	
of unexpected mites by building haplotype networks with the haplo‐
type and haplonet (using raw genetic distances) functions from pegas 
v0.10 (Paradis, 2010). Three species containing unexpected associ‐
ations were identified only in the morphological assessments and 
therefore were not included in this analysis. For three other species, 
we obtained sequences from the unexpected associations but not 
from the typical hosts, so they were not included in this analysis ei‐
ther. Finally, P. pinnatus was also excluded from the genetic analysis 
as this a controversial taxonomic group whose species delimitation 
using	COI	is	problematic	(Doña,	Diaz-Real	et	al.,	2015).

Host phylogenetic information was obtained from BirdTree (Jetz, 
Thomas, Joy, Hartmann, & Mooers, 2012; http://birdtree.org). We 
downloaded 1,000 trees from the Ericson backbone tree and then 
summarized	 them	 by	 computing	 a	 single	 50%	 majority-rule	 con‐
sensus tree using sumtree v 4.1.0 in dendropy v4.1.0 (Sukumaran & 
Holder,	2010,	2015),	 following	Rubolini,	 Liker,	Garamszegi,	Møller,	
and	Saino	(2015).	We	found	phylogenetic	information	for	all	the	bird	
species	we	 studied.	 Following	Doña,	 Sweet,	 et	 al.	 (2017),	Avibase	
information	(accessed	on	March	2016;	Lepage	et	al.,	2014)	was	used	
to match avian taxonomy in Doña et al. (2016) with that of Jetz et 
al. (2012).

Following Doña, Proctor, Mironov, et al. (2018), we estimated 
the probability density function of the phylogenetic distances be‐
tween host species sharing a mite species to study host phylogenetic 
specificity of unexpected and typical feather mites. To do so, we cal‐
culated the phylogenetic distance (as in Doña, Proctor, Mironov, et 
al., 2018) between each bird species pair sharing a mite species and 
calculated the proportion of bird pairs falling within ten phylogenetic 
distance bins (i.e., host range was split into 10 equal sized bins).

To understand whether host morphology imposes an eco‐
logical constraint to establishing onto a new host, we explored 
the relationships between the phylogenetic distance between 
typical and unexpected hosts and their differences in body size. 
Bird body mass is evolutionary conserved, so that closely related 

http://birdtree.org
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species	tend	to	have	similar	body	sizes	 (Smith	&	Lyons,	2013).	 In	
addition, host body size is correlated with morphological variables 
of feathers that may constrain feather mite successful establish‐
ment, such as the interbarb distance of feathers (Pap et al., 2017). 
If unexpected hosts are phylogenetically distant from the typical 
hosts but with a similar body size, this would suggest that body 
size imposes a constraint to host‐switching (Clayton et al., 2016; 
Smith	&	 Lyons,	 2013).	 For	 this	 purpose,	we	 calculated	 the	 body	
mass differences and phylogenetic distances between all pairs 
of hosts in which a particular mite species was found (Doña et 
al., 2016). The phylogenetic distance was measured as the sum 
of branch lengths from the most recent common ancestor to the 
two tips (species) of the bird phylogenetic tree with the function 
cophenetic.phylo from ape	v5.1	(Paradis	et	al.,	2004).	We	measured	
body mass distance (i.e., the difference in the mean body mass for 
the two species) as the difference between the maximum (i.e., the 
heavier bird species) and the minimum (i.e., the lighter bird species) 
body mass of each pairwise comparison. We obtained body mass 
information from Dunning (2008). Body mass and phylogenetic 
differences were analysed using generalized linear mixed models 
(GLMM)	(GLMER	function	from	package	lme4 1.1–12; Bates et al ., 
2015).	We	ran	a	Gaussian	GLMM	considering	body	mass	distance	
as the response variable, the type of association (i.e., unexpected 
or typical) as the predictor variable, the phylogenetic distance as a 
fixed factor, and mite species as the random term. We confirmed 
assumptions	underlying	GLMMs	by	exploring	regression	residuals	
for normality against a Q‐Qplot.

To further explore the ecology of the unexpected associations 
from a nonpairwise point of view, we first identified groups of birds 
and feather mites that tended to associate more among each other 
than with other species in the network of associations (i.e., mod‐
ules), using the simulated annealing method implemented in the net‐
carto function with default parameters (iteration factor = 1; cooling 
factor	=	0.995,	bipartite	=	False)	 from	rnetcarto v0.2.4 (Doulcier & 
Stouffer,	 2015;	Guimera	&	Amaral,	 2005a,	2005b).	 The	 adjacency	
matrix (i.e., a presence–absence matrix with hosts in columns and 
mites in rows) was built with all the bird–mite associations found in 
our	DNA	metabarcoding	 study	 (i.e.,	 the	 unexpected	 and	 the	 typi‐
cal). To evaluate whether hosts included in each module were more 
closely related than expected by chance (i.e., phylogenetic signal of 
hosts included in each module), we calculated the D‐statistic using 
phylo.d function from caper	 v0.5.2	 (Fritz	&	 Purvis,	 2010;	Orme	 et	
al., 2013). The network was plotted using the plotweb function from 
bipartite v2.08 (Dormann, Gruber, & Fruend, 2008).

3  | RESULTS

We collected mite infracommunities from 3,477 individual birds, 
from which we successfully built 3,090 libraries. Mainly because 
of	DNA	 isolation	 failures,	we	eventually	obtained	 sequences	 from	
1,130	 mite	 infracommunities	 (25,540	 individual	 mites;	 50	 mite	
species	 identified	 by	 DNA	 metabarcoding,	 plus	 14	 mite	 species	

identified only by morphological characters; see Materials and meth‐
ods) from 71 bird species.

We found unexpected mites in 84 bird individuals (1,228 indi‐
vidual mites; Supporting information Table S4), that is, 7.4% of the 
infracommunities and 4.8% of the individual mites studied. The 
presence of unexpected mites was not taxonomically restricted, but 
involved 43.7% (N = 31) of birds and 40.6% (N = 26) of mite species; 
25.9%	(14	out	of	54)	of	the	unexpected	bird–mite	associations	were	
found	in	more	than	one	bird	individual	(Table	1).	Also,	we	found	lar‐
val or nymphal stages in 30.9% (N = 22) of the mite infracommunities 
where unexpected mites were present and exoskeletons preserved 
for morphological analyses (N	=	71),	 and	 in	 a	 45.1%	 (N = 32), we 
found both males and females, thus suggesting reproduction (note 
that feather mites do not have dispersal stages) or potential for re‐
production on that bird, respectively (Supporting information Table 
S2). The potential for reproduction may be even higher in those birds 
with females, as potential inseminated females alone have the po‐
tential for reproduction.

Excluding unexpected mites, most birds (94.6%; N = 1,017) bore 
one	mite	species,	5.2%	(N	=	52)	had	two,	and	only	0.2%	(N = 3) had 
three mite species. However, in 70.2% (N	=	59)	of	the	birds	with	un‐
expected mites, these were the only mite species. In the remaining 
29.8% (N	=	25),	unexpected	mites	shared	the	host	with	a	typical	mite	
species. Thus, unexpected mites were found coinhabiting a bird with 
another mite species more frequently than for typical mite species 
(i.e.,	5.2%	vs.	29.8%;	χ2 = 19.24; df 1; p < 0.001).

Overall, the average infrapopulation size (i.e., all the mites of a 
particular mite species occurring in an individual host) estimated for 
unexpected mites was smaller than that for typical species (Wilcoxon 
rank sum test; W = 43,042, p < 0.001). However, in some samples, 
some unexpected mites reached similar average intensities to typical 
mites	 (Figure	1).	Among	unexpected	mites,	mite	 infracommunities	
with reproductive stages (i.e., adult males and females; see above) 
showed higher intensity values (Wilcoxon rank sum test; W	=	152.5,	
p < 0.001).

The minimum, mean and maximum genetic distances between 
sequences from unexpected and typical mite individuals showed 
different patterns among mite species. First, even maximum genetic 
distances between unexpected and typical mite individuals of the 
same species were lower than the mean smallest interspecific dis‐
tances	found	for	feather	mites	in	Doña,	Diaz-Real	et	al.	(2015)	in	all	
cases (Figure 2). Second, in ten of the species inhabiting unexpected 
hosts, we found that at least some haplotypes found in unexpected 
mites were also found in the sequences of typical individuals (i.e., 
min distance = 0). However, in 68.4% (N = 13) of these mite species, 
mean or maximum genetic distances were above the median intra‐
specific	distance	of	that	mite	species	in	typical	hosts	(Figure	2).	Also,	
haplotype networks were overall more diverse in these species (i.e., 
with genetic distance values over the median) than in mite species 
with lower genetic distances, but differences in sample size may 
influence this (e.g., undersampled mite species may present artifi‐
cial star‐like structures; Figure 2; Supporting information Table S3). 
Lastly,	 for	 those	mite	species	 in	which	more	than	one	typical	host	
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was sampled, genetic distances of unexpected infrapopulations of 
most	mite	species	(seven	out	of	eight;	87.5%)	were	in	the	range	of	
variation of those of typical mites (Figure 2).

Unexpected mites inhabited hosts that were more distantly re‐
lated than expected according to the relatedness of usual hosts of 
feather mite species in this study (Figure 3; Wilcoxon rank sum test; 
W	=	476,650;	p < 0.001). The same result was found for the global 
database of bird–feather mite associations (Figure 3; Wilcoxon rank 
sum test; W	=	101,250;	 p < 0.001, Doña et al., 2016). However, 

unexpected mites were found on hosts which differed slightly less 
in body mass than typical hosts, but this difference was negligi‐
ble	 at	 large	 phylogenetic	 distances	 (Figure	 4;	 GLMM,	 unexpected	
vs. typical: χ2 = 15.9,	 p < 0.0001; phylogenetic distance: χ2 = 40.0, 
p < 0.0001; unexpected vs. typical × phylogenetic distance: 
χ2 = 11.6, p = 0.0007).

The bird–feather mite network was composed of 26 modules 
(Figure	5),	with	an	average	(min-max)	of	two	mite	species	(1–8)	and	
three	 (1–11)	 bird	 species	 per	 module.	 All	 modules	 but	 one	 were	

TA B L E  1   The number of mite infracommunities with unexpected mites found in each bird species. Numbers in parentheses indicate the 
total number of individuals sampled for that bird species
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Acrocephalus arundinaceus (27) 1

Acrocephalus melanopogon (16) 2 1

Acrocephalus schoenobaenus (9) 2 1

Acrocephalus scirpaceus (29)                         2 1 1

Carduelis carduelis (22) 2

Chloris chloris (7) 2 1

Carduelis citrinella (2) 1 1

Cettia cetti (39) 1 1 5 1 1

Emberiza cirlus (8) 6 2

Erithacus rubecula (95) 1 1

Estrilda troglodytes (2) 1 1

Ficedula hypoleuca (50) 2

Galerida cristata (3) 1

Hirundo daurica (1) 1

Hirundo rupestris (1) 1

Hirundo rustica (50) 1

Lanius excubitor (2) 1 1

Locustella luscinioides (12) 8

Luscinia megarhynchos (67) 1 1

Luscinia svecica (46) 1 1

Muscicapa striata (22) 1

Oenanthe hispanica (2) 2

Oenanthe leucura (1) 1

Oenanthe oenanthe (7) 1 1

Phylloscopus bonelli (3) 1

Phylloscopus collybita (17) 1 1 1 3

Phylloscopus trochilus (34) 1 1

Regulus ignicapilla (2) 1

Saxicola torquatus (2) 1

Sylvia melanocephala (26) 1 4

Turdus merula (19) 1 2
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composed of hosts more closely related than expected by chance 
(mean (min, max) D = −1.19	 (−4.4,	 −0.34);	 and	 (mean	 (min,	max)	Pr	
(D = 1)  = 0.22	(0,	0.131;	Supporting	information	Table	S3).	75.9%	of	
the unexpected bird–mite associations were found within the mod‐
ules of the usual hosts of the same bird–mite association.

4  | DISCUSSION

Contrary to what was expected for these purportedly highly 
host‐specific symbionts, we found a dynamic association scenario 
evidenced by a higher‐than‐expected frequency of unexpected as‐
sociations (7.4% of the infracommunities and 4.8% of the individual 
mites).	A	rough	calculation	of	unexpected	feather	mites	in	European	
passerines	shows	the	relevance	of	our	result.	A	conservative	estima‐
tion of population size for European passerine species is of ca. 109 
bird	 individuals	 (BirdLife	 International,	 2017).	 This	 number,	 jointly	
with a conservative mean individual bird feather mite abundance 
of 10 mites per bird (Diaz‐Real et al., 2014), leads to 1010 feather 
mites living in European passerines. Therefore, the prevalence of 
unexpected mites reported here yields a minimum of 108 individual 
birds with unexpected mites and 108 unexpected feather mites only 
for European passerines, which gives an idea of the potential rel‐
evance of unexpected associations for ecological and evolutionary 
processes.

Our results show that within these unexpected associations, 
there is a continuum of circumstances: mites recently “landed” on 
a new host species (stragglers) but with presumably low prospects 

of settling there; stable bird–mite associations that may have been 
overlooked in previous studies; and even long‐lasting bird–mite as‐
sociations that show enough genetic differentiation to suggest that 
they may eventually lead to an instance of host‐switching specia‐
tion.	 Also,	 those	 unexpected	mites	 found	 in	 closely	 related	 hosts	
may even be due to a process of codivergence or failure to speciate 
(i.e.,	host	divergence	without	symbiont	speciation;	Johnson,	Adams,	
Page, & Clayton, 2003). Cophylogenetic analyses using time‐cali‐
brated trees as well as population genomic analyses (e.g., Sweet et 
al., 2018) would probably shed light on these aspects, and further 
research integrating quantitative data (e.g., prevalence, intensity) is 
needed to understand the performance of the same mite species in 
different bird hosts.

Lack	 of	 bird–feather	 mites	 phylogenetic	 congruence	 (at	 low	
taxonomic ranks) and the power of host‐switching to trigger fur‐
ther diversification have been shown elsewhere (Doña, Sweet, 
et al., 2017; Doña, Proctor, Mironov, et al., 2018; Matthews 
et al., 2018), and here, we provide evidence on how these pat‐
terns emerge from processes occurring at ecological and micro‐
evolutionary scales. Perhaps more importantly, a highly dynamic 
ecoevolutionary scenario where macroevolutionary patterns are 
only one of its outcomes is depicted, demanding to focus on the 
dynamics of these unexpected associations. In fact, we found a 
host–symbiont scenario in highly host‐specific symbionts com‐
patible with a geographic mosaic of coevolution in which network 
modules may be informative of the coevolutionary and codiversi‐
fication	dynamics	 (Thompson	1994,	2005;	Poulin,	2010;	Clayton	
et al., 2016; Ivens, Beeren, Blüthgen, & Kronauer, 2016; Pinheiro 
et al., 2016). The dynamics of the coevolutionary scenario of puta‐
tively highly host‐specific symbionts, such as feather mites, could 
be analogous to that of a geographic mosaic of coevolution found 
in other systems in which populations are more connected (i.e., as 
the gene flow between symbiont populations inhabiting different 
hosts may be higher than previously thought), providing new av‐
enues of research. In doing so, questions such as to what extent 
these dynamics are generalizable to other feather mite groups and 
what factors are in play should be addressed. For instance, feather 
mites of passerine birds may present a higher rate of straggling 
and host‐switching than those of other bird groups (e.g., because 
potential donor–recipient hosts are morphologically more similar 
between	them).	Also,	the	dynamics	of	major	host	switches	at	this	
ecological scale could provide further valuable information (Doña, 
Proctor, Mironov, et al., 2018; Klimov et al., 2017). Moreover, 
habitat sharing may play an important role in straggling and host‐
switching dynamics and can vary through the year with different 
ecological processes (e.g., bird migration).

Also,	our	results	provide	important	hints	about	the	role	of	strag‐
gling and host‐switching in the coevolutionary dynamics of bird 
feather mites. Interestingly, we found that unexpected associations 
reached, on average, lower infrapopulation sizes likely as a result 
of the lack of specialization on these hosts (Figure 1). Moreover, 
these associations were found in hosts from the same network 
module (which were composed by closely related birds). However, 

F I G U R E  1   Scatter plot showing intensity values of feather 
mites’ infrapopulations. Hash marks by species names and blued 
dots depict infrapopulations of unexpected mites while non‐hashed 
names and red dots depict infrapopulations of nonunexpected. 
“Others” x‐axis ticks group species only sampled either in typical 
or in unexpected associations
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specifically, these hosts were more distantly related to the typical 
hosts than expected according to the phylogenetic host specificity 
of	typical	bird–feather	mite	associations	(Figure	3).	And	this	degree	
of relatedness was partially overlapping with the longest phyloge‐
netic distances reported for typical associations in Doña, Proctor, 
Mironov, et al. (2018) (Figure 3). Finally, these unexpected associa‐
tions were found in hosts with phylogenetic distances much shorter 
than potential associations with other bird species found in the same 
localities (e.g., mite species coming from non‐passerine birds of the 
study localities would have introduced hosts in the analysis which 
would have shown phylogenetic distances above 100 in Figure 3). 
First, this supports that feather mites present a high phylogenetic 
host specificity (Doña, Proctor, Mironov, et al., 2018) not because 
of a lack of transmission opportunities, but likely because of strong 
ecological	filters.	Also,	this	shows	that	while	most	stragglers	would	
probably not persist much time in their new hosts, some may succeed 
(and in fact, we have found mixed evidence of potential early‐stage 

host‐switching, and even of genetic differentiation). However, if they 
succeed, the comparison with typical associations strongly suggests 
that many of them would speciate due to host‐switching, thus reduc‐
ing the host range of the (parent) mite species again, although gene 
flow with the source host may persist and therefore influence the 
speciation process.

As	already	mentioned,	our	results	advance	in	our	understanding	
of the ecological filters encountered by mites once they reach a new 
host. The most plausible are those imposed by host morphology or 
other host traits with a strong phylogenetic signal, as evidenced by 
the short phylogenetic distances between hosts occupied by feather 
mite species in their natural host range. Feather mites may be only 
able to settle at least temporarily in those hosts that are morpholog‐
ically similar to their typical hosts (Figure 3), so morphological traits 
related	 to	body	mass	are	potential	 candidates.	Among	 them,	wing	
flight feather traits such as interbarb distance would merit further 
study.	Also,	our	results	suggest	that	some	of	these	filters	may	be	not	

F I G U R E  2   Boxplots showing the genetic distances of unexpected infrapopulations when compared to mites inhabiting typical hosts. 
Dashed	grey	line	shows	reference	interspecific	threshold	for	feather	mites	from	Doña	et	al.	(2015).	Boxplots	colours	depict	different	
statistics descriptors: orange (maximum), blue (mean), green (minimum) and grey, which depict intraspecific genetic distances for each mite 
species.	Asterisks	on	the	top	of	grey	boxplots	indicate	mite	species	for	which	more	than	one	typical	(i.e.,	nonunexpected)	host	was	sampled.	
Example haplotype networks showing contrasting diversity patterns belong to Proctophyllodes cetti (left) and Proctophyllodes rubeculinus 
(right). In yellow are depicted haplotypes of symbionts inhabiting typical hosts, and in blue, haplotypes of symbionts inhabiting unexpected 
hosts. Circle size is proportional to haplotype frequency
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related to host morphology. The fact that unexpected mites coex‐
isted with another (typical) mite species in the same host infracom‐
munity more frequently than typical mite species (which usually do 
not coexist with congeneric species in the same host infracommu‐
nity) suggests that interspecific competition may preclude host range 
expansion	 (Johnson	et	al.,	2009;	Fernández-González	et	al.,	2015;	
Doña, Potti, et al., 2017). Indeed, feather mite species from the same 
genera rarely coinhabit the same host, likely as a consequence of 
interspecific competition (Doña et al., 2016). On the other hand, de‐
spite out of the scope of this study, Trouessartia and Proctophyllodes 
mite species have been found coinhabiting (but to some extent com‐
peting for space) the same hosts in higher prevalences than found 
here	 (Fernández-González	et	al.,	2015).	Our	 lower	prevalence	may	
be due to differences in prevalence among host populations (e.g., 
as found between sedentary and migratory blackcaps, Fernández‐
González	et	al.,	2015)	or	due	to	detection	problems	intrinsic	to	our	
molecular approach. In this sense, Vizcaíno et al. (2018) showed that 
this methodology is prone to false negatives. So, while making our 
study conservative because among the false negatives there should 
be other unexpected bird–mite associations, it should be refined be‐
fore using it for comprehensive catalogs of feather mite diversity.

Overall, these findings show that the host range of many of the stud‐
ied feather mite species is larger than previously thought. This highlights 
the need of future studies aimed to understand mite transmission, with 

the potential of discovering unexpected ways of horizontal transfer be‐
tween bird species. Most importantly, our study urgently encourages 
routinely integrating unexpected associations in host‐symbiont studies 
and catalogs rather dropping them out as methodological contamina‐
tions and to study them as essential components to understand the link 
between the ecology and the macroevolution of host‐symbiont systems.
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F I G U R E  3   The probability that a pair of bird species sharing a 
feather mite species has a particular phylogenetic distance. Each 
line depicts probabilities of different mite subsets. Phylogenetic 
potential shows pairwise genetic distances between all hosts. Error 
bars represent confidence intervals (α	=	0.05).	Note	that	we	only	
included mite species inhabiting more than one host 
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