Jordi Payá

Jordi Payá
Polytechnic University of Valencia | UPV · Institute of Concrete Science and Technology (ICITECH)

PhD

About

320
Publications
62,875
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,794
Citations
Additional affiliations
January 1987 - October 1989
University of Valencia
Position
  • PhD Student
January 2005 - present
Polytechnic University of Valencia
Position
  • Professor (Full)

Publications

Publications (320)
Article
Full-text available
Used tires (UTs) are a global problem, especially in developing countries due to inadequate management systems. During retreading, when the worn tread is replaced, waste is generated in the form of tire fibers (TFs) and particles, which can be reused as raw materials to produce economically and environmentally low-cost prefabricated elements. Using...
Article
Full-text available
Cogeneration with energy cane, a highly productive variety compared to conventional sugarcane, significantly increases ash generation, presenting waste management challenges for the sugar and ethanol industries. This study evaluates the potential of energy cane ash as a sustainable alternative material for partial cement replacement in construction...
Article
Full-text available
LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which ha...
Article
Full-text available
A solution to reduce the consumption of raw materials and the generation of greenhouse gases is the partial replacement of clinker (the main constituent of cement) with supplementary cementitious materials. This study aimed to compare the reactivity of ten supplementary cementi-tious materials-synthetic/commercial ones and those from industrial and...
Article
Full-text available
Portland cement, a crucial construction material, has been used extensively in various geotechnical projects. However, its over-reliance has led to environmental concerns, particularly regarding carbon dioxide (CO2) emissions during its production. Sustainable development involves the development of cement alternatives that are less damaging to the...
Article
Full-text available
Agricultural waste availability implies the possibility of recovering energy as biomass. The collateral effect is the production of ashes that, in some cases, have the potential to be reused in the manufacture of cement, mortar, and concrete. This article presents the study of the auto-combustion (unlike all previous studies) of corn (maize) straw...
Article
Full-text available
Rice husk ash (RHA) is agricultural waste with high silica content that has exhibited proven technical feasibility as a pozzolanic material since the 1970s. Notwithstanding, its use in mortars and concrete is limited by the standards currently utilized in some countries where RHA production is high and the aforementioned pozzolanic material is not...
Preprint
Full-text available
Rice husk ash (RHA) is agricultural waste with high silica content that has had proven technical feasibility as a pozzolanic material since the 1970s. Notwithstanding, its use in mortars and concrete is limited by the standards currently utilized in some countries where RHA production is high and the aforementioned pozzolanic material is not standa...
Article
Full-text available
Supplementary cementitious materials (SCMs) have been used in the construction industry to mainly reduce the greenhouse gas emissions associated with Portland cement. Of SCMs, the petrochemical industry waste known as fluid catalytic cracking catalyst residue (FCC) is recognized for its high reactivity. Nevertheless, the binders produced using SCMs...
Article
Full-text available
Concrete and ceramic products are among the most widely used materials in the construction sector. The production of ceramic materials has significantly grown in recent years. Concrete is one of the most widely used materials worldwide and most of its carbon dioxide (CO2) emissions are attributed to Portland cement (PC) production. This review anal...
Article
Full-text available
The aims of this work were to evaluate the reactivity of sugarcane straw ashes (SCSA) burned under controlled conditions and to analyze their reactivity in blended cement and hydrated lime pastes by thermogravimetric analysis (TG) and calorimetry. Four different ashes were produced, and burned at 600 °C, 700 °C, 800 °C and 900 °C (SCSA600, SCSA700,...
Chapter
A large amount of ceramic waste of various types (from bricks, roof tiles, wall tiles, sanitary ceramics…) is generated both during its manufacturing processes and during the construction and demolition of buildings. Due to its long biodegradation period, depositing inert ceramic waste in landfills causes significant visual and environmental impact...
Chapter
The production of Portland cement (PC) has the highest environmental impact among the different components of concrete. Also, although ceramic products are consumed worldwide and constitute a significant fraction of construction and demolition waste, significant amounts of ceramic waste (BCW) are simply landfilled or used as road sub-bases. This st...
Article
Full-text available
The use of high percentages of substitution of Portland cement by pozzolans can provoke the total consumption of portlandite. The present research proposes the study of ternary systems of Portland cement (PC), fly ash (FA), and hydrated lime (CH). After 180 days of curing, the mortar with 50% substitution of PC by FA obtained 65.9 MPa versus the mo...
Article
Full-text available
The use of geopolymers has revolutionized research in the field of construction. Although their carbon footprint is often lower than that of traditional mortars with Portland cement, activators such as sodium silicate have a high environmental impact in the manufacturing of materials. Employing alternative alkali sources to produce geopolymers is n...
Article
Full-text available
The granulometric distribution of the aggregates used in pervious concrete can significantly impact its mechanical and hydraulic properties by modifying granular skeleton and pore distribution. The unit weight increases when single-sized aggregates are combined, which results in improved mechanical properties. In this study, the maximum density met...
Article
Full-text available
The aim of this study was to use the electrical impedance spectroscopy technique (IS) to carry out a systematic study on the mechanism of metakaolin geopolymerization for up to 7 curing days. The study was developed on two batches of metakaolin (MK), and their reaction processes were compared. Interpretative fundamental elements were developed base...
Article
Full-text available
The possibility of using pozzolanic materials as a partial substitute for Portland cement (PC) to develop mortars and concretes promotes environmental and economic benefits. The present paper includes an in-depth investigation into the characterization of natural pozzolans from Guatemala for the valorization of these materials. An exhaustive physic...
Article
Full-text available
Large amounts of waste are derived not only from construction processes, but also the demolition of existing buildings. Such waste occupies large volumes in landfills, which makes its final disposal difficult and expensive. Reusing this waste type is generally limited to being employed as filler material or recycled aggregate in concrete, which lim...
Article
Full-text available
This work studies the possibility of using geopolymer materials to enhance the mechanical and durability properties of hydrated lime–pozzolan mixtures, which gave rise to the so-called “hybrid systems”. Two different waste types were used as pozzolan in the lime–pozzolan system: rice husk ash (RHA) and spent fluid catalytic cracking (FCC). The geop...
Article
Full-text available
Glass fiber reinforced cement (GRC) is an excellent composite for architects and engineers because it can be molded to produce laminar panels or to create complicated designs. GRC is a fine concrete reinforced with alkali-resistant glass fibers at 3–5% per mass. However, fiber durability is limited because of the aggressiveness of the alkaline medi...
Article
This study evaluated the compressive strength performance and microstructure of binary blast furnace slag-sewage sludge ash (BFS-SSA) alkali-activated mortars, in which rice husk ash (RHA) was dissolved in NaOH solution to replace commercial sodium silicate. The dissolution of RHA, performed in a thermal bottle with NaOH solution, enhanced the comp...
Article
Fly ash (FA) is a pozzolanic material widely used to replace ordinary Portland cement (OPC) in mortars and concretes. The main purpose of this replacement is to improve the durability of these materials in a sustainable way from an environmental and economical perspective. Main technical advantages, such as the improvement in durability and the enh...
Article
Full-text available
Los cementos de activación alcalina (CAA) requieren de un componente alcalino para la activación del precursor. La fabricación del activador alcalino (AA) supone un consumo energético y de materias primas muy importante, de modo que la huella de carbono de los CAA está fundamentalmente influenciada por ese factor. Una alternativa es el uso de otras...
Chapter
Innovative solutions for reducing environmental problems associated with alkali-activated concrete are fundamental to make its use widespread. This study aims to present an overview of the production, characterization, application, and environmental aspects of alkali-activated mortars and concretes produced using nonconventional alkaline activating...
Article
In the last decade, herbaceous and agricultural biomass have been used as an alternative energy source. As consequence, large amounts of residual ashes containing potassium (potassium-rich ashes) have been generated. Olive biomass ash (OBA) and almond shell ash (ABA) have been successfully used as alkali source in the alkaline activation of ground...
Article
Full-text available
This paper aimed to evaluate the long-term compressive strength development of the sewage sludge ash/metakaolin (SSA/MK)-based geopolymer. SSA/MK-based geopolymeric mortars and pastes were produced at 25ºC with different SSA contents (0 - 30 wt.%). Compressive strength tests were run within the 3-720 curing days range. A physicochemical characteris...
Article
The use of almond-shell biomass ash (ABA) as an alternative component to the commercial reagents used in the activation of blast furnace slag (BFS) systems is investigated. The presence in its chemical composition of a high content of K2O indicates that it can alkalinize the medium. 100% waste-based mixtures ABA/BFS were studied by micro- and macro...
Article
This paper evaluated the pozzolanic activity of ceramic sanitary ware (CSW) waste when blended with Portland cement (PC). CSW waste units were broken, crushed and milled to reduce their particle size. These particles were characterized by scanning electron microscopy (SEM-EDX), laser granulometry, X-ray fluorescence (XRF) and X-ray diffraction test...
Article
Cellular concrete is an alternative to conventional concrete as a low-density and high-insulating building material. The eco-cellular concretes (ECCs) based on geopolymer technology have been recently introduced by the scientific community. A form of ECC was studied, in which the fluid catalytic cracking residue and the blast furnace slag were empl...
Article
Full-text available
Resource recovery from waste is one of the most important ways to implement the so-called circular economy, and the use of alkali activated materials can become an alternative for traditional PC-based materials. These types of materials are based on waste resources involving a lower carbon footprint and present similar or high properties and good d...
Article
Raw sewage sludge was characterized by XRD, FTIR, SEM, and TGA techniques and incinerated in temperature range 650–950°C for 2 h. The effect of incineration temperature on the microstructure and pozzolanic activity of the resultant ash was investigated by techniques mentioned above as well as Chapelle test. It was concluded that incineration of sew...
Article
Use of lime as construction material is limited mainly by low initial strength. These properties can be improved by adding pozzolanic materials, but the evolution of the reaction usually needs older ages than 7 days. Alkali-activated materials, or geopolymers, are good-performance materials that can be produced with residual waste. The combination...
Article
The objective of this study was to evaluate the effects of potassium extraction on the pozzolanicity of sugar cane bagasse ash (SCBA), with the aim of producing reactive ash for use in cementitious composites. The sugar cane bagasse ashes were produced at 600 °C for 60 min, with a heating rate of 4 °C/min. The ashes were then ground and washed for...
Article
Full-text available
Rice husk ash is one of the most widely studied biomass ashes used in pozzolanic addition. Given its lower silica content, rice straw ash (RSA) has been explored less often, despite the fact that, according to the United Nations Food and Agriculture Organization (FAO), rice straw (RS) production is estimated at 600 million tons/year. In this work,...
Chapter
Spent fluid catalytic cracking (FCC) is produced worldwide and has homogeneous chemical, mineralogical, and physical properties, regardless of the petrol refinery source. This good performance facilitates its reuse, especially for making different types of cement or concrete. Spent FCC shows excellent reactivity in pozzolanic behavior terms because...
Article
Full-text available
Worldwide cement production is around 4.2 billion tons, and the fabrication of one ton of ordinary Portland cement emits around 900 kg of CO2. Blast furnace slag (BFS) is a byproduct used to produce alkali-activated materials (AAM). BFS production was estimated at about 350 million tons in 2018, and the BFS reuse rate in construction materials of d...
Article
Full-text available
Soil stabilization using cementing materials is a well-known procedure for earth-based building blocks preparation. For the selected binding materials, innovation usually focuses on low carbon systems, many of which are based on alkaline activation. In the present paper, blast furnace slag (BFS) is used as a mineral precursor, and the innovative al...
Article
Studies on reactivity of sugarcane bagasse ash (SCBA), obtained by an autogenous combustion process, with low loss on ignition and three different particle sizes were carried out (SCBA-1, SCBA-2 and SCBA-3). The ashes were characterized by their particle size distribution, chemical composition, X-ray diffraction (XRD), thermogravimetric analysis (T...
Article
Full-text available
This paper proposes binary and ternary combinations of sewage sludge ash (SSA) with fly ash (FA), marble dust (MD) and rice husk ash (RHA) as partial replacements of Portland cement in concretes with a similar dosage to that used in precast blocks, with very dry consistency. Several physical-mechanical tests were carried out on concrete specimens w...
Conference Paper
Full-text available
This work presents the design of an optimal cell for the monitoring of cement pastes by ultrasound along with the continuous and simultaneous recording of environmental parameters (pressure, humidity and temperature) applied to different water to cement ratios (0.4, 0.5 and 0.6). The input ultrasound signals used have been continuous sinusoidal, bu...
Article
Full-text available
This work studies the effect of nanosilica (NS) on the rheology of cement paste by comparing it with two high specific surface area silicas: silica fume (SF) and pyrogenic silica (PS). Portland cement pastes were produced with different water-to-cementing material ratios and different solid substitutions of cement by silica. Water demand, setting t...
Article
The microstructural features of heterogeneous and porous materials give rise to unique non-linear dynamic behaviour. The purpose of this work is to investigate the dynamic response of thermally damaged concrete specimens measured by two different techniques: Non-linear Impact Resonance Acoustic Spectroscopy (NIRAS) and new Flipped Accumulative Non-...
Article
Reusing ceramic waste as a pozzolanic admixture may offer environmental benefits as it allows the reduction in the consumption of natural resources and energy, and the reduction of CO2 emissions associated with Portland cement (PC) production, while valorising waste materials with a long biodegradation period. This paper assessed the pozzolanic act...
Article
This paper focuses on investigating greener alternatives of cellular concrete technology to fulfil current searches for a shift to circular economy. A novel one-part eco-cellular concrete (ECC-OP) was developed and studied. The one-part alkali activated materials (AAM-OP) and new alkali-activated cellular concrete (AACC) technologies were combined...
Article
The use of almond-shell biomass ash (ABA) as an alkali source in one-part blast furnace slag (BFS) mortars activation was investigated for the first time. The chemical composition of ABA revealed high alkalinity ash to be composed mainly of K2O and CaO. The one-part 100% waste-based mortars and pastes were studied by mechanical and thermogravimetri...
Article
This investigation presents an important contribution to the understanding of the “zero discharge in the aluminium cycle” goal. The salt slag recycled by-product was reused as alternative aerating agent in the manufacture of cellular concretes: fluid catalytic cracking catalyst (FCC) – based geopolymer (GCC) and blast furnace (BFS) – based alkali-a...
Article
Full-text available
Alkali‐activated cements are widely studied as alternative and sustainable binder in soil stabilization. In this research work, a mold was designed and constructed, which allowed small cubic specimens to be made (40 × 40 × 40 mm³). With the newly designed mold, cubic samples of soil stabilized with portland cement (OPC) and alternative AAC (based o...
Article
Full-text available
Lamb waves have emerged as a valuable tool to examine long plate-like structures in a faster way compared to conventional bulk wave techniques, which make them attractive in non-destructive testing. However, they present a multimodal and dispersive nature, which hinders signal identification. Oblique incidence is one of the most known methods to ge...
Article
Alkali-activated cements (AACs) technology is being widely investigated as a replacement for ordinary Portland cement (OPC) for environmental benefits. Blast furnace slag (BFS) is one of the most well known precursors used in AACs, having comparable properties to those of traditional OPC-based materials. AACs require alkali solutions, which are com...
Article
Full-text available
An exhaustive study on thermal damage of Portland cement-based materials is addressed. Damage carried out at different temperatures on concrete between 40 and \(525\,^{\circ }\hbox {C}\) were assessed by means of microstructural, physical and nondestructive tests. Microstructural analysis (thermogravimetry and scanning electron microscopy) showed t...
Article
In the context of world concern with the environment, this study aims to characterize an auto-combustion produced bamboo leaf ash (BLA) by its pozzolanic behaviour, reactivity and its influence in the total porosity, pore size distribution, tortuosity and mechanical behaviour of cementitious matrices. The chemical and physical characterization of t...
Article
This paper explored the effect of sewage sludge ash (SSA) on the mechanical and microstructural properties of geopolymers based on metakaolin (MK) involving two different SiO2/Na2O molar ratios (0.8 and 1.6), two temperature curing conditions (25 °C and 65 °C) and various ages of curing (1, 3, 7, 14, 28, 90 or 180 days). The geopolymers were charac...
Article
The use of composite materials in construction has grown considerably in recent years, such as cementitious matrices and concrete reinforced with fibers. The vegetable fibers have become an alternative due to its abundance, low cost and low energy consumption for its production, and appropriate properties mechanical. Curauá fiber is a plant native...
Chapter
Full-text available
The durability of infrastructure materials, such as concrete, has direct impact on society because the productivity of many industries and safety of human beings depend on infrastructure condition, and further because maintenance of the infrastructure can represent a significant portion of a government’s budget. Thus the enhancement of concrete dur...
Chapter
This chapter gives readers fundamental understandings of various nonlinear acoustical techniques. It briefly describes the nonlinear techniques that are popular today such as higher harmonic generation, subharmonic generation, nonlinear resonant acoustic spectroscopy, vibro-acoustics, wave modulation between two wave frequencies—pumping and probing...