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APPLICATION OF THE METHOD

WORKING EXAMPLE MAPS ON DISCRETE DATA

WORKING EXAMPLE MAPS ON CONTINUUM DATA
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Maximum-likelihood exponent maps have been studied as a technique to increase the understanding and improve thefit of power-law exponents to experimental and numerical simulation data, especially when they exhibit both upper andlower cut-offs. This technique is tested for seismological data, acoustic emission data and avalanches in numericalsimulations of the 3D-Random Field Ising model. In the different examples we discuss the nature of the deviationsobserved in the exponent maps and some relevant conclusions are drawn for the physics behind each phenomenon.
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Critical systems use to produce POWER-LAW distributions:

where denotes the normalization factor.
These kind of distribution is SCALE-FREE in all the range from Xmin to
Xmax and all the meaningful information is stored in the exponent
value .
The Maximum Likelihood Method is the most efficient way to
evaluate this exponent[1]. Being {Xi} the set of n measurements, the
exponent can be found solving the relation

MAXIMUM LIKELIHOOD : COMPRESSION OF THEPOROUS MATERIAL VYCOR:

We evaluate the exponent inside the restricted (Xlow , Xhigh) interval
instead of (Xlow , ∞) as usual. For continuous data, this correspond
to the relation:

For discrete data, where we have the frequencies f(k) of occurrence
of each value k:

In the following example the measurements {Xi} correspond to the
sizes {Si} of the avalanches in the 3D-GRFIM:

The obtained values can be represented in a 2D colored map in the
Shigh, Slow space:

(1) point sampled in the example above
(2) Noisy region. Low on statistics
(3) Evaluation with all the data
(4A, 4B) Regions affected by finite-size anomalies
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EXPONENT MAPS :

SYNTHETIC DATA :

AVALANCHE SIZE DISTRIBUTIONFUNCTION IN NUMERICALSIMULATION OF THE 3D-GRFIM :

The GUTENBERG–RICHTER LAW[2] states
that the frequency of earthquakes with
energy E follow a power-law distribution
with exponent ε = 1+b/1.5 ~ 1.66 , where
b is known as the Guttenberg-Richter
exponent.
The analysis over the data from different
areas show the scale-free nature of this
law.

In order to test the performance of the
map we generate a set of synthetic data
distributed according to a power-law.
WHITE CONTOUR LINES correspond to the
discrete values in 0.1 intervals
BLACK VERTICAL LINE: Is the value of the
greatest signal obtained
RED LINE mark the theoretical threshold
for error greater than 0.5
BLACK LINE show the actual threshold
for an error greater than 0.5.

In most experimental data, power-
law distributions appear truncated
in the large event region with an
exponential cutoff. This effect
cause a drastic increase in the
exponent evaluation in this region.

In numerical simulations the finite size of the
lattice may truncate the power law down to a
maximum value. This cause the appearance
of a sharp distribution in the large-event
region that drastically distorts the power-law
if the evaluation range is not properly
selected.
This example show the size distribution of
avalanches obtained in the simulation of the3D-GAUSSIAN RANDOM FIELD ISING MODEL, a
prototype model widely used in the study of
avalanche dynamics.[4]

There are methods to exclude the massive
signals that cause the distortion.[5] The
exponent-maps helped us to check their
performance.

Profiles of Xlow at a fixed Xhigh at
different values:
GREEN: Xhigh at the known or imposed
cutoff of the distribution
BLUE: the usual criteria stated in ref. 1,
Xhigh -> ∞.
RED: Xhigh at the biggest value obtained
in the distribution.

This map represent the energy of
the signals obtained in a ACOUSTICEMISSION experiment, where a
sample of VYCOR was compressed
at a constant rate[3].
The extension of the plateau fit the
hypothesis of scale-free behaviour.




