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A new fractional derivative with a non-singular kernel involving exponential and

trigonometric functions is proposed in this paper. The suggested fractional operator

includes as a special case Caputo-Fabrizio fractional derivative. Theoretical and

numerical studies of fractional differential equations involving this new concept are

presented. Next, some applications to RC-electrical circuits are provided.

Keywords: fractional derivative, non-singular kernel, Picard iteration, RC-electrical circuit, convergence

1. INTRODUCTION

In the recent decades, the theory of fractional calculus has brought the attention of a great number
of researchers in various disciplines. Indeed, it was observed that the use of fractional derivatives
is very useful for modeling many problems in engineering sciences (see e.g., [1–10]). Various
notions of fractional derivatives exist in the literature. The basic notions are those introduced by

Riemann-Liouville and Caputo (see e.g., [11]), which involve the singular kernel k(t, s) = (t−s)−α

Ŵ(1−α) ,

0 < α < 1. These fractional derivatives play an important role for modeling many phenomena
in physics. However, as it was mentioned in Caputo and Fabrizio [12], certain phenomena related
to material heterogeneities cannot be well-modeled using Riemann-Liouville or Caputo fractional
derivatives. Due to this fact, Caputo and Fabrizio [12] suggested a new fractional derivative

involving the non-singular kernel k(t, s) = e
−α(t−s)
1−α , 0 < α < 1. Later, Caputo-Fabrizio fractional

derivative was used by many authors for modeling various problems in engineering sciences (see
e.g., [13–24]). Furthermore, other fractional derivatives with non-singular kernels were introduced
by some authors (see e.g., [10, 25–29]).

In this paper, a new fractional derivative with a non-singular kernel involving exponential and
trigonometric functions is proposed. The introduced fractional derivative includes as a special
case Caputo-Fabrizio fractional derivative. Theoretical and numerical investigations of fractional
differential equations involving this new fractional operator are presented. Next, some applications
to electrical circuits are provided.

In section 2, some preliminaries on harmonic analysis are presented. In section 3, we develop
a general theory of fractional calculus using an arbitrary non-singular kernel. In section 4, we
introduce a generalized Caputo-Fabrizio fractional derivative and study its properties. Some
applications to fractional differential equations are given in section 5. A numerical method based
on Picard iterations is presented in section 6 with some numerical examples. In section 7, some
applications to RC-electrical circuits are provided.
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2. SOME PRELIMINARIES ON HARMONIC
ANALYSIS

We recall briefly some results on harmonic analysis that will be
used later.

Lemma 2.1. Folland [30]. Let ψ ∈ L1(R) be such that

∫

R

ψ(t) dt = 1.

Consider the sequence of functions {ψε}ε>0 defined by

ψε(t) =
1

ε
ψ

(
t

ε

)
, t ∈ R.

If µ ∈ L1(R), then

ψε ∗ µ ∈ L1(R), ε > 0

and

lim
ε→0+

‖ψε ∗ µ− µ‖L1(R) = 0,

where ∗ denotes the convolution product.

Lemma 2.2. Let ψ ∈ L1(0,∞) be such that

∫ ∞

0
ψ(t) dt = 1. (2.1)

Consider the sequence of functions {ψε}ε>0 defined by

ψε(t) =
1

ε
ψ

(
t

ε

)
, t > 0.

If µ ∈ L1(0,∞), then the sequence of functions {Iµε }ε>0 defined by

Iµε (t) =
∫ t

0
ψε(t − s)µ(s) ds, t > 0

satisfies the following properties:

Iµε ∈ L1(0,∞), ε > 0

and

lim
ε→0+

‖Iµε − µ‖L1(0,∞) = 0.

Proof: For any function f defined almost every where in (0,∞),
let

f̃ (t) =
{
f (t) a.e. t > 0,
0 if t ≤ 0.

From (2.1), one has ψ̃ ∈ L1(R) and

∫

R

ψ̃(t) dt = 1.

Hence, by Lemma 2.1, for all f ∈ L1(R), we have

ψ̃ε ∗ f ∈ L1(R), ε > 0

and

lim
ε→0+

‖ψ̃ε ∗ f − f ‖L1(R) = 0,

where

ψ̃ε(t) =
1

ε
ψ̃

(
t

ε

)
, t ∈ R.

In particular, for µ ∈ L1(0,∞), we have

ψ̃ε ∗ µ̃ ∈ L1(R), ε > 0 (2.2)

and

lim
ε→0+

‖ψ̃ε ∗ µ̃− µ̃‖L1(R) = 0. (2.3)

For all t > 0, we have

ψ̃ε ∗ µ̃(t) =
∫

R

ψ̃ε(t − s)µ̃(s) ds

=
∫ t

0
ψε(t − s)µ(s) ds

= Iµε (t).

Hence, using (2.2) and (2.3), one obtains
∫ ∞

0
|Iµε (t)| dt =

∫ ∞

0
|ψ̃ε ∗ µ̃(t)| dt ≤ ‖ψ̃ε ∗ µ̃‖L1(R) <∞

and

‖Iµε − µ‖L1(0,∞) =
∫ ∞

0
|ψ̃ε ∗ µ̃(t)− µ̃(t)| dt

≤ ‖ψ̃ε ∗ µ̃− µ̃‖L1(R) −→ 0 as ε −→ 0+.

This completes the proof of Lemma 2.2.

Definition 2.1. We say that f is of exponential order θ , if for t
large enough, one has

|f (t)| ≤ Ceθ t ,

where C > 0 and θ are constants.

We denote by L{f (t)} the Laplace transform of the function f ,
i.e.,

L{f (t)}(s) =
∫ ∞

0
e−stf (t) dt.

Recall that, if f ∈ C[0,∞) and f is of exponential order θ , then
L{f (t)}(s) exists for s > θ .

We denote by N the set of positive integers.

Lemma 2.3. Schiff [31]. Let n ∈ N. If f ∈ Cn[0,∞) and
for all i = 0, 1, · · · , n − 1, the function f (i) is of exponential
order, then

L{f (n)(t)}(s) = snL{f (t)}(s)−
n∑

i=1

si−1f (n−i)(0).
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3. FRACTIONAL DERIVATIVE WITH AN
ARBITRARY NON-SINGULAR KERNEL

We consider the set of non-singular kernel functions

K =
{
k ∈ C[0,∞) ∩ L1(0,∞) :

∫ ∞

0
k(σ ) dσ = 1

}
. (3.1)

Definition 3.1. Given k ∈ K, 0 < α < 1 and f ∈ C1[0,∞), the
fractional derivative of order α of f with respect to the non-singular
kernel function k is defined by

(
Dα0,kf

)
(t) =

1

1− α

∫ t

0
k

(
α(t − s)

1− α

)
f ′(s) ds, t > 0.

Remark 3.1. We can also define Dα
0,k
f for functions f ∈ AC[0,∞)

(f is an absolutely continuous function in [0,∞)). In this case, f ′(t)
exists for almost every where t > 0 and f ′ ∈ L1(0,∞).

The following properties hold.

Theorem 3.1. Let k ∈ K and f ∈ C1[0,∞). Then

(i) For all 0 < α < 1,

lim
t→0+

(
Dα0,kf

)
(t) = 0.

(ii) If f ′ ∈ L1(0,∞), one has

Dα0,kf ∈ L1(0,∞), 0 < α < 1

and

lim
α→1−

∥∥∥Dα0,kf − f ′
∥∥∥
L1(0,∞)

= 0.

Proof: (i) Let 0 < α < 1. For 0 < t < T <∞, one has

∣∣∣
(
Dα0,kf

)
(t)
∣∣∣ ≤

‖k‖L∞(0,Tα)‖f ′‖L∞(0,T)

1− α
t,

where Tα = α
1−αT. Passing to the limit as t → 0+ in the above

inequality, (i) follows.
(ii) Suppose that f ′ ∈ L1(0,∞). For 0 < α < 1, let ε = 1−α

α
. One

has

(
Dα0,kf

)
(t) =

ε + 1

ε

∫ t

0
k

(
1

ε
(t − s)

)
f ′(s) ds

= (ε + 1)

∫ t

0

1

ε
k

(
1

ε
(t − s)

)
f ′(s) ds

= (ε + 1)

∫ t

0
kε(t − s)f ′(s) ds, t > 0,

where

kε(x) =
1

ε
k
(x
ε

)
, x > 0.

Hence, using Lemma 2.2, (ii) follows.

Definition 3.2. Given k ∈ K, 0 < α < 1, n ∈ N ∪ {0} and
f ∈ Cn+1[0,∞), the fractional derivative of order α + n of f with
respect to the non-singular kernel k is defined by

(
Dα+n
0,k

f
)
(t) =

1

1− α

∫ t

0
k

(
α(t − s)

1− α

)
f (n+1)(s) ds, t > 0.

Remark 3.2. We can also define Dα+n
0,k

f for functions f ∈
ACn+1[0,∞). In this case, f n+1(t) exists for almost every where
t > 0 and f (n+1) ∈ L1(0,∞).

Similarly to the case n = 0, one has

Theorem 3.2. Let k ∈ K, n ∈ N ∪ {0} and f ∈ Cn+1[0,∞).
Then

(i) For all 0 < α < 1,

lim
t→0+

(
Dα+n
0,k

f
)
(t) = 0.

(ii) If f (n+1) ∈ L1(0,∞), then

Dα+n
0,k

f ∈ L1(0,∞), 0 < α < 1

and

lim
α→1−

∥∥∥Dα+n
0,k

f − f (n+1)
∥∥∥
L1(0,∞)

= 0.

Remark 3.3. From the assertion (ii) of Theorem 3.2, if f (n+1) ∈
L1(0,∞), one has

lim
α→1−

(
Dα+n
0,k

f
)
(t) = f (n+1)(t), a.e. t > 0.

Theorem 3.3. Given k ∈ K, 0 < α < 1, n ∈ N ∪ {0} and
f ∈ Cn+1[0,∞) with f (i), i = 0, 1, · · · , n, are of exponential order,
one has

L

{(
Dα+n
0,k

f
)
(t)
}
(s)

=
1

1− α

(
sn+1

L{f (t)}(s)−
n+1∑

i=1

si−1f (n+1−i)(0)

)
L
{
kα(t)

}
(s),

where

kα(t) = k

(
αt

1− α

)
, t > 0.

Proof: One has

L

{(
Dα+n
0,k

f
)
(t)
}
(s)

=
∫ ∞

0
e−ts

(
Dα+n
0,k

f
)
(t) dt

=
∫ ∞

0
e−ts

(
1

1− α

∫ t

0
k

(
α(t − σ )
1− α

)
f (n+1)(σ ) dσ

)
dt.
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Using Fubini’s theorem, one obtains

L

{(
Dα+n
0,k

f
)
(t)
}
(s) (3.2)

=
1

1− α

∫ ∞

0
f (n+1)(σ )

(∫ ∞

σ

e−tsk

(
α(t − σ )
1− α

)
dt

)
dσ .

Using the change of variable τ = t − σ , it holds
∫ ∞

σ

e−tsk

(
α(t − σ )
1− α

)
dt

= e−σ s
∫ ∞

0
e−τ sk

(
ατ

1− α

)
dτ

= e−σ sL
{
kα(t)

}
(s).

Hence, by (3.2), one deduces that

L

{(
Dα+n
0,k

f
)
(t)
}
(s) =

1

1− α
L

{
f (n+1)(t)

}
(s)L

{
kα(t)

}
(s).

Next, using Lemma 2.3, we obtain

L

{(
Dα+n
0,k

f
)
(t)
}
(s)

=
1

1− α

(
sn+1

L{f (t)}(s)−
n+1∑

i=1

si−1f (n+1−i)(0)

)
L
{
kα(t)

}
(s),

which yields the desired result.

4. A GENERALIZED CAPUTO-FABRIZIO
FRACTIONAL DERIVATIVE

Consider the kernel function

ka,b(t) =
(
a2 + b2

a

)
e−at cos(bt), t ≥ 0,

where a > 0 and b ≥ 0 are constants. It can be easily seen that

ka,b ∈ K, (4.1)

where K is the set of kernel functions defined by (3.1). Hence,
using Definition 3.2, we define the fractional derivative with
respect to the kernel function ka,b as follows.

Definition 4.1. Given a > 0, b ≥ 0, 0 < α < 1, n ∈ N ∪ {0} and
f ∈ Cn+1[0,∞), the fractional derivative of order α + n of f with
respect to the kernel function ka,b is defined by

(
Dα+n
0,a,b

f
)
(t) =

(
1

1− α

)(
a2 + b2

a

)

∫ t

0
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

)
f (n+1)(s) ds, t > 0.

Remark 4.1. Taking a = 1 and b = 0 in the above definition, one
obtains

(
Dα+n
0,1,0f

)
(t) =

(
CFDα+n

0 f
)
(t), t > 0,

where CFDα+n
0 is the Caputo–Fabrizio fractional derivative

operator of order α + n (see [12]).

Remark 4.2. Definition 4.1 can be extended to the case of
functions f ∈ Cn+1[0,T], where 0 < T <∞.

From (4.1) and Theorem 3.2, one deduces that

Corollary 4.1. Let a > 0, b ≥ 0, n ∈ N∪{0} and f ∈ Cn+1[0,∞).
Then

(i) For all 0 < α < 1,

lim
t→0+

(
Dα+n
0,a,b

f
)
(t) = 0.

(ii) If f (n+1) ∈ L1(0,∞), then

Dα+n
0,a,b

f ∈ L1(0,∞), 0 < α < 1

and

lim
α→1−

∥∥∥Dα+n
0,a,b

f − f (n+1)
∥∥∥
L1(0,∞)

= 0.

Let

ka,b,α(t) = ka,b

(
αt

1− α

)
, t > 0,

that is,

ka,b,α(t) =
(
a2 + b2

a

)
e−

aαt
1−α cos

(
bαt

1− α

)
, t > 0.

Lemma 4.1. Abramowitz and Stegun [32]. Let a > 0, b ≥ 0 and
0 < α < 1. Then

L
{
ka,b,α(t)

}
(s)=

(1− α)(a2 + b2)

a

[
(1− α)s+ αa

((1− α)s+ αa)2 + b2α2

]
,

s > 0.

Using Theorem 3.3 and Lemma 4.1, one deduces that

Corollary 4.2. Let a > 0, b ≥ 0, 0 < α < 1, n ∈ N ∪ {0} and
f ∈ Cn+1[0,∞) with f (i), i = 0, 1, · · · , n, are of exponential order.
Then

L

{(
Dα+n
0,a,b

f
)
(t)
}
(s)

=
(a2 + b2)

a

(
sn+1

L{f (t)}(s)−
n+1∑

i=1

si−1f (n+1−i)(0)

)

[
(1− α)s+ αa

((1− α)s+ αa)2 + b2α2

]
, s > 0.

For n = 0, one obtains

Corollary 4.3. Let a > 0, b ≥ 0, 0 < α < 1 and f ∈ C1[0,∞)
with f is of exponential order. Then

L

{(
Dα0,a,bf

)
(t)
}
(s) =

(a2 + b2)

a

(
sL{f (t)}(s)− f (0)

)

[
(1− α)s+ αa

((1− α)s+ αa)2 + b2α2

]
.
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5. APPLICATIONS TO FRACTIONAL
DIFFERENTIAL EQUATIONS

Let a > 0, b ≥ 0, 0 < T <∞ and 0 < α < 1.

Definition 5.1. Let g ∈ C[0,T]. The fractional integral of order α
of g is defined by

(
Iα0,a,bg

)
(t) =

a(1− α)
a2 + b2

g(t)

+ α

(∫ t

0
g(σ ) dσ −

b2

a2 + b2

∫ t

0
e
−aα(t−σ )

1−α g(σ ) dσ

)
,

0 ≤ t ≤ T,

with
(
Iα
0,a,b

g
)
(0) = 0.

Given f0 ∈ R and g ∈ C1[0,T] with g(0) = 0, we consider the
initial value problem

{ (
Dα
0,a,b

f
)
(t) = g(t), 0 < t < T,

f (0) = f0.
(5.1)

Theorem 5.1. Problem (5.1) admits a unique solution f ∈
C1[0,T], which is given by

f (t) = f0 +
(
Iα0,a,bg

)
(t), 0 ≤ t ≤ T. (5.2)

Proof: Let f ∈ C1[0,T] be a solution of (5.1). One has

(
Dα0,a,bf

)′
(t) = g′(t), 0 < t < T. (5.3)

By Definition 4.1, one has

(
Dα0,a,bf

)′
(t) =

(
1

1− α

)(
a2 + b2

a

)

{
f ′(t)+

∫ t

0

d

dt

(
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

))
f ′(s) ds

}

=
(

1

1− α

)(
a2 + b2

a

)
f ′(t)

−
(

aα

1− α

)(
1

1− α

)(
a2 + b2

a

)

∫ t

0
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

)
f ′(s) ds

−
(

bα

1− α

)(
1

1− α

)(
a2 + b2

a

)

∫ t

0
e−

aα(t−s)
1−α sin

(
bα(t − s)

1− α

)
f ′(s) ds

=
(

1

1− α

)(
a2 + b2

a

)
f ′(t)−

(
aα

1− α

)
g(t)

−
(

bα

1− α

)(
1

1− α

)(
a2 + b2

a

)
γ (t),

(5.4)

where

γ (t) =
∫ t

0
e−

aα(t−s)
1−α sin

(
bα(t − s)

1− α

)
f ′(s) ds.

On the other hand,

γ ′(t) =
∫ t

0

d

dt

(
e−

aα(t−s)
1−α sin

(
bα(t − s)

1− α

))
f ′(s) ds

= −
(

aα

1− α

)
γ (t)+

(
bα

1− α

)

∫ t

0
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

)
f ′(s) ds

= −
(

aα

1− α

)
γ (t)+

(
abα

a2 + b2

)
g(t).

Integrating the above equality and using that γ (0) = 0, one
obtains

γ (t) =
abα

a2 + b2

∫ t

0
e−

aα(t−s)
1−α g(s) ds.

Hence by (5.4), one deduces that

(
Dα0,a,bf

)′
(t) =

(
1

1− α

)(
a2 + b2

a

)
f ′(t)−

(
aα

1− α

)
g(t)

−
(

bα

1− α

)2 ∫ t

0
e−

aα(t−s)
1−α g(s) ds.

Next, using (5.3), one obtains

f ′(t) =
a2α

a2 + b2
g(t)+

(
ab2α2

(1− α)(a2 + b2)

)∫ t

0
e−

aα(t−s)
1−α g(s) ds

+
a(1− α)
a2 + b2

g′(t).

Integrating the above equality, using that f (0) = f0 and g(0) = 0,
it holds

f (t)− f0 =
(

a2α

a2 + b2

)∫ t

0
g(σ ) dσ +

a(1− α)
a2 + b2

g(t)

+
(

ab2α2

(1− α)(a2 + b2)

)∫ t

0

∫ σ

0
e−

aα(σ−s)
1−α g(s) ds dσ

(5.5)
On the other hand, using Fubini’s theorem, one gets

∫ t

0

∫ σ

0
e−

aα(σ−s)
1−α g(s) ds dσ

=
∫ t

0
g(s)e

aαs
1−α

(∫ t

s
e−

aασ
1−α dσ

)
ds

=
(
1− α
aα

)∫ t

0
g(s) ds−

(
1− α
aα

)∫ t

0
e−

aα(t−s)
1−α g(s) ds.

(5.6)

It follows from (5.5) and (5.6) that

f (t) = f0 +
(
Iα0,a,bg

)
(t),
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i.e., f is a solution of (5.2).
Suppose now that f satisfies (5.2). Clearly, one has f ∈

C1[0,T]. Since g(0) = 0, one has f (0) = f0. On the other hand,

an elementary calculation shows that
(
Dα
0,a,b

f
)
(t) = g(t) for all

0 < t < T. Therefore, f is a solution of (5.1).

Consider now the non-linear initial value problem

{ (
Dα
0,a,b

u
)
(t) = F(t, u(t)), 0 < t < T,

u(0) = u0,
(5.7)

where the function F :[0,T]×R → R is continuous and satisfies
F(0, u0) = 0.

Definition 5.2. We say that u ∈ C[0,T] is a weak solution of
(5.7), if u solves the integral equation

u(t) = u0 +
(
Iα0,a,bF(·, u(·)

)
(t), 0 ≤ t ≤ T,

i.e.,

u(t) = u0 +
a(1− α)
a2 + b2

F(t, u(t))

+α
(∫ t

0
F(σ , u(σ )) dσ −

b2

a2 + b2

∫ t

0
e
−aα(t−σ )

1−α F(σ , u(σ )) dσ

)
,

for all 0 ≤ t ≤ T.

Remark 5.1. Observe that, if F ∈ C1([0,T] × R), and u ∈
C1[0,T] is a solution of (5.7), then u ∈ C[0,T] is a weak solution
of (5.7).

Theorem 5.2. Suppose that

|F(t, η)− F(t, ξ )| ≤ ℓ|η − ξ |, (η, ξ ) ∈ R
2, (5.8)

where ℓ > 0 is a constant. If

ℓ
(
Aα + (α + Bα)T

)
< 1, (5.9)

where Aα = a(1−α)
a2+b2

and Bα = αb2

a2+b2
, then (5.7) admits a unique

weak solution u∗ ∈ C[0,T]. Moreover, for any z0 ∈ C[0,T], the
Picard sequence {zn} defined by

zn+1(t) = u0 +
a(1− α)
a2 + b2

F(t, zn(t))

+α
(∫ t

0
F(σ , zn(σ )) dσ −

b2

a2 + b2

∫ t

0
e
−aα(t−σ )

1−α F(σ , zn(σ )) dσ

)
,

for all 0 ≤ t ≤ T, converges uniformly to u∗.

Proof: Consider the self-mapping H :C[0,T] → C[0,T] defined
by

(Hu)(t) = u0 +
a(1− α)
a2 + b2

F(t, u(t))

+α
(∫ t

0
F(σ , u(σ )) dσ −

b2

a2 + b2

∫ t

0
e
−aα(t−σ )

1−α F(σ , u(σ )) dσ

)
,

for all 0 ≤ t ≤ T. We endow C[0,T] with the norm

‖u‖∞ = max
{
|u(t)| : 0 ≤ t ≤ T

}
.

Then (C[0,T], ‖·‖∞) is a Banach space. For all u, v ∈ C[0,T] and
0 ≤ t ≤ T, using (5.8), one has

|(Hu)(t)− (Hv)(t)|

≤ Aα|F(t, u(t))− F(t, v(t)| + α
∫ t

0
|F(σ , u(σ ))− F(σ , v(σ ))| dσ

+ Bα

∫ t

0
e
−aα(t−σ )

1−α |F(σ , u(σ ))− F(σ , v(σ ))| dσ

≤ ℓAα‖u− v‖∞ + αℓT‖u− v‖∞ + BαℓT‖u− v‖∞
= ℓ

(
Aα + (α + Bα)T

)
‖u− v‖∞,

which yields

‖Hu−Hv‖∞ ≤ ℓ
(
Aα + (α + Bα)T

)
‖u− v‖∞.

Hence by (5.9), one deduces that H is a contraction. Therefore,
the result follows from Banach fixed point theorem.

6. NUMERICAL SOLUTION VIA PICARD
ITERATION

Consider the initial value problem

{ (
Dα0,1,1u

)
(t) = u(t)

3 + et , 0 < t < 1,

u(0) = −3,
(6.1)

where 0 < α < 1. For α = 1, (6.1) reduces to

{
u′(t) = u(t)

3 + et , 0 < t < 1,
u(0) = −3.

(6.2)

The exact solution of (6.2) is given by

u1(t) =
3

2
et −

9

2
e
t
3 , 0 ≤ t ≤ 1.

(6.1) is a special case of (5.7) with T = 1, a = b = 1, u0 = −3
and F(t, x) = x

3 + et . One can check easily that F satisfies (5.8)

with ℓ = 1
3 . Moreover, one has

ℓ
(
Aα + (α + Bα)T

)
=

1

3

(
1

2
+ α

)
< 1.

Hence by Theorem 5.2, (6.1) has a unique weak solution u∗ ∈
C[0, 1]. Consider now the Picard sequence {zn} ⊂ C[0, 1] given
by z0(t) = −3 and

zn+1(t) = −3+
(1− α)

2
F(t, zn(t)) (6.3)

+α
(∫ t

0
F(σ , zn(σ )) dσ −

1

2

∫ t

0
e
−α(t−σ )
1−α F(σ , zn(σ )) dσ

)
,

for all n = 0, 1, , 2, · · · By Theorem 5.2, the sequence {zn}
converges uniformly to u∗. In Figure 1A, for α = 0.95, we
plot u1(t) [the exact solution of (6.2)], z1(t), z3(t), and z10(t). In
Figure 1B, for α = 0.7, we plot z1(t), z3(t), and z10(t).
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FIGURE 1 | Picard iterations for different values of α. (A) α = 0.95. (B) α = 0.7.

7. APPLICATIONS TO RC ELECTRICAL
CIRCUITS

In this section, we give some applications to RC electrical circuits
using the generalized Caputo-Fabrizio fractional derivative
introduced in section 4.

The governing ODE of an RC electrical circuit (see Figure 2)
is given by

dV(t)

dt
+

V(t)

RC
=
µ(t)

RC
, (7.1)

where V is the voltage, R is the resistance, C is the capacitance
andµ(t) is the source of volt. In this part, we consider a fractional
version of (7.1) using the generalized Caputo-Fabrizio fractional
derivative introduced in section 4. Namely, using the following
transformation suggested in [33]:

d

dt
−→

1

σ 1−αD
α
0,a,b, a > 0, b ≥ 0, 0 < α < 1, (7.2)

where σ is a positive parameter having dimensions of seconds,
we obtain the fractional differential equation

(
Dα0,a,bV

)
(t)+

1

κα
V(t) =

1

κα
µ(t), (7.3)

where

κα =
RC

σ 1−α .

We consider (7.3) with the source term

µ(t) = sin(φt)

and the initial condition

V(0) = 0. (7.4)

In this case, (7.3) reduces to

(
Dα0,a,bV

)
(t) = AV(t)+ B sin(φt),

FIGURE 2 | RC circuit.

where A = − 1
κα

and B = −A. Applying the Laplace transform
and using Corollary 4.3, one obtains

(a2 + b2)

a

(
sL{V(t)}(s)− V(0)

) [ (1− α)s+ αa
((1− α)s+ αa)2 + b2α2

]

= AL{V(t)}(s)+
Bφ

s2 + φ2
.

Using (7.4), it holds

L{V(t)}(s) =
Bφ

s2 + φ2
(
sFα,a,b(s)− A

)−1
,

where

Fα,a,b(s) =
(a2 + b2)

a

[
(1− α)s+ αa

((1− α)s+ αa)2 + b2α2

]
. (7.5)

By Laplace transform inverse, one gets

V(t) = L
−1

{
Bφ

s2 + φ2
(
sFα,a,b(s)− A

)−1
}
(t).

Examples. All simulations are obtained using MATLAB 7.5.
Consider an RC circuit with R = 10�, C = 0.1F, φ =
15 and σ = RCα. In this case, we have κα = αα−1(RC)α ,
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A = −α1−α(RC)−α and B = α1−α(RC)−α . Figure 3 shows
the voltage V(t) for different values of α in the case (a, b) =
(1, 0) (Caputo-Fabrizio case). Figure 4 shows the voltage
V(t) for different values of α in the case (a, b) = (2,

√
2).

Figure 5 shows the voltage V(t) for different values of α in the
case (a, b) = (10, 3).

8. CONCLUSION

In this contribution, we suggested a fractional derivative
involving the kernel function

ka,b(t, s) =
(

1

1− α

)(
a2 + b2

a

)
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

)
,

a > 0, b ≥ 0, 0 < α < 1.

In the particular case (a, b) = (1, 0), the above function
reduces to Caputo-Fabrizio kernel. We studied fractional
differential equations via this new concept in both theoretical
and numerical aspects. In the theoretical point of view, we
investigated the existence and uniqueness of solutions to non-
linear fractional boundary value problems involving the new
introduced fractional derivative. Namely, using Banach fixed

FIGURE 3 | Graph of the voltage in the RC circuit for different values of α with µ(t) = sin(15t) and (a,b) = (1, 0).

FIGURE 4 | Graph of the voltage in the RC circuit for different values of α with µ(t) = sin(15t) and (a,b) = (2,
√
2).
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FIGURE 5 | Graph of the voltage in the RC circuit for different values of α with µ(t) = sin(15t) and (a,b) = (10, 3).

point theorem, the existence and uniqueness of weak solutions
to (5.7) was established under certain conditions imposed on
the non-linear term F and the parameters a, b and α. In
the numerical point of view, a numerical algorithm based
on Picard iterations was proposed for solving the considered
problem. Numerical experiments were provided using as a
model example the fractional boundary value problem (6.1).
In Figure 1, we presented the exact solution (u1(t)) for α =
1 and numerical solutions z1(t), z3(t), and z10(t) to (6.1) for
α ∈ {0.95, 0.7}. One observes that for n = 10, zn(t) is
close enough to u1(t), which confirms the convergence of
the proposed algorithm. Finally, as application, we proposed
a fractional model of an RC electrical circuit using the new
introduced fractional derivative. One can compare the voltage
V(t) obtained for different values of α in the Caputo-Fabrizio
case (a, b) = (1, 0) (see Figure 3) with that obtained using
different values of (a, b) (see Figures 4, 5). Namely, one can show
that the voltage V(t) obtained with the use of the generalized

fractional Caputo-Fabrizio derivative is more stable with respect

to α than that obtained with the use of Caputo-Fabrizio
fractional derivative.
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In this article, we present the Jacobi spectral colocation method to solve the fractional

model of Liénard and Duffing equations with the Liouville–Caputo fractional derivative.

These equations are the generalization of the spring–mass system equation and describe

the oscillating circuit. The main reason for using this technique is high accuracy and

low computational cost compared to some other methods. The main solution behaviors

of these equations are due to fractional orders, which are explained graphically. The

convergence analysis of the proposed method is also provided. A comparison is made

between the exact and approximate solutions.

Keywords: fractional Liénard equation, fractional Duffing equation, spectral colocation method, Jacobi

polynomials, convergence analysis

INTRODUCTION

The standard Liénard equation (LE) is a generalization of the damped pendulum equation or
spring–mass system. Because this equation can be applied to describe the oscillating circuits,
therefore, it is used in the development of radio and vacuum-tube technology. The LE was given by
Liénard [1], and it is written as follows:

D′′v+ τ1 (v)D′v+ τ2 (v) = τ3(t), (1)

where τ1 (v)D′v is the damping force, τ2 (v) is the restoring force, and τ3(t) is the external
force. For different choices of the variable coefficients τ1 (v) , τ2 (v), and τ3 (t), the LE is used
in many phenomena. The Liénard Equation (1) becomes the van der Pol equation for τ1 (v) =
ε
(
v2 − 1

)
, τ2 (v) = v, and τ3 (t) = 0, which has many applications [2, 3].

By usual way, we cannot find the exact solution for these equations [4]. Kong [5] studied the LE
given as follows:

D′′v+ aD′v+ bv3 + cv5 = 0, (2)

where a, b, and c are real constants.
In particular, if we take c = 0 in the LE, then it reduces to the Duffing equation (DE). This special

case of the LE is known as the DE and is given as follows;

D′′v+ aD′v+ dv+ bv3 = 0, (3)
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where a, d, and b are real constants.
In recent years, fractional calculus has become an interesting

and useful part of mathematical analysis and applied
mathematics. The importance of fractional calculus arises
because of its non-local nature. The real-life applications of
fractional calculus are in fluid dynamics [6], signal processing
[7], chemistry [8], viscoelasticity [9], and bioengineering [10].
For some other applications, see Srivastava et al. [11], Kilbas et al.
[12], and Robinson [13]. Many physical problems are modeled
by fractional-order LE (FLE) and DE. In addition, we are familiar
with the fact that non-integer-order derivatives handle models
accurately. So, for the accurate modeling of these equations, it
is fundamentally needed to change integer-order equations to
fractional-order equations.

Fractional-Order Liénard Equation
The FLE is given by

Dαv(t)+ aD′v+ bv3 + cv5 = 0, 1 < α ≤ 2, t ∈ [0, 1], (4)

with the conditions:

v (0) = ξ , v′ (0) = η, (5)

where ξ and η are real constants.

Fractional-Order DE
The fractional-order DE (FDE) is given by

Dβv(t)+ aD′v+ dv+ bv3 = 0, 1 < β ≤ 2, t ∈ [0, 1], (6)

with the following conditions:

v (0) = µ, v′ (0) = σ , (7)

where µ and σ are real constants.
The innovator approach to solve the LE originates in the work

by Kong [5], who provided an exact solution of these equations in
some particular cases. For some particular choices of the involved
real constants, Feng [14] obtained an exact solution of these
equations, which were the generalization of Kong’s [5] results.
In 2008, Matinfar et al. [15] suggested a variational iteration
method in order to obtain the approximate solutions of the
LE. Subsequently, in 2011, a variational homotopy perturbation
method was applied in order to solve LE (see Matinfar et al. [16]).
Recently in 2017, a numerical method using homotopy analysis
transform method (HATM) in order to solve fractional LE was
proposed, and the uniqueness and existence of solutions were
also given (see Kumar et al. [17]). Further, Singh [18, 19] used
Legendre polynomials and Chebyshev polynomials, respectively,
to solve fractional models of these equations.

In this article, we propose an effective method for the FLE and
DE. The proposed method is a spectral colocation method based
on the applications of operational matrix of differentiation for the
Jacobi polynomials. Spectral colocation method is used to solve
many problems in differential calculus (see [20–29]). By using the
spectral colocation method, these equations are converted into
a system of non-linear algebraic equations whose solution gives

approximate solution to these equations. The derived solution is
discussed for different fractional orders. The obtained results are
compared with the exact solution and presented in the form of
numerical tables. Because fractional order derivatives are non-
local in nature, and integer-order derivatives are a special case
of fractional order derivative, it is important to study fractional
order models. The proposed method is easy to implement
because it is computer oriented. It is also a time-saving method.
The integer as well as fractional order behavior of solution is
shown in numerical section. Themain solution behaviors of these
equations are due to fractional orders, and using the proposed
method, these behaviors of solution are explained clearly.

PRELIMINARIES

In this article, we have considered the non-integer-order
differentiations in Liouville–Caputo (LC) sense, which are
defined as follows:

Definition 2.1 The LC non-integer derivative of order β is
defined as follows [30, 31]:

Dβ f (x) = Il−βDlf (x) =
1

(l− β)

x∫

0

(x− t)l−β−1 d
l

dtl
f (t)dt,

l− 1 < β < l, x > 0. (8)

In this article, we have used Jacobi polynomials as a basis for
the approximation of unknown functions. The shifted Jacobi
polynomial is given as follows [32–34]:

λ
(e,f )
i (t)

=
i∑

k=0

(−1)i−k Ŵ (i+ f+ 1) Ŵ (i+ k+ e+ f+ 1)

Ŵ
(
k+ f+ 1

)
Ŵ

(
i+ e+ f+ 1

) (
i− k

)
!k!

tk, (9)

where e and f are parameters in Jacobi polynomials as given in

Doha et al. [32].
The orthogonal property of Jacobi polynomials is as follows:

1∫

0

λ
(e,f )
n (t) λ

(e,f )
m (t) g(e,f ) (t) dt = v

e,f
n δmn, (10)

where g(e,f ) (t) is weight function, and δmn is kronecker delta
function and given as

g(e,f ) (t)

= (1− t)etf and v
e,f
n

=
Ŵ(n+ e+ 1) Ŵ(n+ f + 1)(

2n+ e+ f + 1
)
n!Ŵ(n+ e+ f + 1)

. (11)

A function f ∈ L2g[0, 1], with
∣∣f ′′(t)

∣∣ ≤ A, can be expanded
as follows:

f (t) = lim
n→∞

n∑

i=0

ciλ
(e,f )
i (t) , (12)
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where f (t) = 〈ci, λ
(e,f )
i (t)〉, and 〈., .〉 denotes the usual inner

product space.
Equation (12), for finite dimensional approximation, is

written as follows:

f ∼=
m∑

i=0

ciλ
(e,f )
i (t) = CTpm(t), (13)

where C and pm(t) are (m+ 1)× 1 matrices given by

C = [c0, c1, . . . ., cm]
Tand pm(t) = [λ

(e,f )
0 , λ

(e,f )
1 , . . . ., λ

(e,f )
m ]

T
. (14)

Theorem 1. If pn(t) = [λ
(e,f )
0 , λ

(e,f )
1 , . . . ., λ

(e,f )
n ]

T
be the shifted

Jacobi vector and if v > 0, then

Dvλ
(e,f )
i (t) = D(v)pn (t) , (15)

where D(v) =
(
q
(
i, j

))
is an (n+ 1)× (n+ 1) operational matrix

of non-integer derivative of order v, and its entries are given by

q
(
i, j, e, f

)
=

i∑

k=[v]

(−1)i−k Ŵ (i+ f + 1) Ŵ (i+ k+ e+ f + 1)(
i− k

)
! Ŵ (k+ f + 1) Ŵ (i+ e+ f + 1) Ŵ (k− v+ 1)

×
j∑

l=0

(−1)j−l Ŵ (e+ 1) Ŵ (j+ l+ e+ f + 1) Ŵ (k+ l− v+ f + 1)
(
2j+ e+ f + 1

)
j!(

j− l
)
!(l)! Ŵ (j+ e+ 1) Ŵ (l+ f + 1) Ŵ

(
k+ l− v+ e+ f + 2

) .

Proof. See Doha et al. [32], Ahmadian et al. [33], and

Bhrawy et al. [34].

OUTLINE OF THE METHOD

Here, we will describe the algorithm for the construction of
the solution for the fractional LE and DE using operational
matrix and colocation method [27–29]. Let us take the
following approximation:

v (t) =
n∑

i=0

ciλ
(e,f )
i (t) = CTpn(t). (16)

Then, by taking the derivative of order one on both sides of
Equation (16), we get

D′v (t) = CTD′pn(t) ∼= CTD(1)pn(t), (17)

where D(1) is the operational matrix of differentiations for the
Jacobi polynomials of order 1.

Next, by taking the derivatives of orders α and β on both sides
of Equation (16), we find that

Dαv (t) = CTDαpn(t) ∼= CTD(α)pn(t) (18)

Dβv (t) = CTDβpn(t) ∼= CTD(β)pn(t), (19)

where D(α) and D(β) are the operational matrices of
differentiations for the Jacobi polynomials of orders α and
β , respectively.

From Equations (16) and (17), we can write,

v (0) = CTpn(0), (20)

v′ (0) = CTD(1)pn(0), (21)

Fractional-Order LE
Grouping Equations (4) and (16)–(18), we get

CTD(α)pn(t)+ aCTD(1)pn(t)+ b(CTpn(t))
3

+ c(CTpn(t))
5 = 0. (22)

The residual for Equation (22) is given as follows:

Rn (t) = CTD(α)pn(t)+ aCTD(1)pn(t)+ b(CTpn(t))
3

+ c(CTpn(t))
5
. (23)

Now, colocating Equation (23) at n−1 points given by ti = i
n , i =

1, 2, . . . , n− 1, we find that

Rn (ti) = CTD(α)pn(ti)+ aCTD(1)pn(ti)

+ b(CTpn(ti))
3 + c(CTpn(ti))

5
. (24)

Further, from Equations (5), (20), and (21), we can write

CTpn(0) = ξ , CTD(1)pn(0) = η, (25)

where ξ and η are real constants.
Using the colocation points in Equation (24), together with

Equation (25), we get a system of non-linear algebraic equations
with the same number of unknowns. The solution of this system
leads the solution for FLE.

Fractional-Order DE
Grouping Equations (6), (16), (17), and (19), we get

CTD(β)pn (t) + aCTD(1)pn (t) + dCTpn(t)+ b(CTpn(t))
3 = 0. (26)

The residual for Equation (26) is given as follows:

Rn (t) = CTD(β)pn (t) + aCTD(1)pn (t) + dCTpn (t)

+ b(CTpn(t))
3
. (27)

Now, colocating Equation (27) at the n − 1 points given by
ti = i

n , i = 1, 2, . . . , n− 1, we get

Rn (ti) = CTD(β)pn (ti) + aCTD(1)pn (ti) + dCTpn (ti)

+ b(CTpn(ti))
3
. (28)
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Further, from Equations (7), (20), and (21), we can write

CTpn(0) = µ, CTD(1)pn(0) = σ , (29)

where µ and σ are real constants.
By using the colocation points in Equation (28), together

with the Equation (29), we get a system of equations with the
same number of unknowns. The solution of this system leads the
approximate solution for the FDE.

CONVERGENCE ANALYSIS

Theorem 4.1. Let the function v :[0, 1] → R, and v ∈ C(n+1)[0, 1]
and vn(t) be the nth approximation obtained by using Jacobi
polynomials, then

E
g
v, n = ||v− vn||L2g [0,1], (30)

and the error vector in Equation (30) tends to zero as n → ∞.
Proof: See Rivlin [35], Kreyszig [36], and Behroozifar and

Sazmand [37].
Theorem 4.2. If E

α, g
D, n be the error vector for α order

operational matrix integration, which is obtained using (n + 1)
Jacobi polynomials. Then

E
α, g
D, n = D(α)pn (t) − Dαpn (t) , (31)

and the error vector in Equation (31) tends to zero as n → ∞.
Proof: See Kazem [38].
Let Vn be the n-dimensional subspace generated by(

λ
(e,f )
i

)
0≤i≤n

for L2g[0, 1]. Let δn is the minimum value of

the functional on the space Vn. We can write

Vn ⊂ Vn+1 and δn+1 ≥ δn.

Theorem 4.3. Consider the functional L, then

lim
n→∞

δn (t) = δ (t) = inf
t∈[0,1]

L(t).

Proof: See Ezz-Eldien [39].
Functional for FLE is given as follows:

L (t) = Dαv(t)+ aD′v+ bv3 + cv5 = 0. (32)

Using Equations (16)–(18), we get

L(E) (t) = CTD(α)pn (t) + E
α, g
D, n + aCTD(1)pn (t) + aE

1, g
D, n

+ b(CTpn (t) + E
g
v, n)

3 + c(CTpn (t) + E
g
v, n)

5
. (33)

where

E
g
v, n = CTp (t) − CTpn(t), (34)

E
α, g
D, n = D(α)pn (t) − Dαpn (t) , (35)

E
1, g
D, n = D(1)pn (t) − D1pn (t) . (36)

Residual for Equation (33), is given as

R(E)n (t) = CTD(α)pn (t) + E
α, g
D, n + aCTD(1)pn (t) + aE

1, g
D, n

+ b(CTpn (t) + E
g
v, n)

3 + c(CTpn (t) + E
g
v, n)

5
. (37)

Now, similar as in Equation (23), colocating Equation (37), at
n− 1 points given by ti = i

n , i = 1, 2, . . . , n− 1, we get

R(E)n (ti) = 0. (38)

Using the colocation points in Equation (37), together with
Equation (25), we get a system of non-linear algebraic equations.
The solution of this system leads the solution for FLE. Let this
solution be denoted by δ∗n(t).

Using Theorems 4.1 and 4.2 and taking n → ∞,

δ∗n(t) → δn(t). (39)

From Theorem 4.3 and Equation (39), we achieve that

lim
n→∞

δ∗n(t) = δ(t).

Proof completed. Similar proof can be written for convergence
of DE.

NUMERICAL SIMULATION OF RESULTS

In this section, we implement our proposed algorithm by
testing it on some special cases of the LE and DE. We study
the applicability and accuracy of our proposed computational
method by applying it on the FLE and DE. The parameters in the
LE and DE are chosen in such a way for which the exact solution
is known.

Case 1. For the particular choices of the parameters a =
−1, b = 4 and c = 3 in Equation (4), the FLE is given as follows
(see Singh [18] and Tohidi et al. [20]):

Dαv (t) − D′v+ 4v3 + 3v5 = 0, 1 < α ≤ 2, (40)

v (0) = ξ =
√

τ

2+ δ
and v′ (0) = η = 0, (41)

where

τ = 4

√
3a2

3b2 − 16ac
and δ = −1+

√
3b√

(3b2 − 16ac)
. (42)

The exact solution for the FLE given by Equation (40), with
conditions in Equation (41), is given by

v (t) =

√
τ sech2

√
−at

2+ δ sech2
√
−at

, at α = 2, (43)

where τ and δ are as given in Equation (42).
In Figures 1, 2, we have shown the approximate solution for

different values of α for the FLE choosing different parameters
in the Jacobi polynomials. In Figure 3, we have compared
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FIGURE 1 | Numerical solutions at α = 1.76, 1.8, 1.86, 1.9, 1.96, and 2 for

case 1 at e = 1 and f = 1.

FIGURE 2 | Numerical solutions at α = 1.76, 1.8, 1.86, 1.9, 1.96, and 2 for

case 1 at e = 0.8 and f = 0.8.

FIGURE 3 | Comparison of solutions at e = f = 1 and α = 2.

TABLE 1 | Comparison with the exact solution at α = 2 and n = 3 for Liénard

equation.

t Exact solution Present method Absolute error

0.00 0.643594 0.643594 0

0.01 0.643556 0.643524 3.2164e-5

0.02 0.643443 0.643314 1.2861e-4

0.03 0.643255 0.642965 2.8931e-4

0.04 0.642991 0.642477 5.1429e-4

0.05 0.642653 0.641894 8.0360e-4

0.06 0.642239 0.641082 1.1573e-3

0.07 0.641751 0.640176 1.5757e-3

0.08 0.641189 0.639130 2.0589e-3

0.09 0.640553 0.637946 2.6073e-3

0.1 0.639844 0.636623 3.2210e-3

TABLE 2 | Comparison with the methods of Singh [18, 19] at α = 2 and n = 3 for

Liénard equation.

t Present method Method Singh [18] Method in Singh [19]

0.1 0.6366235 0.6366235 0.6366235

0.2 0.6157811 0.6157811 0.6157811

0.3 0.5811714 0.5811714 0.5811714

0.4 0.5328986 0.5328986 0.5328986

0.5 0.4710672 0.4710672 0.4710672

0.6 0.3957817 0.3957817 0.3957817

0.7 0.3071462 0.3071462 0.3071462

0.8 0.2052653 0.2052653 0.2052653

0.9 0.0902432 0.0902432 0.0902432

1 −0.0378154 −0.0378154 −0.0378154

approximate solution by our proposed method and solution
obtained by the methods of Singh [18, 19] for integer-order LE.

Figures 1, 2 show that the period will be really affected by
the non-integer-order values, and the solution varies continually
from non-integer-order solution to integer-order solution and
coincides with the integer-order solution at α = 2. The solution
has some different behavior when the value of fractional order is
1.76, and this is because the main solution behavior of LE takes
place when α is very close to 2. Figure 3 shows that solution has
exact the behavior as the methods of Singh [18, 19]. In Table 1,
we have listed approximate and exact solutions for the integer-
order equation. Table 1 shows a good accuracy of the achieved
solution. In Table 2, we have listed approximate solution by our
method and the methods of Singh [18, 19]. Table 2 shows good
agreement with these methods.

Case 2. For the particular choices of the parameters a =
0.5, b = 25, and c = 25 in Equation (6), the fractional
DE is given as follows [see Singh [18, 19] and Nourazar and
Mirzabeigy [40]]:

Dβv (t) + 0.5D′v+ 25v+ 25v3 = 0, 1 < β ≤ 2, (44)

v (0) = µ = 0.1 and v′ (0) = σ = 0, (45)
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FIGURE 4 | Numerical solutions at β = 1.76, 1.8, 1.86, 1.9, 1.96, and 2 for

case 2 at e = 1 and f = 1.

FIGURE 5 | Numerical solutions at β = 1.76, 1.8, 1.86, 1.9, 1.96, and 2 for

case 2 at e = 0.8 and f = 0.8.

The analytical solution using the differential transform method
(DTM) for fractional DE given by Equation (44), with the initial
conditions in Equation (45), is given by

v (t) = 0.1− 1.2625t2 + 0.2104t3 + 2.6828t4 − 0.5392t5

−2.6563t6 + 0.6152t7at α = 2. (46)

In Figures 4, 5, we have shown the behavior of the approximate
solution for different values of β for fractional DE for different
choices of the parameters in the Jacobi polynomials. In Figure 6,
we have compared approximate solution by our proposed
method and solution obtained by the methods of Singh [18, 19]
for integer-order DE.

Figures 4, 5 reveal that the solution varies continually from
the fractional-order solution to the integer-order solution and
coincides with the integer-order solution at β = 2. The solution

FIGURE 6 | Comparison of solutions at e = f = 1 and β = 2.

TABLE 3 | Comparison between results by our proposed method and DTM [40]

for fractional Duffing equation at β = 2 and n = 3 for case 2.

t Method in Nourazar

and Mirzabeigy [40]

Present method Absolute error

0.00 0.100000 0.100000 0.00000

0.01 0.099874 0.099874 7.0821e-7

0.02 0.099497 0.099502 5.4931e-6

0.03 0.098871 0.098889 1.7960e-5

0.04 0.098002 0.098041 4.1211e-5

0.05 0.096886 0.096964 7.7852e-5

0.06 0.095534 0.095664 1.3001e-4

0.07 0.093949 0.094148 1.9934e-4

0.08 0.092135 0.092422 2.8706e-4

0.09 0.090098 0.090492 3.9394e-4

0.1 0.087845 0.088366 5.2036e-4

has some different behavior when the value of fractional order is
1.76, and this is because the main solution behavior of DE takes
place when β is very close to 2. Figure 6 shows that solution has
the exact behavior as the methods of Singh [18, 19]. In Table 3,
we have listed the approximate and exact solutions by the DTM
method for the integer-order equation. Table 3 shows a good
accuracy of the achieved solution.

CONCLUSIONS

In this article, we have presented numerical solution and
simulation for fractional-order and integer-order LE and DE.
The proposed algorithm is easy to implement because the
construction of the operational matrix is sufficiently easy,
which makes our method remarkably attractive for practical
applications. In the numerical section, it is presented how the
approximate solution varies continuously for different values
of the fractional time derivatives and for the integer-order
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approximate solution is the same as the exact solution for the
fractional LE and DE. Recently, many equations in science
and engineering appear in the form of non-linear fractional
differential equations, which makes it necessary to investigate
the method of solution for such equations. The main advantage
of the proposed method is that it works for such type of
equations arising in science and engineering. In the future, we
can use operational matrices of different orthogonal polynomials
to achieve better accuracy.
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In this work, we derived a novel numerical scheme to find out the numerical solution of

fractional PDEs having Caputo-Fabrizio (C-F) fractional derivatives. We first find out the

formula of approximation for the C-F derivative of the function f (t) = tk. We approximate

the C-F derivative in time direction with the help of Legendre spectral method and

approximation formula of tk. The unknown function and their derivatives in spatial

direction are approximatedwith the help of themethodwhich is based on a quasi wavelet.

We implement this newly derived method to solve the non-linear Sharma-Tasso-Oliver

equation and non-linear Klein-Gordon equation in which time-fractional derivative is of

C-F type. The accuracy and validity of this new method are depicted by giving the

numerical solution of some numerical examples. The numerical results for the particular

cases of Klein-Gordon equation are compared with the existing exact solutions and

from the obtained error we can conclude that our proposed numerical method achieves

accurate results. The effect of time-fractional exponent α on the solution profile is

characterized by figures. The comparison of solution profile u(x, t) for different type

time-fractional derivative (C-F vs. Caputo) is depicted by figures.

Keywords: fractional PDE, Sharma-Tasso-Oliver equation, Klein-Gordon equation, Caputo-Fabrizio fractional

derivative, quasi wavelet, Legendre polynomial

1. INTRODUCTION

In the recent years fractional differential equations have received more attention of the researchers
due to its exact description of the physical phenomenon. Many physical phenomenons have been
described through fractional diffusion equation viz., transport in porous medium, ground water
contamination problem through porous medium etc. As we know as far as fractional calculus is a
classical branch of mathematics whose have history like as integer calculus [1]. Its progress is still
increasing with day to day. N. H. Abel and J. Liouville have developed the theory of this fractional
calculus. We can find wide details of fractional calculus in Kilbas et al. [2] and Podlubny [3]. We
are allowed to generalize integer integrals and derivatives to arbitrary and real order with the help
of fractional calculus. It is that branch of mathematical analysis that permit us to study operators
and equations having integral are singular and convolution type. Many application of this calculus
are found in special functions, control theory, computational complexity [4] and stochastic process.
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Fractional calculus was assumed to esoteric theory having no
applications but a lot of applications to finance, control system
and economics have been discovered in last few years.

In literature many types of differential operators have
discovered like as Grunwald-Letnikov, Hadamard, Caputo,
Riesz, Riemann-Liouville, Caputo-Fabrizio [5, 6] and Atangana-
Baleanu derivatives [7–9]. The variable form of above operators
have also been introduced. The application of fractional
differential equation is go on increasing so researchers started
to develop new methods to solve these differential equation
numerically as they have to face many problems solve these
equations analytically. The methods which are available in
literature are as predictor-corrector method [10], Adomain
decomposition method [11], homotopy perturbation method
[12], generalized block pulse operational matrix method
[13], eigen-vector expansion, Adams-Bashforth scheme [14],
and fractional differential transform method [15], etc. The
operational matrix method is easy and efficient method which
is so widely used now a days. This method based on some
polynomials and wavelets are available in literature. Haar
wavelets [16], Chebyshev wavelets [17], sine wavelets, Legendre
wavelets [18] is used to develop for the numerical solutions
of integral equations, integro-differential equations and FPDEs.
Some polynomials which can be utilized derive the operational
matrix are Laguerre polynomial [19], Chebyshev polynomial,
Legendre polynomial [20], and Genocchi polynomial [21] which
is semi-orthogonal.

The process of diffusion and reaction has been studied from
last some years. In the diffusion process the molecules or any
other quantity is transferred from the higher concentration
region to low concentration region. When the reaction process is
happened together with the process of diffusion then combined
process is called reaction-diffusion process. In the reaction
process more molecules is consumed or created and this term
mathematically denoted by adding a reaction term in classical
diffusion equation

∂̺

∂t
= D∇2̺ + R(̺, t), (1)

where first term on the right hand side presents diffusion process
with D diffusion coefficient while R(̺, t) characterize the reaction
term at space point ̺ and time t. We can extend this reaction
-diffusion equation to advection-reaction-diffusion equation
where advection term denotes the movement of particle or
molecules due to the bulk flow of fluid. Many beautiful an curious
phenomena in nature as chemistry, physics, biology, and medical
sciences could be depicted by reaction diffusion equation.

A heat transfer analysis in sodium alginate based nanofluid
using MoS2 nanoparticles is studied in article [22]. The behavior
of normal and tumor cells with the effect of radiotherapy in
fractional derivative environment is investigated in Farayola
et al. [23]. The De-Levie’s model is studied by researchers
in Abro et al. [24]. The investigation of heat dissipation in
transmission line of electrical circuit is given in Abro et al.
[25]. A analysis of generalized Jeffery nanofluid in a rotating
frame with non-singular fractional derivative is given in Ali

et al. [26]. The behavior of heat transfer in different model with
singular and non-singular is given in articles [27–31]. The study
of electro-osmotic flow of viscoelastic fluids with non-singular
Mittag-Leffler fractional derivative is given in Ali et al. [32].
The Drinfeld-Sokolov-Wilson model with exponential fractional
derivative is investigated in article [33]. An analysis of fractional
vibration equation with ABC fractional derivative is studied in
Kumar et al. [34]. The study of FDEs equations occurring in
ion acoustic waves in plasma is done in Goswami et al. [35].
The FDEs is very useful in biological model as SIRS-SI malaria
disease model with application of vaccines [36] and fractional
equal width equations describing hydro-magnetic waves in cold
plasma [37].

We organized our article as follows. The definition of R-
L, Caputo, and Caputo-Fabrizio is given in section 2. We also
discussed about quasi wavelet and quasi wavelet-based numerical
method. In section 3, we derived the general formula of C-
F derivative of the function xk. Some properties of Legendre
polynomial is also included in this section. In section 4, we
described the proposed method for solving FPDEs with C-F
derivative. In section 5, some numerical examples and results
are presents including the variation of different parameters. The
conclusion of all over the article is given in the last section.

2. PRELIMINARY DEFINITIONS

In the last few years, many definitions of fractional integration
and differentiation have come into the light. All of them have
own special properties and applications. Caputo’s definition is
more reliable as compare to Riemann-Liouville’s definition as
an application point of view. These definitions are with power
or singular kernel law. Nowadays many generalized definitions
of the fractional derivative with exponential and Mittag-Leffler
kernel law have been introduced. We discussed brief definitions
and properties of R-L, Caputo and recently developed Caputo-
Fabrizio derivative.

2.1. Riemann-Liouville Order Derivative
and Integration
The R-L integration of order ̺ > 0 of a function h(t) is given by

Iϑh(z) =
1

Ŵ(̺)

∫ z

0
(z−̟ )̺−1h(̟ )d̟ , z > 0, ϑ ∈ R+. (2)

Now Riemann-Liouville fractional order differentiation of a
function h(t) with order ϑ > 0 is defined as

Dϑl h(t) = (
d

dt
)m(Im−ϑh)(t), (m− 1 < ϑ < m, ϑ > 0). (3)

2.2. Definition of Caputo Derivative
The Caputo derivative of a function h(t) having order ϑ > 0 is
given as follows

Dϑc h(t) =

{
1

Ŵ(ϑ)

∫ t
0 (−η + t)−ϑ−1+lhl(η)dη l− 1 < ϑ < l,

dl

dtl
h(t) ϑ = l ∈ N.

(4)
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with l an integer and time interval t > 0.
Some important properties of Caputo differentiation are given

as follows

Dϑc C = 0, (5)

where C is a constant. The fractional differentiation operator Dϑc
follow the linear property so we have

Dϑc (c1h(t)+ c2g(t)) = c1D
ϑ
c h(t)+ c2D

ϑ
c g(t), (6)

where c1 and c2 denotes constants. We can relate the Caputo
differential operator and R-L operator as

(IϑDϑc g)(t) = g(t)−
l−1∑

k=0

gk(0+)
tk

k!
, l− 1 < ϑ ≤ l. (7)

2.3. Definition of Caputo-Fabrizio
Derivative [38, 39]
Consider a function g(t) which is a element of Sobolev space
H1(a, b), b > a then C-F derivative of order n < ϑ < n + 1
is given as [40]

CF
0 Dϑt g(t) =

B(ϑ)

⌈ϑ⌉ − ϑ

∫ t

0
exp

[−ϑ(x, t)
⌈ϑ⌉ − ϑ

(t − s)
]

×
∂n+1g(s)

∂tn+1
ds, n < ϑ ≤ n+ 1. (8)

Here B(ϑ) denotes the normalization function. In all our
calculations we have taken B(ϑ) = 1.

2.4. Definition of Caputo-Fabrizio Integral
The C-F integral of order n < ϑ < n + 1 associated with the
function g(t) is defined as follows

CF
0 Iϑt g(t) =

n∑

i=0

ti

i!
g(i)(0)+

(1− η)
B(η)(n− 1)!

∫ t

0
(t − s)n−1g(s)ds

+
η

M(η)n!

∫ t

0
(t − s)ng(u)du, (9)

where η denotes the fractional part of the order ϑ . If the fractional
part η = 0 then CF integral is given by

CF
0 Iϑx g(x) =

(1− η)
B(η)

g(x)+
η

M(η)

∫ t

0
g(u)du. (10)

2.5. Why We Are Using C-F Derivative?
The operators play an important role in science and the
interchange of these operators is an important property. Let us
consider two operators A and B we say these two commutes
if they follow the property AB = BA. Many operators
arising in physics, biology, statistics, and mathematics do not
follow the property of commutativity and are called non-
commutative operators. We give some examples of non-
commutative operators:

• Product of two matrices.

• Division operator on real numbers as 3
4 6= 4

3 .

• Linear operators like z and d
dz

do not follow the commutative
property on wave function9(y) in the case when we formulate
the Schrodinger equation in quantum mechanics.

• Lie bracket of Lie ring.
• Lie bracket of a Lie algebra.

The general form of fractional type derivatives in Caputo and
Riemann-Liouville form are defined as

RL
0 Dϑz g(z) =

d

dz

∫ z

0
κ(z − x)g(z)dz

d

dz
κ ∗ g,

C
0D

ϑ
z g(z) =

∫ z

0
κ(z − x)

d

dz
g(z)dz = κ ∗

d

dz
g.

In fractional calculus, many form of kernel is discovered as κ(z−
x) = 1

Ŵ(1−ϑ) (z−x)−ϑ and κ(z−x) = M(ϑ)
(1−ϑ) exp

(
−ϑ
1−ϑ (z−x)−ϑ

)
.

The kernel κ(z−x) = 1
Ŵ(1−ϑ) (z−x)−ϑ is known as power kernel

law which has been used in classical fractional calculus and the
kernel κ(z − x) = M(ϑ)

(1−ϑ) exp
(

−ϑ
1−ϑ (z − x)−ϑ

)
is exponential

kernel law which is newly discovered. The general derivatives
having exponential kernel known as Caputo-Fabrizio derivative.
In statistics, Pareto distribution which describes the fitting of the
shape of a large portion of wealth for a small portion of the
population and the wealth in our society has corresponded to
the power-law kernel. The negative exponential distribution is
mainly used in statistics as a probability distribution. This type
of distribution is used to characterize the time between events
between Poisson point distribution. The important property of
this distribution is that it depicts infinite divisibility and infinite
divisible distribution shows an important role in the context
of limit theorem and Levy process. This type of derivatives is
beneficial when the distribution of waiting time is not dependent
upon elapsed time [41]. Here we give some properties of
C-F derivative:

1. The mean square displacement associated with Caputo-
Fabrizio fraction derivative is a usual to sub-diffusion
crossover.

2. The Caputo-Fabrizio distribution follow the rule from
Gaussian to non-Gaussian crossover.

3. The asymptotic behavior of Caputo-Fabrizio satisfies the
power law behavior and connect the theory of fading memory
concept with kernels which are non-singular [42].

Nowadays the derivative with exponential kernel law has become
so popular and capture the attention of researchers. This
derivative has many applications which can be found in elasticity,
Keller Segel equation, flow of complex rheological medium and
flow of ground water in mass-spring damped system [43].

2.6. Approximation of Function by
Quasi-Wavelets
In literature there are many polynomial and wavelets which are
used to approximate an arbitrary function. But the procedure
based upon the quasi-wavelets is growing rapidly as spectral
collocation method which is local. It is very useful to solve
different type of space-time fractional FPDEs and partial integro-
differential equation of different order. We define a mathematical
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transformation known as the singular discrete convolution in
distribution theory

8(v) = (F ∗ s)(z) =
∫ ∞

−∞
F(−t + z)s(t)dt, (11)

where s(t) is called a test function and F is recognized as singular
kernel. We can find a family of wavelet by a function which
is known as mother wavelet ς using operations of dilation
and translation.

ςβ ,δ(z) = β
−1
2 ς

( z − δ
β

)
. (12)

The parameter δ represents the translation process while β
represents the process of dilation. An orthonormal wavelet base
generates any arbitrary subspace by using orthogonal scaling
functions. A Shannon’s delta sequence kernel is used in our work

which is defined as

δα(z) =
1

π

∫ π

0
cos(zy)dy =

sin(αz)

πz
, (13)

where limα→α0 δα(z) = δ(z). δ is discussed by Dirac and
so known as Dirac delta function. For a α > 0, Shannon’s
delta sequence kernel generates a basis for the Paley-Wiener
reproducing kernel Hilbert space B2

α[44] which is a subspace of
L2(R). We can reproduce the function g(z) ∈ B2

α as follows

g(z)=
∫ ∞

−∞
g(z)δα(z−t)dt=

∫ ∞

−∞
g(z)

sin((z − t)α)

(z − t)π
dt, ∀g(z) ∈ B2

α .

(14)
This sampling scaling function can be put in another form in
reproducing kernel of Paley-Wiener

δα,k = δα(z − zk) =
sin((z − zk)α)

(z − zk)π
, (15)

the points {xk} is known as collection of sampling points which
is placed around x. We can put all functions ∀g ∈ B2

α in discrete
form using Equations (11) and (12)

g(z) =
∞∑

k=−∞
g(zk)δα(z − zk). (16)

According to Shannnon sampling theorem the uniformly spatial
discrete samples for a given band-limited signal in B2γ can
depicted the sampling at the Nyquist frequency γ . We represent
1 by grid size in spatial direction and γ = π

1
. So

g(z) =
∞∑

k=−∞
g(zk)δα(z − zk) =

∞∑

k=−∞
g(zk)

sin(
π(z−zk)
1

)

π(z−zk)
1

(17)

A method for the improvement of Dirichlet’s delta kernel is given
byWan. If we introduce a regularizer Rσ (y) then we can increases
its regularity

δα(z) → δα,σ = δα(z)Rσ (z). (18)

here Rσ satisfies

lim
σ→∞

Rσ (z) = 1

and
∫ ∞

−∞
lim
σ→∞

Rσ (y)δα(y)dy = Rσ (0) = 1.

Many regularizers satisfies the two conditions which is given as
above. But Gaussian type regularizer is so commonly used

Rσ (z) = e
(−z2

2σ 2

)
, σ > 0, (19)

where σ represents the width parameter. The relation between1
and σ is σ = r ×1, where r is a computation parameter. We can
define regularized orthogonal sampling scaling function which
are Gaussian type as

δ1,σ (z) =
sin(πz

1
)

πz
1

exp
(−z2

2σ 2

)
. (20)

Here

lim
σ→∞

δ1,σ (x) =
sin(πx

1
)

πx
1

,

Gaussian regularized sampling scaling function has no property
of orthonormal wavelet scaling function so it is called a quasi
scaling function.

By using quasi scaling function, we can approximate a
function θ ∈ B2

α

θ(z) =
∞∑

k=−∞
θ(zk)δα(z− zk) =

∞∑

k=−∞
θ(zk)δα(z− zk)Rα(z− zk).

(21)
For computation purpose we have to take finite sampling
points as infinite sampling points is not possible in computer
computation.We choose 2W+1 sampling points in our work. All
sampling points are chosen close to x. We can rewrite Equation
(18) as

θ(z) =
W∑

k=−W

θ(zk)δ1,σ (z − zk), (22)

The nth order derivatives of a function θ(z)

θn(z) =
W∑

k=−W

θ(zk)δ
n
1,σ (z − zk), n = 1, 2, · · · . (23)

We have chosen the computational width equal to 2W + 1. We
present the description of formulas of δ1,σ , δ

1
1,σ and δ21,σ [45]

which are helpful in calculation as follows

δ1,σ (y) =





exp{− y2

2σ2
} sin( πy1 )

πy
1

, y 6= 0

1 y = 0.

(24)
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δ11,σ (y) =





(
− sin(

πy
1 )

πy2

1

− 1 sin(
πy
1 )

πσ2

1

+ cos(
πy
1 )

y

)

exp
(
− y2

2σ 2

)
y 6= 0,

0 y = 0.
(25)

δ21,σ (y) =





(21 sin
( yπ
1

)

πy3
−

2 cos
(πy
1

)

y2
+
1y sin

( yπ
1

)

πσ 4

+
1 sin

(πy
1

)

πσ 2y
−

2 cos
(πy
1

)

σ 2
−
π sin

( yπ
1

)

y1

)

exp
(
−

y2

2σ 2

)

y 6= 0,

0 y = 0.
(26)

3. APPROXIMATION OF
CAPUTO-FABRIZIO DERIVATIVE

In the following theorem, we will find out an approximate
expression of Caputo-Fabrizio derivative of the function f (t) = tk

Theorem 1: The C-F derivative of function f (t) = tk having
order n < α < n+ 1 with k ≥ ⌈α⌉ is given by

CF
0 Dαt t

k =
B(α)Ŵ(1+ k)

⌈α⌉ − α

( k−n−1∑

r=0

(−1)rtk−n−1−r

Ŵ(k− n− r)( −α
⌈α⌉−α )

r+1

+
(−1)k−n

( −α
⌈α⌉−α )

k−n
exp

( −α
⌈α⌉ − α

t
))
.

(27)

Proof: By the definition of CF derivative Dntk = 0, k =
0, 1, · · · , ⌈α⌉ − 1. Now for k ≥ ⌈α⌉ we have

CF
0 Dαt t

k =
B(α)

⌈α⌉ − α

∫ t

0
Dn+1sk exp

( −α
⌈α⌉ − α

(t − s)
)
ds

=
B(α)

⌈α⌉ − α

∫ t

0

Ŵ(k+ 1)

Ŵ(k− n)
sk−n−1 exp

( −α
⌈α⌉ − α

(t − s)
)
ds

=
B(α)

⌈α⌉ − α
Ŵ(k+ 1)

Ŵ(k− n)
exp

( −α
⌈α⌉ − α

t
)

∫ t

0
sk−n−1 exp

( α

⌈α⌉ − α
s
)
ds

=
B(α)

⌈α⌉ − α
×
Ŵ(k+ 1)

Ŵ(k− n)
exp

( −α
⌈α⌉ − α

t
)
×

[
exp

( α

⌈α⌉ − α
t
) k−n−1∑

r=0

(−1)r
Ŵ(k− n)tk−n−1−r

Ŵ(k− n− r)( α
1−α )

r+1

−
(−1)k−n−1Ŵ(k− n)

( α
1−α )

k−n

]

=
B(α)Ŵ(k+ 1)

⌈α⌉ − α

[ k−n−1∑

r=0

(−1)rtk−n−1−r

Ŵ(k− n− r)( α
1−α )

r+1

−
(−1)k−n−1

( α
1−α )

k−n
exp

( −α
⌈α⌉ − α

t
)]

.

3.1. Legendre Polynomials
Now we discussed here about Legendre polynomials and their
some properties. We shifted Legendre polynomials on the [0, 1]
from the interval [−1, 1] by the transformation z = 2x − 1.
The analytical form of these polynomials of degree i are given
as follows

ψi(x) =
i∑

k=0

(−1)i+k(i+ k)!

(k!)2(l− k)!
xk (28)

where i = 0, 1, · · · .
The Legendre polynomials follows the orthogonality property
with weight function 1 and orthogonality condition can be
described as

∫ 1

0
ψj(x)ψi(x) =

{
1

2i+1 , j = i,

0 j 6= i.
(29)

A function u(x) which belongs to the L2[0, 1] can be
approximated by a linear sum of shifted Legendre polynomials
as

u(x) = um(x) =
m∑

j=0

ajψi(x), (30)

where the linear coefficients are given by

aj = (2j+ 1)

∫ 1

0
u(x)ψj(x). (31)

Similarly, a function u(x, t) of two variable can be approximated
as

u(x, t) =
m−1∑

i=0

m−1∑

l=0

ailψi(x)ψl(t), (32)

where ail are unknown coefficient.

4. PROPOSED NEW METHOD

In this section, we develop a new algorithm with the
combination of Legendre spectral method and quasi wavelet
method and then apply it to derive the numerical solution of
C-F time fractional non-linear Sharma-Tasso-Oliver equation
and C-F time-fractional non-linear Klein-Gordon equation. We
approximate the C-F time fractional derivative by using Legendre
spectral method. On the other hand spatial derivatives and
unknown functions are approximated with the help of quasi
wavelet based numerical method. We have used fractional
derivative in our model as they are better than the integer ones.
The fractional differential equations are more comprehensive
and depict the memory effect of physical process as compare
to ordinary differential equation. Recent study shows that the
fractional model perfectly describe the test data of various

Frontiers in Physics | www.frontiersin.org 5 May 2020 | Volume 8 | Article 13627

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kumar and Baleanu Numerical Solution of Exponential Kernel FPDE

memory phenomena at different fields. Sharma-Tasso-Oliver C-F
fractional model is as follows

CF
0 Dαt u(t, x)+ 3µ

(∂u(x, t)
∂x

)2
+ 3µ(u(x, t))2

∂u(x, t)

∂x

+ 3µ(u(x, t))
∂2u(x, t)

∂x2
+ µ

∂2u(x, t)

∂x2
= f (x, t).

(33)

The prescribed initial and boundary conditions for this model are
taken as follows

u(0, x) = f1(x),

u(t, 0) = f2(t),

u(t, 1) = f3(t).

(34)

where 0 < α ≤ 1, 0 ≤ x ≤ 1, and 0 ≤ t ≤ 1.
The model of Klein-Gordon equation is

CF
0 Dαt u(t, x)+ a

∂u(x, t)

∂t
+ bu(x, t) =

∂2u(x, t)

∂x2

+ c(u)2 + d(u)3 + f (x, t),

(35)

where 1 < α ≤ 2, 0 ≤ x ≤ 1, and 0 ≤ t ≤ 1.
The initial and boundary conditions for above model are

u(0, x) = g1(x),

u(t, 0) = g2(t),

u(1, t) = g3(t),

∂u(x, 0)

∂t
= g4(x).

(36)

Now we develop the method with the help of Legendre spectral
and a method which is based on quasi wavelet to investigate the
models (34) and (36).
Approximating the unknown function in terms of shifted
Legendre polynomial

u(x, t) =
m−1∑

i=0

m−1∑

l=0

cilψi(x)ψl(t), (37)

where cil are unknown coefficients for i = 0, 2, · · · ; and l =
0, 1, 2, · · · .
Now operating the C-F time fractional operator and using
Equation (38) we get

CF
0 Dαt u(t, x) =

m−1∑

i=0

m−1∑

l=0

cilψi(x)
(
CF
0 Dαt ψl(t)

)
,

=
m−1∑

i=0

m−1∑

l=0

l∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x)

(
CF
0 Dαt t

k
)
,

=
m−1∑

i=0

m−1∑

l=0

l∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x),Πk,t,α ,

(38)

where

Πk,t,α =
B(α)Ŵ(1+ k)

⌈α⌉ − α

( k−n−1∑

r=0

(−1)rtk−n−1−r

Ŵ(k− n− r)(γ )r+1

+
(−1)k−n

(γ )k−n
e−γ t

)
(39)

with γ = α
⌈α⌉−α . Similarly, we can find the value of time

fractional derivative C
0D

α
t u(t, x) when its type is Caputo.

Differentiating Equation (38) with respect to t we get the
following

∂u(x, t)

∂t
=

m−1∑

i=0

m−1∑

l=0

cilψi(x)
(∂ψl(t)

∂t

)
,

=
m−1∑

i=0

m−1∑

l=0

l∑

k=0

cilkt
k−1(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x).

(40)

We have approximated derivative in the time direction with
the help of Legendre spectral method. To approximate
the unknown function u(x, t) and derivative in time
direction we take the help of quasi wavelet based numerical
method. We know a function and its all derivatives can be
approximated by

u(n)(x) =
W∑

k=−W

δn1,σ (x− xk)u(xk), n = 0, 1, · · · (41)

where the superscript (n) denotes the nth order derivative with
respect to x. At spatial point x = xj we can rewrite above equation
as

u(n)(xj, t) =
W∑

s=−W

δn1,σ (−s1x)u(xj+s), n = 0, 1, · · · (42)

where1x is the spatial step. Putting the value of u(x, t) and their
space and time derivatives in model (34) we get the following
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residual

ξ1(x, t) =
m−1∑

i=0

m−1∑

l=0

l∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x),Πk,t,α

+ 3µ
(m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ11,σ (x− xk)ψi(xk)ailψl(t)
)2

+ 3µ
(m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)
)2

×
(m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ11,σ (x− xk)ψi(xk)ailψl(t)
)

+ 3µ
(m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)
)

×
(m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ21,σ (x− xk)ψi(xk)ailψl(t)
)

+ µ
(m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ21,σ (x− xk)ψi(xk)ailψl(t)
)
− f (x, t)

(43)

The initial and boundary conditions takes the following form in
view of Equation (33)

m−1∑

i=0

m−1∑

l=0

ailψi(x)ψl(0) = f1(x),

m−1∑

i=0

m−1∑

l=0

ailψi(0)ψl(t) = f2(t),

m−1∑

i=0

m−1∑

l=0

ailψi(1)ψl(t) = f3(t).

(44)

Similarly the residual of model (36) with initial and boundary
conditions (37) is given by

ξ2(x, t) =
m−1∑

i=0

m−1∑

l=0

l∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x),Πk,t,α

+ a

m−1∑

i=0

m−1∑

l=0

l∑

k=0

cilkt
k−1(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x)

+ b

m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)

−
m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ21,σ (x− xk)ψi(xk)ailψl(t)

− c
(m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)
)2

− d
(m−1∑

i=0

m−1∑

l=0

W∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)
)3

− f (x, t).

(45)

m−1∑

i=0

m−1∑

l=0

ailψi(x)ψl(0) = g1(x)

m−1∑

i=0

m−1∑

l=0

ailψi(0)ψl(t) = g2(t),

m−1∑

i=0

m−1∑

l=0

ailψi(1)ψl(t) = g3(t),

m−1∑

i=0

m−1∑

l=0

ailψi(x)
∂ψl(0)

∂t
= g4(x).

(46)

Now collocating Equations (44) and (45) at suitable collocation
points (xj, tj) and in Equation (44) considering the discrete
sampling points xk = xj equal to the collocation points and
using Equation (43) an non-linear system of algebraic equations
is obtained.

ξ1(xj, tj) =
m−1∑

i=0

m−1∑

l=0

l∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(xj),Πk,tj ,α

+ 3µ
(m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ11,σ (−s1x)ψi(xj+s)ailψl(tj)
)2

+ 3µ
(m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)
)2

×
(m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ11,σ (−s1x)ψi(xj+s)ailψl(tj)
)

+ 3µ
(m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)
)

×
(m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ21,σ (−s1x)ψi(xj+s)ailψl(tj)
)

+ µ
(m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ21,σ (−s1x)ψi(xj+s)ailψl(tj)
)
− f (x, t).

(47)

Similarly collocating Equations (46) and (47) we get the following
system of non-linear algebraic equation

ξ2(xj, tj) =
m−1∑

i=0

m−1∑

l=0

l∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(xj),Πk,tj ,α

+ a

m−1∑

i=0

m−1∑

l=0

l∑

k=0

cilkt
k−1(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x)

+ b

m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)

−
m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ21,σ (−s1x)ψi(xj+s)ailψl(tj)

− c
(m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)
)2

− d
(m−1∑

i=0

m−1∑

l=0

W∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)
)3

− f (x, t).

(48)

Frontiers in Physics | www.frontiersin.org 7 May 2020 | Volume 8 | Article 13629

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kumar and Baleanu Numerical Solution of Exponential Kernel FPDE

FIGURE 1 | 3D-plot of absolute error for m = 10.

By Solving that system of non-linear algebraic Equations
(48) and (49) in the addition of Equations (35) and (37),
respectively and finding aij we obtained numerical solution of our
proposed models.

5. NUMERICAL RESULTS

Our motive in this section is to depict accuracy and the validity
of our new derived method by solving some examples which have
C − F time fractional derivative. We perform all our numerical
simulations with the help of WolframMathematica version-11.3.
Example 1: If we consider the following Sharma-Tasso-Oliver
equation with µ = 1 and α = 0.9

CF
0 Dαt u(t, x)+ 3

(∂u(x, t)
∂x

)2
+ 3(u(x, t))2

∂u(x, t)

∂x

+ 3(u(x, t))
∂2u(x, t)

∂x2
+
∂2u(x, t)

∂x2
= f (x, t).

(49)

The initial and boundary conditions are considered as

u(t, 0) = 0, u(t, 1) = t, u(0, x) = 0. (50)

We take exact solution as u(x, t) = x2t with suitable force
function f (x, t). the exact analytical solution of above problem is
u(x, t) = x2t.
To show the accuracy and validity of our proposed method we
draw the 3D graph of absolute error between exact and numerical
solution form = 10 represented by Figure 1. The representation
of absolute error for various m at time t = 0.1 is shown by
Table 1.

Figures 2, 3 shows the variation of u(x, t) at different value of
α in t and x direction, respectively. We can conclude that at a
fixed space point value of u(x, t) increases with in increment in
α. Same nature can be found at a fixed time but this time rate of
growth of u(x, t) is very slow. We compare the values of u(x, t) in
Figures 4, 5 when time fractional derivative is Caputo-Fabrizio
and Caputo type in space and time direction, respectively.

TABLE 1 | Deviation of absolute error at time t = 0.1.

x ↓ m = 4 m = 10

1
9 8.1× 10−4 2.7× 10−13

2
9 1.4× 10−3 4.8× 10−13

3
9 1.9× 10−3 6.4× 10−13

4
9 2.2× 10−3 7.1× 10−13

5
9 2.3× 10−3 7.3× 10−13

6
9 2.1× 10−3 7.2× 10−13

7
9 1.7× 10−3 6.4× 10−13

8
9 1× 10−3 5.6× 10−13

FIGURE 2 | Plots of u at space position x = 0.1 for m = 4 at different value

of α.

FIGURE 3 | Plots of u at time t = 0.1 for m = 4 at different value of α.

Example 2: Considering C-F time fractional reaction-
diffusion equation

CF
0 D0.9

t u(x, t) =
∂2u(x, t)

∂x2
+ cu2(x, t)+ f (x, t). (51)

We take the following equations as initial-boundary conditions

u(0, x) = x2, u(t, 0) = 0, u(t, 1) = et . (52)
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FIGURE 4 | Variation of u for α = 0.9, m = 4, and t = 0.1 in case when

time-fractional derivative is of Caputo Fabrizio and Caputo type.

FIGURE 5 | Variation of u for α = 0.9, m = 4, and t = 0.1 in case when

time-fractional derivative is of Caputo Fabrizio and Caputo type.

FIGURE 6 | 3D-plot of absolute error for m = 10.

We take u(x, t) = x2et as the exact solution where f (x, t) is
suitable force function.
To show the accuracy and validity of our proposed method we
draw the 3D graph of absolute error between exact and numerical

TABLE 2 | Deviation of absolute error at time t = 0.1.

x ↓ m = 4 m = 10

1
9 6.9× 10−4 1.5× 10−12

2
9 1.1× 10−3 2.5× 10−12

3
9 1.4× 10−3 2.9× 10−12

4
9 1.5× 10−3 2.0× 10−12

5
9 1.5× 10−3 2.5× 10−12

6
9 1.4× 10−3 1.7× 10−13

7
9 1.1× 10−3 7.2× 10−13

8
9 4.8× 10−3 7.0× 10−13

FIGURE 7 | 3D-plot of absolute error for m = 10.

solution for m = 10 which is depict by Figure 6. Table 2 present
the variations of absolute error for different value ofm.

Example 3: Considering d = 0, a = 1, b = 1, c = 1, and
α = 1.5 we get the following C-F time fractional Klein-Gordon
equation

CF
0 Dαt u(t, x)+

∂u(x, t)

∂t
+ u(t, x) =

∂2u(t, x)

∂x2
+ (u)2 + f (t, x).

(53)

The initial and boundary conditions are taken as follows

u(x, 0) = 0,

u(0, t) = 0,

u(1, t) = t2,

∂u(x, 0)

∂t
= 0.

(54)

The exact solution is taken as u(x, t) = t2x2 with force function
f (x, t).
To show the accuracy and validity of our proposed method
we draw the 3D graph of absolute error between exact and
numerical solution for m = 10 which is depict by Figure 7.
The representation of absolute error at t = 0.1 is shown by
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TABLE 3 | Deviation of absolute error for different m at time t = 0.1.

x ↓ m = 4 m = 10

1
9 1.0× 10−4 3.6× 10−14

2
9 1.7× 10−4 4.4× 10−14

3
9 2.2× 10−4 4.9× 10−14

4
9 2.5× 10−4 6.0× 10−14

5
9 2.5× 10−4 7.1× 10−14

6
9 2.2× 10−4 8.1× 10−14

7
9 1.7× 10−4 9.6× 10−13

8
9 1.0× 10−4 1.0× 10−13

FIGURE 8 | 3D-plot of absolute error for m = 10.

Table 3. Our results clearly shown the complete agreement of
obtained results.

Example 4: Considering a = 1, b = 1 and c = 1, d = 1
α = 1.5 we get the following non-linear C-F time fractional
Klein-Gordon equation

CF
0 Dαt u(t, x)+

∂u(x, t)

∂t
+ u(x, t)=

∂2u(x, t)

∂x2
+ (u)2 + u3 + f (x, t),

(55)

The Equation (55) with the initial-boundary conditions

u(0, t) = 0,

u(1, t) = et + t,

∂u(x, 0)

∂t
= x2 + x,

u(x, 0) = x2.

(56)

We chose forced function f (x, t) such that the exact solution of
above problem is u(x, t) = etx2 + xt.
Figure 8 represents the absolute error for this problem between
exact and numerical solution. We have takenm = 10 at the time
of plotting the absolute error graph. The variation of absolute
error for various m at time t = 0.1 is depicted by Table 4. We

TABLE 4 | Deviation of absolute error at time t = 0.1.

x ↓ m = 4 m = 10

1
9 1.5× 10−3 1.2× 10−12

2
9 2.7× 10−3 2.5× 10−12

3
9 3.6× 10−3 3.4× 10−12

4
9 4.0× 10−3 3.5× 10−12

5
9 4.1× 10−3 3.1× 10−12

6
9 3.8× 10−3 2.4× 10−12

7
9 3.1× 10−3 1.1× 10−12

8
9 2.0× 10−3 1.0× 10−13

FIGURE 9 | Variation of u with m = 10 and t = 0.1 at different value of α.

FIGURE 10 | Variation of u withm = 10 and x = 0.1 at different value of α.

have plotted the Figures 9, 10 of u(x, t) for α = 1.7, α = 1.8 and
α = 1.9 at fixed t and x, respectively. We can conclude that at a
fixed space point value of u(x, t) increases with in increment in
α. Same nature can be found at a fixed time but this time, rate of
growth of u(x, t) is slow and increases as time increases to t = 1.

6. CONCLUSION

In this work, first, we find out the approximate expression of
C-F fractional derivative of the function tk. We developed a
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new numerical algorithm with the combination of the Legendre
spectral method and quasi wavelet-based numerical method to
solve fractional PDEs having a C-F fractional derivative. We
implement this new algorithm to solve the C-F time-fractional
Sharma-Tasso-Oliver equation and Klein-Gordon equation. We
have shown the successful implementation of this method to
solve the C-F time-fractional FPDEs. This implies that our
proposed method has reasonable accuracy and valid different
type of FPDEs. The 3D graphs of absolute error depicted the
validity and effectiveness of our proposed method. The behavior
of u(x, t) in the diffusion equation with the variation in α at
space and time direction is also shown by figures. We see the

comparative behavior of the solution profile for C-F and Caputo
derivatives. In future work, our new algorithm can be applied

to another type of non-singular fractional models as Mittag-
Leffler kernel derivative. It can also be applied to the system of
a fractional differential equations and to investigate a different
types of models.
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Finding exact analytic solutions to the partial equations is one of the most challenging

problems in mathematical physics. Generally speaking, the exact solution to many

categories of such equations can not be found. In these cases, the use of numerical

and approximate methods is inevitable. Nevertheless, the exact PDE solver methods

are always preferred because they present the solution directly without any restrictions

to use. This article aims to examine the perturbed Gerdjikov-Ivanov equation in an

exact approach point of view. This equation plays a significant role in non-linear fiber

optics. It also has many important applications in photonic crystal fibers. To this end,

firstly, we obtain some novel optical solutions of the equation via a newly proposed

analytical method called generalized exponential rational function method. In order to

understand the dynamic behavior of these solutions, several graphs are plotted. To the

best of our knowledge, these two techniques have never been tested for the equation

in the literature. The findings of this article may have a high significance application while

handling the other non-linear PDEs.

Keywords: PDEs, generalized exponential rational function method, non-linear Schrödinger equation, exact

solutions, the perturbed Gerdjikov-Ivanov equation

1. INTRODUCTION

Non-linear Schrödinger equations (NLSE) are often studied from different points of view. In recent
years a great variety of analytical and numerical methods have been proposed for solving these
equations [1–4]. The most studied NLSE equation is that which has a cubic non-linearity. In the
present paper, we will explore an NLSE that has a quintic non-linearity, namely the perturbed
Gerdjikov-Ivanov (pGI) equation.

The main achievement of this research is to utilize a new method to derive some novel solutions
to a variant form of NLSE. In particular, we consider the pGI equation is given by [5–11]

i
∂q

∂t
+ a

∂2q

∂x2
+ b|q|4q = i

[
cq2

∂q

∂x
+ λ1

∂q

∂x
+ λ2

∂
(
|q|2q

)

∂x
+ θ

∂|q|2

∂x
q

]
, (1)

provided that q(x, t) indicates the macroscopic complex-valued wave profile of temporal and
spatial independent variables of t and x, respectively. In this equation, ∂q/∂t is linear temporal
evolution, ∂2q/∂x2 stands for the group velocity dispersion (GVD), and |q|4q is the present
quintic non-linearity of the model. The parameters a, b are the coefficients of these quantities,
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respectively. Moreover c is the non-linear dispersion coefficient.
Finally, the constants λ1, λ2, and θ are known parameters related
to perturbative effects. More information on this model can be
found in the references as mentioned earlier.

In recent years, because of its high importance, the model
has attracted the attention of many researchers. For instance,
Biswas and Alqahtani [6] have presented two varieties of bright
soliton solutions by the use of the semi-inverse variational
principle. The sine-Gordon equation approach has been used
to extract the dark, bright, dark-bright, singular, and combined
singular optical solitons of the equation in Yaşar et al. [7].
Biswas et al. [8] have retrieved some bright and singular optical
soliton solutions to the pGI equation by the implementation of
the extended trial equation method. The exp(φ(ξ ))-Expansion
and the Kudryashov methods are two reliable techniques that
have been used in Arshed [9] to investigate some solitary wave
solutions of the equation. In Kaur and Wazwaz [10], several
hyperbolic, trigonometric or rational function solutions have
been proposed using two efficient techniques, namely exp(φ(ξ ))-

Expansion and G′

G2 -expansion methods. Very recently, Hosseini
et al. [11] have listed several Kink, bright, and dark optical
solitons of the model by the aid of the expa-function method and
a new version of the Kudryashov method.

In light of previous work, we will apply the generalized
exponential rational function method (GERFM) to retrieve some
new analytical optical solutions of the fractional pGI equation
with the conformable derivative [12]. This new definition of
derivative is based on the basic limit definition of the derivative
that has been successfully tackled in solving many different
problems [13–22]. The main structure of the present article is as
outlined. In the second section of this paper, some mathematical
preliminaries have been reviewed. This section includes the
necessary steps of applyingGERFM, and the definition and basic
properties of the conformable derivative will be presented. The
main results of this article are achieved by following these steps
in section 3 of this contribution. In section 4, we have performed
some numerical simulations of the obtained results. These graphs
can help us in better understanding of their dynamic properties.
Finally, the article concludes with some conclusions.

2. MATHEMATICAL PRELIMINARIES AND
BACKGROUNDS

This section first deals with the structure of the GERFM. Then
in the next subsection, the basic concepts of the conformable
derivative are expressed.

2.1. Analysis of GERFM
GERFM is a newly developed method introduced by Ghanbari
and Inc [23] to solve the resonance non-linear Schrödinger
equation [23]. Other successful applications of the technique
in solving different types of PDEs have also been reported in
references [24–27].

We will review how to use the method below.

1. Let us consider a typical non-linear PDE for q = q(x, t),
giving by

N (q, qx, qt , qxx, . . .) = 0. (2)

Under the wave transformations of q(x, t) = Q(ξ ) and ξ =
σx−lt, Equation (2) becomes an ordinary differential equation
given by:

N (Q, σQ′,−lQ′, σ 2Q′′, . . .) = 0. (3)

2. Now, we assume that Equation (3) admits the exact solution
giving by

Q(ξ ) = A0 +
N∑

k=1

Ak8(ξ )k +
N∑

k=1

Bk8(ξ )−k, (4)

where

8(ξ ) =
m1e

n1ξ +m2e
n2ξ

m3en3ξ +m4en4ξ
. (5)

and mi, ni’s and A0,Ak, and Bk’s are disposal parameters.
Finally, N is a constant, which is evaluated by applying the
homogeneous balance to Equation (3).

3. Inserting Equation (4) into (3) with Equation (5), and then
gathering all possible powers of Ei = eniξ for i = 1, . . . , 4,
forms a polynomial equation as P(E1, E2, E3, E4) = 0. Equating
coefficients of P to zero, one derives a simultaneous system of
equations regarding mi, ni(1 ≤ i ≤ 4), and σ , l,A0,Ak and
Bk(1 ≤ k ≤ N).

4. Finally, solving the non-linear system and substituting the
obtained solutions in Equations (4) and (5), the explicit form
of the solutions of (2) will be extracted.

2.2. The Conformable Derivative
Definition: Let q :R+ → R, then the conformable derivative of
q of order α, is giving by [12]

D
α
t (q)(t) = lim

η→0

q(t + ηt1−α)− q(t)

η
, α ∈ (0, 1]. (6)

Theorem: For any α ∈ (0, 1], and two α-differentiable functions
p, q, the following propositions hold
• Dα

t (c1p+ c2q) = c1D
α
t (p)+ c2D

α
t (q), for c1, c2 ∈ R.

• Dα
t (t

c) = ctc−α , for c ∈ R.
• Dα

t (pq) = pDα
t (q)+ qDα

t (p).

• Dα
t (

p
q ) =

qDα
t (p)−pDα

t (q)

q2
.

• If q is a differentiable function (in standard sense), thereupon

Dα
t (q)(t) = t1−α dq

dt
holds.

Theorem [14]: Let p :(0, 1] → R be a function such that p is
classical, and α-conformable differentiable. Moreover, consider
q as a differentiable function defined in the range of p. Thus,
we have

Dα
t (poq)(t) = t1−αq′(t)p′(q(t)),

where prime stands for standard derivatives respect to t.
Some of the benefits of the conformable derivative compared

to other new definitions for the derivative are as follows:
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• According to this definition of the operator, the derivative of a
constant function is zero. This feature is not available in many
other definitions.

• Unlike many existing definitions, this definition satisfies the
known formula of the derivative of the product of two
functions.

• The conformable derivative does satisfy the known
formula of the derivative of the quotient of
two functions.

• The conformable derivative does satisfy the well-known
chain rule.

• The conformable derivative satisfies the well-known semi
group property.

The mentioned properties are very important and valuable
features for any derivative definition that the conformable
derivative has all of them.

3. MATHEMATICAL ANALYSIS

The main contribution in this paper is to consider the derivatives
in the Equation (1) with the conformable derivative defined by
(6), as follows

iDα
t q + aD2α

x q+ b|q|4q = i
[
cq2Dα

x q+ λ1D
α
x q

+ λ2D
α
x

(
|q|2q

)
+ θDα

x |q|
2q
]
. (7)

The main assumption is to taking the stationary soliton solution
form of

q (x, t) = Q(ξ )eiφ(x,t), ξ =
(
1

α

)
xα −

( ν

α

)
tα ,

φ =
(
−k

α

)
xα +

(ω

α

)
tα , (8)

FIGURE 1 | Dynamic behaviors of q1(x, t) for a = 0.2,b = −0.5, c = 0.5, λ1 = 3, λ2 = 3,α = 0.97. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of imaginary part. (D) Density plot of imaginary part.
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where ν, k, and ω are the phase component, the frequency of
solitons, and the wavenumber, respectively.

Substituting the stationary soliton solution form (8) into
Equation (7), we arrive at a complex equation whose real part is
as follows

(
ν + λ1 + 2ak

)
+ (c+ 3λ2 + 2θ)Q2 = 0. (9)

So, we will have

ν = −λ1 − 2ak, θ = −
1

2
(c+ 3λ2) . (10)

From the real part, the following formula is also extracted

aQ′′ −
(
ω + ak2 + λ1k

)
Q+ (c− λ2) kQ

3 + bQ5 = 0. (11)

Thus, in the following, we focus our attention on deriving
solutions of Equation (11). Now balancing between two terms

of Q5 and Q′′ in Equation (11) suggests N = 1
2 . If we want to

get a closed-form solution, we need to define a new variable of
Q(ξ ) = R2(ξ ). This substitution leads us to

a
(
2RR

′′ − (R′)2
)
− 4

(
ω + ak2 + λ1k

)
R

2

+4 (c− λ2) kR
3 + 4bR4 = 0. (12)

Now, the homogeneous balance in Equation (12) suggestsN = 1.
Setting N = 1 along with Equation (4), one gets

R(ξ ) = A0 +A18(ξ )+
B1

8(ξ )
. (13)

Inserting (13) into (12) and pursuing the steps outlined for the
method, the analytical solutions for the Equation (7) will be
determined consequently.

FIGURE 2 | Dynamic behaviors of q2(x, t) for a = −4,b = 2, c = 2, λ1 = 0.1, λ2 = 0.1,α = 0.95. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of imaginary part. (D) Density plot of imaginary part.
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Category 1: It is attained m = [1, 1,−1, 1] and n =
[1,−1, 1,−1], which offers

8(ξ) = −
cosh (ξ)

sinh (ξ)
. (14)

Case 1:

k =
−4

√
−3ab

3 (c− λ1)
,

w =
√
−3a

b

−16ab
√
−3ab− 3

(√
−3ab (λ2 − c) + 4λ1b

)
(λ2 − c)

9 (λ2 − c)2
,

A0 =
1

2

√
−3a

b
,A1 = 0,B1 =

−1

2

√
−3a

b
.

Inserting these values in Equation (13), yields

R (ξ) =
√
−3a

b

1− coth (ξ)

2coth (ξ)
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

q1 (x, t) =

(√
−3a

b

1− coth (ξ)

2coth (ξ)

)1/2

× e
i
((

−k
α

)
xα+( ω

α )tα
)

,

(15)
provided that ab < 0, and

ξ =
8a
√
3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Case 2:

k =
8
√
−3ab

3 (c− λ1)
,

w =
−64

3

√
−a

b

ab
√
−ab+ 3/16

(√
−ab (λ2 − c) − 2/3λ1b

√
3
)

(λ2 − c)

(λ2 − c)2
,

A0 = −
√
−3a

b
,A1 = −

√
−3a

b
,B1 =

−1

2

√
−3a

b
.

FIGURE 3 | Dynamic behaviors of q3(x, t) for a = 1,b = −3, c = 0.5, λ1 = 1, λ2 = 4,α = 0.9. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D plot

of the imaginary part. (D) Density plot of the imaginary part.
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Inserting these values in Equation (13), yields

R (ξ) =
√
−3a

b

(
coth (ξ) + 1

)2

2coth (ξ)
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

q2 (x, t) =

(√
−3a

b

(
coth (ξ) + 1

)2

2coth (ξ)

)1/2

×e
i
((

−k
α

)
xα+( ω

α )tα
)

,

(16)
provided that ab < 0, and

ξ =
−16a

√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Category 2: It is attainedm = [2, 0, 1,−1] and n = [1, 0, 1,−1],
which offers

8(ξ) =
cosh (ξ) + sinh (ξ)

sinh (ξ)
. (17)

Case 1:

k =
−2

√
−3ab

3 (c− λ1)
,

w =
−8λ1

√
−3ab (λ2 − c) + 3

(
λ22 − 2λ2c+ 16/3ab+ c2

)
a

12 (λ2 − c)2
,

A0 =
1

2

√
−3a

b
,A1 =

1

2

√
−3a

b
,B1 = 0.

FIGURE 4 | Dynamic behaviors of q4(x, t) for a = 1.5,b = −2.5, c = 1, λ1 = 7, λ2 = 2,α = 0.9. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D plot

of the imaginary part. (D) Density plot of the imaginary part.
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Inserting these values in Equation (13), yields

R (ξ) =
√
−3a

b

eξ

2
(
1+ eξ

) .

Accordingly, we derive a soliton solution of given PDE in
(7) as

q3 (x, t) =

(√
−3a

b

eξ

2
(
1+ eξ

)
)1/2

× e
i
((

−k
α

)
xα+( ω

α )tα
)

,

(18)
provided that ab < 0, and

ξ =
−8a

√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Case 2:

k =
−2

√
−3ab

3 (c− λ1)
,

w =
√
−3a

b

−16ab
√
−3ab− 3

(√
−3ab (λ2 − c) + 4λ1b

)
(λ2 − c)

9 (λ2 − c)2
,

A0 = 0,A1 =
1

2

√
−3a

b
,B1 = 0.

Inserting these values in Equation (13), yields

R (ξ) =
√
−3a

b

cosh (ξ) + sinh (ξ)

2 sinh (ξ)

Accordingly, we derive a soliton solution of given PDE in
(7) as

q4 (x, t) =

(√
−3a

b

cosh (ξ) + sinh (ξ)

2 sinh (ξ)

)1/2

× e
i
((

−k
α

)
xα+( ω

α )tα
)

,

(19)

FIGURE 5 | Dynamic behaviors of q5(x, t) for a = 0.2,b = −2, c = 0.5, λ1 = 2, λ2 = 2,α = 0.99. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of the imaginary part. (D) Density plot of the imaginary part.
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provided that ab < 0, and

ξ =
8a
√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Category 3: It is attained m = [3, 2, 1, 1] and n = [1, 0, 1, 0],
which offers

8(ξ) =
3eξ + 2

eξ + 1
. (20)

Case 1:

k =
−2

√
−3ab

3 (c− λ1)
,

w =
√
−a

b

−4ab
√
−ab− 3/4

(√
−ab (λ2 − c) + 8

√
3/3λ1b

)
(λ2 − c)

3 (λ2 − c)2
,

A0 =
3

2

√
−3a

b
,A1 = 0,B1 = −3

√
−3a

b
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

R (ξ) =
3

2

√
−3a

b

eξ

3eξ + 2
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

q5 (x, t) =

(
3

2

√
−3a

b

eξ

3eξ + 2

)1/2

× e
i
((

−k
α

)
xα+( ω

α )tα
)

,

(21)
provided that ab < 0, and

ξ =
4a
√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Case 2:

k =
−10

√
−3ab

3 (c− λ1)
,

w = −
100

3 (λ2 − c)2

√
−a

b

(
ab
√
−ab

+
3λ2 − 3c

400

(√
−ab (λ2 − c) +

40λ1b
√
3

3

))
,

A0 =
5

2

√
−3a

b
,A1 = −

1

2

√
−3a

b
,B1 = −3

√
−3a

b
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

R (ξ) =
√
−3a

b

eξ

6e2ξ + 10eξ + 4
.

FIGURE 6 | Dynamic behaviors of q6(x, t) for a = 1.5,b = −5, c = 65, λ1 = 0.3, λ2 = 0.7,α = 0.9. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of the imaginary part. (D) Density plot of the imaginary part.
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Accordingly, we derive a soliton solution of given PDE in
(7) as

q6 (x, t) =

(√
−3a

b

eξ

6e2ξ + 10eξ + 4

)1/2

×e
i
((

−k
α

)
xα+( ω

α )tα
)

,

(22)
provided that ab < 0, and

ξ =
20a

√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Category 4: It is attained m = [−1, 0, 1, 0] and n = [0, 1, 0, 1],
which offers

8(ξ) = −
1

eξ + 1
. (23)

Case 1:

k =
2
√
−3ab

3 (c− λ1)
,

w =
−8

√
−3ab (c− λ2) λ1 + 16a2b+ 3ac2 − 6acλ2 + 3aλ2

2

12 (c− λ2)
2

,

A0 = 0,A1 =
1

2

√
−3a

b
,B1 = 0.

Inserting these values in Equation (13), yields

R (ξ) = −
√
−3a

b

1(
2+ eξ

) .

Accordingly, we derive a soliton solution of given PDE in
(7) as

q7 (x, t) =

(
−
√
−3a

b

1(
2+ eξ

)
)1/2

× e
i
((

−k
α

)
xα+( ω

α )tα
)

,

(24)

FIGURE 7 | Dynamic behaviors of q7(x, t) for a = −2,b = 3, c = 3.5, λ1 = 2, λ2 = 0.5,α = 0.95. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of the imaginary part. (D) Density plot of the imaginary part.
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provided that ab < 0, and

ξ =
−4a

√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Comparing our acquired solutions with other existing reported
in the literature shows that ours are different and new. All the
acquired solutions are new and have not been reported in the
previous papers. Particularly, since the form of the equation
and derivative considered in this article are the same as those
given in reference [7], we can check that the results and the
requirements for their existence in the two papers are quite
different. Furthermore, we have checked the correctness of all
obtained solutions, and found they satisfy the original equation.

4. NUMERICAL SIMULATIONS

In this section, we have presented several numerical simulations
using the algorithm proposed in subsection 2.1. To illustrate the
dynamic behaviors of the analytical results obtained in section
3, Figures 1–7 have been depicted. Figure 1 shows the dynamic
behavior of the solution q1(x, t) defined in (15) for a = 0.2, b =
−0.5, c = 0.5, λ1 = 3, λ2 = 3,α = 0.97. The solution attributes
of q2(x, t) presented in (16), are displayed in the Figure 2, where
the parameters a = −4, b = 2, c = 2, λ1 = 0.1, λ2 = 0.1,α =
0.95 are used. The graph of the solution q3(x, t) as explained
in (18), for the given values a = 1, b = −3, c = 0.5, λ1 =
1, λ2 = 4,α = 0.9 is plotted in Figure 3. Moreover, the diagram
of q4(x, t) is displayed in Figure 4 corresponding to the choices
of a = 1.5, b = −2.5, c = 1, λ1 = 7, λ2 = 2,α = 0.9. Taking the
parameters a = 0.2, b = −2, c = 0.5, λ1 = 2, λ2 = 2,α = 0.99
into consideration, the graph of the solution q5(x, t) presented
in the Equation (21) is plotted in Figure 5. Moreover, Figure 6
illustrate the dynamic behaviors of the analytical solution q6(x, t)
obtained in Equation (22) by taking a = 1.5, b = −5, c =
65, λ1 = 0.3, λ2 = 0.7,α = 0.9. And finally, the profiles of the
exact solution q7(x, t) presented in Equation (24) is displayed in
Figure 7, when a = −2, b = 3, c = 3.5, λ1 = 2, λ2 = 0.5,α =
0.95 are chosen as parameters in the main PDE of (7). The
performed numerical simulations admit that the solutions are of
kinky and anti-kinky, and the trigonometric classifications. Also,
by carefully looking at the structure of the obtained solutions,
it can be seen that the corresponding conformable derivative
parameter of α appears in the formula of all the solutions.

5. CONCLUSIONS

Partial differential equation is a powerful and effective tool
for modeling non-linear systems. Finding the exact solution
to such equations is one of the most challenging problems
in mathematics. There is also no specific way of solving
many of these equations. In these cases, we must resort to
the approximate analytical methods due to the limitations of
exact solver methods. According to what stated above, new
approaches to solving PDE equations are of great importance
and application. The main objective of this paper is to employ
a well-known technique called GERFM to solve the perturbed
Gerdjikov-Ivanov equation with the comfortable derivative. One
of the outstanding features of the model considered in this
article is the use of the definition of the comfortable derivative
in the structure of the model. This definition is one of the
most interesting definitions for a derivative that has many
ideal features for a derivative. Applying this definition to the
model will provide us with many advantages compared to
the standard derivative. One of the advantages of the method
used in this article is the determination of various categories
of solutions during the method. Several numerical simulations
are presented to gain a better understanding of the properties
of the acquired solutions. By comparing the obtained results
with the results of the present papers, it can be seen that
the obtained results are not reported in any of the previous
literature. It is worth mentioning that GERFM is capable of
reducing the volume of needed computational compared to
some other analytical method. The straightforward application
is another advantage of the technique compared to other known
techniques. This method can also be utilized to solve many other
similar problems.
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The present work investigates the applicability and effectiveness of the generalized

Riemann-Liouville fractional integral operator integral method to obtain new Minkowski,

Grüss type and several other associated dynamic variants on an arbitrary time scale,

which are communicated as a combination of delta and fractional integrals. These

inequalities extend some dynamic variants on time scales, and tie together and expand

some integral inequalities. The present method is efficient, reliable, and it can be used

as an alternative to establishing new solutions for different types of fractional differential

equations applied in mathematical physics.

Keywords: Minkowski’ inequlity, gruss inequality, fractional calculus, rimenn-liouville fractional integral operator,

generalized riemann-liouville fractional integral operator, time sccale, holder inequality

1. INTRODUCTION

Fractional calculus has also been comprehensively utilized in several instances, but the concept has
been popularized and implemented in numerous disciplines of science, technology and engineering
as a mathematical model (see [1, 2]). Numerous distinguished generalized fractional integral
operators consist of the Hadamard operator, Erdlelyi-Kober operators, the Saigo operator, the
Gaussian hypergeometric operator, the Marichev-Saigo-Maeda fractional integral operator, and so
on.; out of the ones, the Riemann-Liouville fractional integral operator has been extensively utilized
by researchers in theory as well as applications (see [1, 3–8]).

Stefan Hilger began the theories of time scales in his doctoral dissertation [9] and combined
discrete and continuous analysis (see [10, 11]). From this moment, this hypothesis has received
a lot of attention. In the book written by Bohner and Peterson [12] on the issues of time scale, a
brief summary is given and several time calculations are performed. Over the past decade, many
analysts working in specific applications have proved a reasonable number of dynamic inequalities
on a time scale (see [13–15]). Several researchers have created various results relating to fractional
calculus on time scales to obtain the corresponding dynamic inequalities (see [16–20]).

Recently, the idea of the fractional-order derivative has been expounded by Bastos et al. [16] via
Riemann-Liouville fractional operators on scale versions by considering linear dynamic equations.
Another approach on time scales shifts to the inverse Laplace transform [18]. Following such
innovator work, the investigation of fractional calculus on time scales created in a mainstream
look into research studies on time scales (see [18, 21–29] and references therein). Since the
publications in 2015, several researchersmade significant contributions to the history of time scales.
Sun and Hou [30] employed the fractional q-symmetric systems on time scales. Yaslan and Liceli
[29] obtained the three-point boundary value problem with delta Riemann-Liouville fractional

46
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derivative on time scales. Yan et al. [31] adopted the Caputo
fractional techniques on differential equations on time scales.
Zhu and Wu [32] employed Caputo nabla fractional derivatives
in order to find the existence of solutions for Cauchy
problems. As certifiable utilities, we refer to the study of
calcium ion channels that are impeded with an infusion of
calcium-chelator ethylene glycol tetraacetic acid [33]. Actually,
physical utilization of initial value-fractional problems in
diverse time scales proliferates [10, 34, 35]. For instance, the
continuous time scale T = R, the fractional differential
equations that oversee the practices of viscoelastic materials
with memory and creep tendencies have been investigated in
Chidouh et al. [36].

Integral Inequalities are an excellent way to investigate many
scientific fields of research, including engineering, flow dynamics,
biology, chaos, meteorology, vibration analysis, biochemistry,
aerodynamics and many more. Since the productions of the
above outcome in 1883, several works have been published in
the literature of time calculus, with varied evidence, various
speculations and improvements [37–51]. Recently, numerous
analysts examined various inequalities, such as Hermite-
Hadamard inequalities, Ostrowski inequalities and the expanded
version of Hardy-type inequalities (see [13–15, 24, 52] and the
references therein).

Here, we broaden accessible outcomes in the literature [53]
by presenting increasingly broad ideas of fractional integral
inequalities on time scales in the frame of generalized Riemann-
Liouville fractional integral. At that point, we study the dynamic
variants of corresponding generalized fractional-order on time
scales. We obtain the inequalities Grüss, Minkowski and several
others using the delta integrals in arbitrary time scales. For
δ = 1, the integral will become delta integral and for δ =
0, it advances toward turning out to be nabla integral. An
astounding audit about the time scale calculus can be found
in the paper [54]. The proposed dynamical integral method is
reliable and effective to obtain new solutions. This method has
more advantages: it is direct and concise. Thus, the proposed
method can be extended to solve many systems of non-
linear fractional partial differential equations in mathematical
and physical sciences. Also, the new exact analytical solutions
can be obtained for the generalized ordinary differential
equations to obtain new theorems related to stability and
continuous dependence on parameters for dynamic equations on
time scales.

The present work investigates the applicability and
effectiveness of the several dynamic variants that are presented,
which are based primarily on the generalized Riemann-
Liouville fractional integral operators. We will show that the
Grüss and Minkowski type, that we participated in are very
specific to the current work. From an application point of
view, the results ultimately relate to the study of Young’s
inequality, arithmetic, and geometry inequality. Our computed
outcomes can be very useful as a starting point of comparison
when some approximate methods are applied to this non-
linear space-time fractional equation. Furthermore, there
are likewise some occurrences that can be derived from
our outcomes.

2. PRELIMINARIES

A non-empty closed subsets R of T is known as the time scale.
The well-known examples of time scales theory are the set of real
numbers R and the integers Z . Throughout the paper, we refer
T as time scale and a time-scaled interval is ϒT = [υ1, υ2]T. We
need the concept of jump operators. The forward jump operator
is denoted by the symbol ♦ and the backward jump operator is
denoted by ϑ , are said through the formulas:

♦(t) = inf{λ ∈ T : ρ > t} ∈ T, ϑ(ω) = sup{ρ ∈ T : ρ < ω} ∈ T.

We accumulate as:

inf∅ := supT, sup ∅ := infT.

If♦(t) > t, then the term t is allude to be right-scattered and ω is
allude to be left-scattered ̺(ω) < ω. The elements that are most
likely all the while appropriate-scattered and scattered are known
as isolated. The term t is said to be right dense, if ♦(t) = t, and
ω is said to be left dense, if ̺(ω) = ω. In addition, the focuses
t,ω are known to be dense if they are most likely right-dense
and left-dense.
The mappings µ, ν :T → [0,+∞) defined by

µ(t) := ♦(t)− t,

ν(t) := t − ϑ(t)

are called the forward and backward graininess
functions, respectively.

Definition 2.1. [12, 55] “Let h̄ :T → R be a real-valued function.
Then h̄ is said to beRD-continuous onR if its left limit at any left
dense point ofT is finite and it is continuous on every right dense
point of T. AllRD-continuous functions are denoted by CRD .”

Definition 2.2. “A function F :T → R is called a delta
antiderivative of h̄ :T → R if F1(t) = h̄(t), for all t ∈ T

k. Then,

one defines the delta integral by
t∫

υ1

h̄(s)1s = F(t)− F(υ1).”

Theorem 2.1. [55]. If h̄ ∈ CRD and t ∈ T
k, then

♦(t)∫

t

h̄(s)1s = µ(t)h̄(t).

Theorem 2.2. [55]. Let υ1, υ2, υ3 ∈ T, β ∈ R and h̄,ω ∈ CRD,
then

(i).
υ2∫
υ1

(
h̄1(ρ)+ h̄2(ρ)

)
1ρ =

υ2∫
υ1

h̄1(ρ)1ρ +
υ2∫
υ1

h̄2(ρ)1ρ;

(ii).
υ2∫
υ1

βh̄(ρ)1ρ = β
υ2∫
υ1

h̄(ρ)1ρ;

Frontiers in Physics | www.frontiersin.org 2 June 2020 | Volume 8 | Article 16547

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rashid et al. New Dynamic Scheme on Time Scale

(iii).
υ2∫
υ1

h̄(ρ)1ρ = −
υ1∫
υ2

h̄(ρ)1ρ;

(iv).
υ2∫
υ1

h̄(ρ)1ρ =
ς3∫
υ1

h̄(ρ)1ρ +
υ2∫
ς3

h̄(ρ)1ρ;

(v).
υ2∫
υ1

h̄♦1 (ρ)h̄
1
2 1ρ =

(
h̄1h̄2

)
(υ2) −

(
h̄1h̄2

)
(υ1) −

υ2∫
υ1

h̄1
1 (ρ)h̄2(ρ)1(ρ);

(vi).
υ2∫
υ1

h̄1(ρ)h̄
1
2 1ρ =

(
h̄1h̄2

)
(υ2) −

(
h̄1h̄2

)
(υ1) −

υ2∫
υ1

h̄1
1 (ρ)h̄

♦
2 (ρ)1(ρ);

(vii).
υ2∫
υ1

h̄(ρ)1(ρ) = 0;

(viii). If h̄(ρ) ≥ 0 for all ρ, then
υ2∫
υ1

h̄(ρ)1(ρ) ≥ 0;

(ix). If |h̄1(ρ)| ≤ h̄2(ρ) on [υ1, υ2], then
∣∣∣

υ2∫
υ1

h̄1(ρ)1ρ

∣∣∣ ≤
υ2∫
υ1

h̄2(ρ)1(ρ).

From Theorem 2.2 (ix), for h̄2(ρ) = |h̄1(ρ)| on [υ1, υ2], we have

∣∣∣
υ2∫

υ1

h̄(ρ)1ρ

∣∣∣ ≤
υ2∫

υ1

∣∣h̄(ρ)
∣∣1(ρ).

Proposition 2.1. [56] Consider a time scale T and h̄ is an
increasing continuous function on ϒT. An extension of h̄ on ϒT

is F given as

F(θ) :=





h̄(θ), if θ ∈ T

h̄(η), if θ ∈ (η, σ (η)) 6⊂ T,

then

υ2∫

υ1

h̄(η)1h̄ ≤
υ2∫

υ1

F(h̄)dh̄.

Next we demonstrate the idea of fractional integral on time scale,
which is mainly due to [16].

Definition 2.3. [16] “For 0 < δ < 1, let ϒT ⊂ T is a time scale
and F be an integrable function on ϒT. Then the (left) fractional
integral of order δ of F is defined by

T

υ1
J

δ
η (η) =

1

Ŵ(δ)

η∫

υ1

(η − θ)δ−1
F(θ)1θ , (1)

where Ŵ is the gamma function.”

Again, we demonstrate the concept of generalized Riemann-
Liouville fractional integral operator which is proposed by [24].

Definition 2.4. [24] “For 0 < δ < 1, let T is a time scale and
[υ1, υ2] is an interval of T. Suppose F be an integrable function
on [υ1, υ2] and 8 is monotone having a delta derivative 81 with
81 6= 0 for any η ∈ [υ1, υ2]. Let 0 < δ < 1, then the (left)
generalized fractional integral of order δ ofF with respect to8 is
defined by

T

υ1;8J
δ
η (η) =

1

Ŵ(δ)

η∫

υ1

(8(η)− 8(θ))δ−181(θ)F(θ)1θ .′′ (2)

Remark 2.1. If T = R, then Definitions 2.3 and 2.4 reduces
to the well-known Riemann-Liouville and generalized Riemann-
Liouville fractional integral, respectively (see [7]).

3. MINKOWSKI TYPE INEQUALITIES FOR
GENERALIZED RIEMANN-LIOUVILLE
FRACTIONAL INTEGRAL ON TIME SCALE

This section is inaugurated to establishing generalizations
of some reverse Minkowski inequality by introducing the
generalized Riemann-Liouville fractional integral on time scale.

Theorem 3.1. Let δ, γ > 1, and T is a time scale. Suppose
F ,G be two positive functions on [0,∞)T, and 8 is monotone,
delta differentiable 81 with 81 6= 0 such that for all η >

0, T

0+;8J δ
η F(η) < ∞, T

0+;8J δ
η G(η) < ∞. If 0 < m ≤ F(θ)

G(θ)
≤

M, θ ∈ [0, η], then

[
T

0+;8J
δ
η F(η)

] 1
α
[

T

0+;8J
δ
η G(η)

] 1
β

≤
(
M

m

) 1
αβ

[
T

0+;8J
δ
η

(
F(θ)

) 1
α
(
G(η)

) 1
β

]
. (3)

Proof: Since F(θ)
G(θ)

≤ M, θ ∈ [0, η], η > 0, we find that

(
G(θ)

) 1
α ≥ M

− 1
β
(
F(θ)

) 1
β (4)

and

(
F(θ)

) 1
α
(
G(θ)

) 1
β ≥ M

− 1
β F(θ). (5)

Taking product on both sides of (5)

(
8(η)−8(θ)

)δ−1
81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)

(
F(θ)

) 1
α
(
G(θ)

) 1
β 1θ

≥
M

− 1
β

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)F(θ)1θ , (6)

Frontiers in Physics | www.frontiersin.org 3 June 2020 | Volume 8 | Article 16548

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rashid et al. New Dynamic Scheme on Time Scale

which implies that

T

0+;8J
δ
η

(
F(θ)

) 1
α
(
G(η)

) 1
β ≥ M

− 1
β T

0+;8J
δ
η F(η). (7)

It follows that

(
T

0+;8J
δ
η

(
F(θ)

) 1
α
(
G(η)

) 1
β

) 1
α

≥ M
− 1

αβ

(
T

0+;8J
δ
η F(η)

) 1
α

. (8)

Accordingly, mG(θ) ≤ F(θ), θ ∈ (0, η), η > 0, therefore
we have

(
F(θ)

) 1
α ≥ m

1
α
(
G(θ)

) 1
α . (9)

Taking product (9) by (G(θ))
1
β , we arrive at

(
G(θ)

) 1
β
(
F(θ)

) 1
α ≥ m

1
α G(θ). (10)

Taking product on both sides of (11)

(
8(η)−8(θ)

)δ−1
81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)

(
G(θ)

) 1
β
(
F(θ)

) 1
α 1θ

≥ m

1
α

1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)G(θ)1θ . (11)

Hence, we can write

(
T

0+;8J
δ
η

(
F(θ)

) 1
α
(
G(η)

) 1
β

) 1
β

≥ m

1
αβ

(
T

0+;8J
δ
η G(η)

) 1
β

. (12)

Conducting product between (8) and (12), we can draw the
desired conclusion easily.

Corollary 3.1. Letting T = R, then under the assumption of
Theorem 3.1, we have the following inequality in generalized
Riemann-Liouville fractional integral:

[
8J δ

η F(η)
] 1

α
[
8J δ

η G(η)
] 1

β ≤
(M
m

) 1
αβ

[
8J δ

η

(
F(θ)

) 1
α
(
G(η)

) 1
β

]
.

Theorem 3.2. Let δ, γ > 1, and T is a time scale. Suppose
F ,G be two positive functions on [0,∞)T, and 8 is monotone,
delta differentiable 81 with 81 6= 0 such that for all η >

0, T

0+;8J δ
η F

α(η) < ∞, T

0+;8J δ
η G

β (η) < ∞. If 0 < m ≤
Fα(θ)
Gβ (θ)

≤ M, θ ∈ [0, η], then

[
T

0+;8J
δ
η F

α(η)
] 1

α
[

T

0+;8J
δ
η G

β (η)
] 1

β

≤
(
M

m

) 1
αβ

[
T

0+;8J
δ
η

(
F(θ)G(η)

)]
, (13)

where α > 1, 1
α
+ 1

β
= 1.

Proof: Replacing F(θ) and G(θ) by Fα(θ) and Gβ (θ), θ ∈
[0, η], η > 0 in Theorem 3.1, we acquire the desired result. This
completes the proof.

4. GRÜSS TYPE INEQUALITIES VIA
GENERALIZED RIEMANN-LIOUVILLE
FRACTIONAL INTEGRAL ON TIME SCALE

Our coming result is the generalization of Grüss type inequality
via generalized Reimann-Liouville fractional integral operator on
time scale.

Theorem 4.1. Let δ, γ > 1, and T is a time scale. Suppose there
is a positive function F on [0,∞)T, and 8 is monotone, delta
differentiable 81 with 81 6= 0 such that for all η > 0. Assume
that the subsequent.
(I)There exist two integrable functions ϕ1,ϕ2 on [0,∞)T such that

ϕ1(η) ≤ F(η) ≤ ϕ2(η), ∀η ∈ [0,∞)T. (14)

Then, for η > 0, δ, γ > 1, one has

T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η F(η)+ T

0+;8J
δ
η F(η) T

0+;8J
λ
η ϕ1(η)

≥ T

0+;8J
δ
η ϕ2(η)

T

0+;8J
λ
η ϕ1(η)+T

0+;8J
δ
η F(η) T

0+;8J
λ
η F(η),

(15)

Proof: From (I), for all θ ≥ 0, λ ≥ 0, we have

(
ϕ2(θ)− F(θ)

)(
F(λ)− ϕ1(λ)

)
≥ 0. (16)

Therefore,

ϕ2(θ)F(λ)+ ϕ1(λ)F(θ) ≥ ϕ1(λ)ϕ2(θ)+ F(θ)F(λ). (17)

Taking product on both sides of (17)

(
8(η)−8(θ)

)δ−1
81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

F(λ)
1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)ϕ2(θ)1θ

+ϕ1(λ)
1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)F(θ)1θ

≥ ϕ1(λ)
1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)ϕ2(θ)1θ

+F(λ)
1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)F(θ)1θ , (18)

arrives at

F(λ) T

0+;8J
δ
η ϕ2(η)+ ϕ1(λ)

T

0+;8J
δ
η F(η) ≥ ϕ1(λ)

T

0+;8J
δ
η ϕ2(η)

+ F(λ) T

0+;8J
δ
η F(η). (19)

Taking product on both sides of (19)

(
8(η)−8(λ)

)γ−1
81(λ)

Ŵ(γ )
, which

is positive because λ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to λ from 0 to η we have
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T

0+;8J
δ
η ϕ2(η)

1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)F(λ)1λ

+ T

0+;8J
δ
η F(η)

1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)ϕ1(λ)1λ

≥ T

0+;8J
δ
η ϕ2(η)

1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)ϕ1(λ)1λ

+ T

0+;8J
δ
η F(η)

1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)F(λ)1λ.

(20)

Hence, we conclude the desired inequality. This completes
the proof.

Special cases of Theorem 4.1, we attain the subsequent results.

Corollary 4.1. Letting 8(η) = η, then Theorem 4.1 will lead to
the Riemann-Liouville fractional integral on time scales:

T

0+J
δ
η ϕ2(η)

T

0+J
γ
η F(η)+ T

0+J
δ
η F(η) T

0+J
λ
η ϕ1(η)

≥ T

0+J
δ
η ϕ2(η)

T

0+J
λ
η ϕ1(η)+ T

0+J
δ
η F(η) T

0+J
λ
η F(η).

Remark 4.1. If T = R, then Theorem 4.1 will lead to Theorem
2.11 in [57] and corollary 4.1 will lead to Corollary 3 in [57]. Also,
if we choose T = R along with 8(η) = η, then Theorem 4.1 will
lead to Theorem 2 in [58].

Theorem 4.2. Let δ, γ > 1, and T is a time scale. Suppose there
are two positive functions F ,G on [0,∞)T, and 8 is monotone,
delta differentiable 81 with 81 6= 0 such that for all η > 0.
Suppose that (I) holds and moreover one assumes the following.
(II) There exist ω1 and ω2 integrable functions on [0,∞)T
such that

ω1(η) ≤ G(η) ≤ ω2(η) ∀η ∈ [0,∞)T. (21)

Then, for η > 0, δ, γ > 1,the following inequalities hold:

(A1)
T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η G(η)+ T

0+;8J
δ
η F(η) T

0+;8J
γ
η ω1(η)

≥ T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η ω1(η)

+ T

0+;8J
δ
η F(η) T

0+;8J
γ
η G(η),

(B1)
T

0+;8J
γ
η ϕ1(η)

T

0+;8J
δ
η G(η)+

T

0+;8J
γ
η ω2(η)

T

0+;8J
γ
η F(η)

≥ T

0+;8J
γ
η ϕ1(η)

T

0+;8J
δ
η ω2(η)

+ T

0+;8J
γ
η F(η) T

0+;8J
δ
η G(η),

(C1)
T

0+;8J
γ
η ω2(η)

T

0+;8J
δ
η ϕ2(η)+ T

0+;8J
δ
η F(η) T

0+;8J
γ
η G(η)

≥ T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η G(η)

+ T

0+;8J
δ
η F(η) T

0+;8J
γ
η ω2(η),

(D1)
T

0+;8J
δ
η ϕ1(η)

T

0+;8J
γ
η ω1(η)

+ T

0+;8J
δ
η F(η) T

0+;8J
δ
η

T

0+;8J
γ
η G(η)

≥ T

0+;8J
δ
η ϕ1(η)

T

0+;8J
γ
η G(η)

+ T

0+;8J
γ
η ω1(η)

T

0+;8J
δ
η F(η). (22)

Proof: To prove (A1), from (I) and (II), we have for x ∈ [0,∞)T
that

(
ϕ2(θ)− F(θ)

)(
G(λ)− ω1(λ)

)
≥ 0. (23)

Therefore,

ϕ2(θ)G(λ)+ ω1(λ)F(θ) ≥ ω1(λ)ϕ2(θ)+ G(λ)F(θ). (24)

Taking product on both sides of (24)

(
8(η)−8(θ)

)δ−1
81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

G(λ)
1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)ϕ2(θ)1θ

+ω1(λ)
1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)F(θ)1θ

≥ ω1(λ)
1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)ϕ2(θ)1θ

+G(λ)
1

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)F(θ)1θ . (25)

Then we have

G(λ) T

0+;8J
δ
η ϕ2(η)+ ω1(λ)

T

0+;8J
δ
η F(η)

≥ ω1(λ)
T

0+;8J
δ
η ϕ2(η)+ G(λ) T

0+;8J
δ
η F(η). (26)

Again, multiplying both sides of (26) by

(
8(η)−8(λ)

)γ−1
81(λ)

Ŵ(γ )
,

which is positive because λ ∈ (0, η), η > 0, we integrate the
resulting identity with respect to λ from 0 to η we have

T

0+;8J
δ
η ϕ2(η)

1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)G(λ)1λ

+ T

0+;8J
δ
η F(η)

1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)ω1(λ)1λ

≥ T

0+;8J
δ
η ϕ2(η)

1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)ω1(λ)1λ

+ T

0+;8J
δ
η F(η)

1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)G(λ)1λ.
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This follows that

T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η G(η)+ T

0+;8J
δ
η F(η) T

0+;8J
δ
η

T

0+;8J
γ
η ω1(η)

≥ T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η ω1(η)+ T

0+;8J
δ
η F(η) T

0+;8J
γ
η G(η),

we acquire the desired inequality (A1).
To prove (B1)− (D1), we utilizes the subsequent variants:

(B1)
(
ω2(θ)− G(θ)

)(
F(λ)− ϕ1(λ)

)
≥ 0,

(C1)
(
ϕ2(θ)− F(θ)

)(
G(λ)− ω2(λ)

)
≤ 0,

(D1)
(
ϕ1(θ)− F(θ)

)(
G(λ)− ω1(λ)

)
≤ 0.

Special case of Theorem 4.2, we have the subsequent corollaries.

Corollary 4.2. Letting 8(η) = η, then Theorem 4.2 will lead to a
new result for Riemann-Liouville fractional integral on time scales:

(A2)
T

0+;8J
δ
η ϕ2(η)

T

0+J
γ
η G(η)+ T

0+J
δ
η F(η) T

0+J
γ
η ω1(η)

≥ T

0+J
δ
η ϕ2(η)

T

0+J
γ
η ω1(η)+ T

0+J
δ
η F(η) T

0+J
γ
η G(η),

(B2)
T

0+;8J
γ
η ϕ1(η)

T

0+J
δ
η G(η)+

T

0+J
γ
η ω2(η)

T

0+J
γ
η F(η)

≥ T

0+J
γ
η ϕ1(η)

T

0+J
δ
η ω2(η)+ T

0+J
γ
η F(η) T

0+J
δ
η G(η),

(C2)
T

0+;8J
γ
η ω2(η)

T

0+J
δ
η ϕ2(η)+ T

0+J
δ
η F(η) T

0+J
γ
η G(η)

≥ T

0+J
δ
η ϕ2(η)

T

0+J
γ
η G(η)+ T

0+J
δ
η F(η) T

0+J
γ
η ω2(η),

(D2)
T

0+;8J
δ
η ϕ1(η)

T

0+J
γ
η ω1(η)+ T

0+J
δ
η F(η) T

0+J
δ
η

T

0+J
γ
η G(η)

≥ T

0+J
δ
η ϕ1(η)

T

0+J
γ
η G(η)+ T

0+J
γ
η ω1(η)

T

0+J
δ
η F(η).

Remark 4.2. If T = R, then Theorem 4.2 will lead to Theorem
2.15 in [57] and corollary 4.2 will lead to Corollary 2.16 in [57].
Also, If we choose T = R along with 8(η) = η, then Theorem 4.2
will lead to Theorem 5 in [58].

5. SOME OTHER BOUNDS VIA
GENERALIZED RIEMANN-LIOUVILLE
FRACTIONAL INTEGRAL ON TIME SCALE

Theorem 5.1. Let δ, γ > 1, and T is a time scale. Suppose there
are two positive functions F ,G on [0,∞)T, and 8 is monotone,
delta differentiable 81 with 81 6= 0 such that for all η > 0,
α,β > 1 satisfying 1

α
+ 1

β
= 1. Then, for η > 0, one has

(A3)
1

α

T

0+;8J
δ
η F

α(η) T

0+;8J
γ
η G

α(η)

+
1

β

T

0+;8J
δ
η G

β (η) T

0+;8J
γ
η F

β (η)

≥ T

0+;8J
δ
η F(η)G(η) T

0+;8J
γ
η G(η)F(η),

(B3)
1

α

T

0+;8J
γ
η G

β (η) T

0+;8J
δ
η F

α(η)

+
1

β

T

0+;8J
γ
η F

α(η) T

0+;8J
δ
η G

β (η)

≥ T

0+;8J
γ
η G

β−1(η)Fα−1(η) T

0+;8J
δ
η F(η)G(η),

(C3)
1

α

T

0+;8J
γ
η G

2(η) T

0+;8J
δ
η F

α(η)

+
1

β

T

0+;8J
γ
η F

2(η) T

0+;8J
δ
η G

β (η)

≥ T

0+;8J
γ
η F

2
β (η)G

2
α (η) T

0+;8J
δ
η F(η)G(η),

(D3)
1

α

T

0+;8J
γ
η G

β (η) T

0+;8J
δ
η F

2(η)

+
1

β

T

0+;8J
γ
η F

α(η) T

0+;8J
δ
η G

2(η)

≥ T

0+;8J
γ
η F

α−1(η)Gβ−1(η) T

0+;8J
δ
η F

2
α (η)G

2
β (η).

(27)

Proof: Taking into account the Young’s inequality [59]:

1

α
aα +

1

β
bβ ≥ ab, ∀a, b ≥ 0, α,β > 0,

1

α
+

1

β
= 1, (28)

setting a = F(θ)G(λ) and b = F(λ)G(θ), θ , λ > 0, we have

1

α

(
F(θ)G(λ)

)α +
1

β

(
F(λ)G(θ)

)β ≥ (F(θ)G(λ))(F(λ)G(θ)).

(29)

Taking product on both sides of (29)

(
8(η)−8(θ)

)δ−1
81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

Gα(λ)

αŴ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)Ŵ(δ)Fα(θ)1θ

+
Fβ (λ)

βŴ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)Ŵ(δ)Gβ (θ)1θ

≥
G(λ)F(λ)

Ŵ(δ)

η∫

0

(
8(η)− 8(θ)

)δ−1
81(θ)Ŵ(δ)F(θ)G(θ)1θ ,

(30)

we get

Gα(λ)

α

T

0+;8J
δ
η F

α(η)+
Fβ (λ)

β

T

0+;8J
δ
η G

β (η)

≥ G(λ)F(λ) T

0+;8J
δ
η F(η)G(η). (31)

Again, multiplying both sides of (31) by

(
8(η)−8(λ)

)γ−1
81(λ)

Ŵ(γ )
,

which is positive because λ ∈ (0, η), η > 0, we integrate the
resulting identity with respect to λ from 0 to η we have

1

α

T

0+;8J
δ
η F

α(η)
1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)Gα(λ)1λ

+
1

β

T

0+;8J
δ
η G

β (η)
1

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)Fβ (λ)1λ
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≥
T

0+;8J δ
η F(η)G(η)

Ŵ(γ )

η∫

0

(
8(η)− 8(λ)

)γ−1
81(λ)G(λ)F(λ)1λ,

(32)

consequently, we get

1

α

T

0+;8J
δ
η F

α(η) T

0+;8J
γ
η G

α(η)+
1

β

T

0+;8J
δ
η G

β (η) T

0+;8J
γ
η F

β (η)

≥ T

0+;8J
δ
η F(η)G(η) T

0+;8J
γ
η G(η)F(η), (33)

which implies (A3). The remaining variants can be proved by
adopting the same technique as we did in (A3).

(B3) a =
F(θ)

F(λ)
, b =

G(θ)

G(λ)
, F(λ),G(λ) 6= 0,

(C3) a = F(θ)G
2
α (λ), b = F

2
β (λ)G(θ),

(D3) a = F
2
α (θ)F(λ), b = G

2
β (θ)G(λ), F(λ),G(λ) 6= 0.

Repeating the foregoing argument, we obtain (B3)− (D3).

Theorem 5.2. Let δ, γ > 1, and T is a time scale. Suppose F ,G
be two positive functions on [0,∞)T, and 8 is monotone, delta
differentiable 81 with 81 6= 0 such that for all η > 0, and
α,β > 0 satisfying α + β = 1. Then, for η > 0, one has

(A4) p T

0+;8J
δ
η F(η) T

0+;8J
γ
η G(η)

+ q T

0+;8J
γ
η F(η) T

0+;8J
δ
η G(β)

≥ T

0+;8J
δ
η

(
F

α(η)Gβ (η)
)

T

0+;8J
γ
η

(
F

β (η)Gα(η)
)
,

(B4) p T

0+;8J
δ
η F

α−1(η) T

0+;8J
γ
η

(
F(η)Gβ (η)

)

+ q T

0+;8J
γ
η G

β−1(η) T

0+;8J
δ
η

(
F

β (η)G(η)
)

≥ T

0+;8J
δ
η G

β (η) T

0+;8J
γ
η F

α(η),

(C4) p T

0+;8J
δ
η F(η) T

0+;8J
γ
η G

2
α (η)

+ q T

0+;8J
δ
η G(η)

T

0+;8J
γ
η F

2
β (η)

≥ T

0+;8J
δ
η F

α(η)G(η) T

0+;8J
γ
η G

β (η)F2(η),

(D4) p T

0+;8J
δ
η F

2
α (η)Gβ (η) T

0+;8J
γ
η G

α−1(η)

+ q T

0+;8J
δ
η G

β−1(η) T

0+;8J
γ
η F

2
β (η)Gα(η)

≥ T

0+;8J
δ
η F

2(η) T

0+;8J
γ
η G

2(η). (34)

Proof: Taking into account the weighted AM − GM inequality

αa+ βb ≥ aαbβ , ∀a, b ≥ 0, α,β > 0, α + β = 1, (35)

by setting a = F(θ)G(λ) and b = F(λ)G(θ), λ, θ > 0, we have

αF(θ)G(λ)+ βF(λ)G(θ) ≥
(
F(θ)G(λ)

)α(
F(λ)G(θ)

)β
. (36)

Multiplying both sides of (36) by 1
Ŵ(δ)Ŵ(γ )

(8(η) −
8(θ))δ−181(θ)(8(η) − 8(λ))γ−181(λ), which is positive
because θ , λ ∈ (0, η), η > 0 and integrating the resulting
identity from 0 to η we have

α

Ŵ(δ)Ŵ(γ )

η∫

0

η∫

0

(8(η)− 8(θ))δ−1(8(η)

− 8(λ))γ−181(θ)81(λ)F(θ)G(λ)1θ1λ

+
β

Ŵ(δ)Ŵ(γ )

η∫

0

η∫

0

(8(η)− 8(θ))δ−1(8(η)

− 8(λ))γ−181(θ)81(λ)F(λ)G(θ)1θ1λ

≥
1

Ŵ(δ)Ŵ(γ )

η∫

0

η∫

0

(8(η)− 8(θ))δ−1(8(η)

− 8(λ))γ−181(θ)81(λ)

×
(
F(θ)G(λ)

)α(
F(λ)G(θ)

)β
1λ1θ , (37)

we conclude that

p T

0+;8J
δ
η F(η) T

0+;8J
γ
η G(η)+ q T

0+;8J
γ
η F(η) T

0+;8J
δ
η G(η)

≥ T

0+;8J
δ
η

(
F

α(η)Gβ (η)
)

T

0+;8J
γ
η

(
F

β (η)Gα(η)
)
, (38)

which implies (A4). The rest of inequalities can be shown
in similar way by the following choice of parameters in
AM − GM inequality.

(B4) a =
F(λ)

F(θ)
, b =

G(θ)

G(λ)
, F(θ),G(λ) 6= 0.

(C4) a = F(θ)G
2
α (λ), b = F

2
β (λ)G(θ),

(D4) a =
F

2
α (θ)

G(λ)
, b =

F
2
β (λ)

G(θ)
, G(θ),G(θ) 6= 0.

Example 5.1. Let δ, γ > 1, and T is a time scale. Suppose F ,G
be two positive functions on [0,∞)T, and 8 is monotone, delta
differentiable 81 with 81 6= 0 such that for all η > 0, and
α,β > 0 satisfying 1

α
+ 1

β
= 1. Let

m = min
0≤θ≤η

F(θ)

G(θ)
and M = max

0≤θ≤η

F(θ)

G(θ)
. (39)

Then, for η > 0, δ, γ > 1, one has the following inequalities:

(1) 0 ≤ T

0+;8J
δ
η F

2(η) T

0+;8J
δ
η G

2(η)

≤
m+M

4mM

(
T

0+;8J
δ
η F(η)G(η)

)2
,

(2) 0 ≤
√

T

0+;8J δ
η F

2(η) T

0+;8J δ
η G

2(η)−
(

T

0+;8J
δ
η F(η)G(η)

)

≤
√
M−

√
m

2
√
mM

(
T

0+;8J
δ
η F(η)G(η)

)
,

(3) 0 ≤ T

0+;8J
δ
η F

2(η) T

0+;8J
δ
η G

2(η)−
(

T

0+;8J
δ
η F(η)G(η)

)2

≤
M−m

4mM

(
T

0+;8J
δ
η F(η)G(η)

)2
.

Proof: From Equation (39) and the inequality

(
F(θ)

G(θ)
−m

)(
M−

F(θ)

G(θ)

)
G
2(θ) ≥ 0, 0 ≤ θ ≤ η, (40)
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then we can write as,

F
2(θ)+mMG

2(θ) ≤ (m+M)F(θ)G(θ). (41)

Multiplying both sides of (41) by 1
Ŵ(δ)

(8(η)−8(θ))81(θ), which

is positive because θ ∈ (0, η), η > 0 and integrating the resulting
identity from 0 to η, we have

1

Ŵ(δ)

η∫

0

(8(η)− 8(θ))81(θ)F2(θ)1θ

+mM
1

Ŵ(δ)

η∫

0

(8(η)− 8(θ))81(θ)G2(θ)1θ

≤ (m+M)
1

Ŵ(δ)

η∫

0

(8(η)− 8(θ))81(θ)F(θ)G(θ)1θ , (42)

implies that

T

0+;8J
δ
η F

2(η)+mM
T

0+;8J
δ
η G

2(η) ≤ (m+M) T

0+;8J
δ
η F(η)G(η),

(43)

on the other hand, it follows frommM > 0 and

(√
T

0+;8J δ
η F

2(η)−
√
mM T

0+;8J δ
η G

2(η)
)2

≥ 0, (44)

that

2
√

T

0+;8J δ
η F

2(η)
√
mM T

0+;8J δ
η G

2(η) ≤
√

T

0+;8J δ
η F

2(η)

+
√
mM T

0+;8J δ
η G

2(η)

(45)

then from equation (43) and (45), we obtain,

4mM
T

0+;8J
δ
η F

2(η) T

0+;8J
δ
η G

2(η) ≤ (m+M)2( T

0+;8J
δ
η F(η)G(η)).

(46)

Which implies (1). By some transformation of (1), similarly, we
obtain (2) and (3).

6. CONCLUSION

The succinct view of this paper to establish numerous inequalities
on an arbitrary time scale for generalized Riemann-Liouville
fractional integrals. For the suitable selection of 8 on time
scale, one can discover numerous novel and existing outcomes
as specific cases. This shows the idea of generalized Riemann-
Liouville fractional integral is wide and unifying one, yet
additionally, improve few consequences in the study on the time
scale hypothesis. Numerous variants are explored, when T = R.
Finally, we introduced various dynamic variants by employing
generalized Riemann-Liouville fractional integral as an example.
Our consequences have potential applications in calcium ion
channels, fractional calculus of variations on time scales,
involving fractional fundamentalism in mechanics and physics,
quantization, control theory, and description of conservative,
nonconservative, and constrained systems. The performance of
the fractional dynamical integral method is reliable and effective
to obtain new solutions. This method has more advantages: it is
direct and concise. Thus, the proposed method can be extended
to solve many systems of nonlinear fractional partial differential
equations in mathematical and physical sciences. Also, the new
exact analytical solutions, can be obtained for the generalized
ordinary differential equations to obtain new theorems related
to stability and continuous dependence on parameters for
dynamic equations on time scales. Our computed outcomes can
be very useful as a starting point of comparison when some
approximate methods are applied to this nonlinear space-time
fractional equation.
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Chaotic systems are dynamical systems that are highly sensitive to initial conditions. Such

systems are used to model many real-world phenomena in science and engineering.

The main purpose of this paper is to present several efficient numerical treatments

for chaotic systems involving fractal-fractional operators. Several numerical examples

test the performance of the proposed methods. Simulations with different values of

the fractional and fractal parameters are also conducted. It is demonstrated that the

fractal-fractional derivative enables one to capture all the useful information from the

history of the phenomena under consideration. The numerical schemes can also be

implemented for other chaotic systems with fractal-fractional operators.

Keywords: chaotic attractors, computational efficiency, fractal-fractional operators, thomas attractor, Newton’s

method, product integration rule

1. INTRODUCTION

In recent decades numerical methods have been recognized as powerful mathematical techniques
for solving nonlinear equations that model real-world problems [1–5]. Numerical techniques have
been used to solve different classes of differential equations, including those of arbitrary order. Due
to the outstanding contribution of nonlinear models to human understanding of many phenomena
and the prediction of the future behavior of systems, many researchers are devoting their attention
to developing new and reliable numerical techniques that could be applied to more complex cases.
Chaotic behaviors are among the natural phenomena that have attracted the attention of many
researchers, who aim to replicate and predict those behaviors. To achieve this, differential operators
are often used as mathematical tools to construct the underlying models. Recently a new class of
differential operators was introduced, which are convolutions of fractal derivatives and fractional
kernels with different forms such as power law, exponential decay and the Mittag-Leffler function
[6]. These differential operators are able to represent complexities that cannot be described with
classical fractional differentiation and integration. One of the strengths of these operators is their
two orders, where one is considered a fractional order and the other is the fractal dimension [7–9].
With these efficient operators, a new class of nonlinear differential and integral equations can be
constructed, and existing chaotic models can be extended. Nevertheless, to verify the effectiveness
of such fractal-fractional operators in modeling chaotic attractors, one needs to solve the models
numerically as their exact solutions cannot be easily obtained by existing analytical methods. So
far, a few numerical methods have been used to discretize such models, and some numerical results
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for chaotic attractors have been obtained. A different numerical
scheme was suggested very recently [10–27] and was found
to be efficient for solving nonlinear differential equations.
Some articles have examined the analysis of errors and the
determination of error bands in the context of the possible deficit
differential equations [28–30]. Since the operators defined in this
paper are novel in the field, the numerical methods associated
with them are also very limited. One of the main motivations for
this article was to introducemethods for solving fractal-fractional
problems that have not been considered before. By using the
proposed methods, approximate solutions to these problems can
be determined more easily and with higher accuracy. In addition,
the methods can be applied to real-world problems. In this
work, we present applications of such numerical schemes in
solving chaotic models that involve the new class of differential
operators. We consider some well-known chaotic models with
fractal-fractional differential operators, so that we can compare
our results with those in the literature. The article is organized
as follows. In section 2, we give a brief overview of some
basic definitions of fractional differential calculus. Two efficient
and effective numerical methods for determining approximate
solutions to fractal-fractional problems are presented in section 3.
The first is for the Caputo derivative and the second is for
the Atangana-Baleanu-Caputo derivative. The kernels used in
these two definitions are singular and non-singular, respectively.
Several numerical simulations for chaotic systems are described
in section 4. The results obtained are accurate, interesting, and
meaningful. Finally, we present our overall conclusions.

2. PRELIMINARY DEFINITIONS

In this section, we give a brief review of some existing
definitions of fractal-fractional operators. These operators result
from the combination of two important concepts: fractional
differentiation and fractal derivatives. Most of the definitions
given here are taken from Atangana [6] and Atangana and
Qureshi [31].

Definition 1. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional derivative of g(t) in
the Caputo sense as

FF-C
0 D

ρ,τ
t g(t) =

1

Ŵ(k− ρ − 1)

∫ t

0

dg(ω)

dtτ
(t − ω)k−ρ−1 dω,

k− 1 < ρ ≤ k, 0 < k− 1 < τ ≤ k, (1)

where

dg(ω)

dtτ
= lim

t→y

g(t)− g(ω)

tβ − ωβ
. (2)

Definition 2. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional derivative of g(t) in
the Caputo-Fabrizio sense as

FF-CF
0 D

ρ,τ
t g(t) =

L(ρ)

1− ρ

∫ t

0

dg(ω)

dtτ
exp

[
−

ρ

1− ρ
(t − ω)

]
dω,

n− 1 < ρ, τ ≤ n, (3)

provided K(0) = K(1) = 1.

Definition 3. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional derivative of g(t) in
the Atangana-Baleanu sense as

FF-AB
0 D

ρ,τ
t g(t) =

AB(ρ)

1− ρ

∫ t

0

dg(ω)

dtτ
Eρ

[
−

ρ

1− ρ
(t − ω)

]
dω,

n− 1 < ρ, τ ≤ n, (4)

where Eρ(.) is the Mittag-Leffler function, defined by

Eρ(ω) =
∞∑

k=0

ωk

Ŵ(ρk+ 1)
, ρ > 0. (5)

This function is an essential function in the modeling of physical
processes using fractional calculus concepts. We know that
Equation (5) reduces to the exponential function ex if one takes
ρ = 1. Also, AB(·) is a function used for normalization, and
it satisfies the property AB(0) = AB(1) = 1. One of the most
popular definitions of AB(·) is

AB(ρ) = 1− ρ +
ρ

Ŵ(ρ)
.

Definition 4. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional integral of g(t) in
the Caputo sense [31] as

FF-C
0 I

ρ,τ
t g(t) =

τ

Ŵ(ρ)

∫ t

0

ωτ−1g(ω) dω

(t − ω)1−ρ
. (6)

Definition 5. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional integral of g(t) in
the Caputo-Fabrizio sense [31] as

FF-CF
0 I

ρ,τ
t g(t) =

τρ

M(ρ)

∫ t

0

g(ω) dω

ω1−ρ
+

τ (1− ρ)tτ−1g(t)

M(ρ)
. (7)

Definition 6. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional integral of g(t) in
the Atangana-Baleanu sense [31] as

FF-AB
0 I

ρ,τ
t g(t) =

τρ

AB(ρ)

∫ t

0

ωτ−1g(ω) dω

(t − ω)1−ρ
+

τ (1− ρ)tτ−1g(t)

AB(ρ)
.

(8)

3. THE PROPOSED NUMERICAL
METHODS

In what follows, the main aim is to construct two equations
involving fractal-fractional derivatives,

FF
0D

ρ,τ
t ξ (t) = N(t, ξ (t)), t ∈ [t0,T], (9)

with the initial condition ξ (0) = ξ0.
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3.1. The Caputo Fractal-Fractional
Derivative
From the results in Atangana and Qureshi [31], Equation (9)
reduces to the following Caputo fractional representation:

C
0D

ρ
t ξ (t) = τ tτ−1

N(t, ξ (t)). (10)

Now, taking into account the fundamental theorem of calculus,
one gets

ξ (t)− ξ (t0) =
τ

Ŵ(ρ)

∫ t

0

ωτ−1
N(ω, ξ (ω)) dω

(t − ω)1−ρ
. (11)

Then, inserting t = tn = t0+n1t into (17) leads to the following
expression:

ξ (tn) = ξ (t0)+
τ

Ŵ(ρ)

n−1∑

i=0

∫ ti+1

ti

ωτ−1
N(ω, ξ (ω)) dω

(tn − ω)1−ρ
,

1 ≤ n ≤ N,

(12)

where 1t = T−t0
N is the time step for the discretization points.

Next, taking the linear Lagrange interpolation into account for
the function of f (ω) = ωτ−1

N(ω, ξ (ω)), we obtain

ωτ−1
N(ω, ξ (ω)) ≈ tτ−1

i+1 N(ti+1, ξi+1)

+
ω − ti+1

1t

(
tτ−1
i+1 N(ti+1, ξi+1)− tτ−1

i N(ti, ξi)
)
,

ω ∈ [ti, ti+1], (13)

where ξi = ξ (ti). At this point, the result obtained in formula
(13) can be used in relation (12). This substitution results in the
following relationship:

ξn = ξ0 + τ1tρ

(
ξnt

τ−1
0 N (t0, ξ0) +

n∑

i=0

Dn−it
τ−1
i N(ti, ξi)

)
,

(14)
where

ξn =
(n− 1)ρ+1 − nρ(n− ρ − 1)

Ŵ(ρ + 2)
,

Dm =





1

Ŵ(ρ + 2)
, j = 0,

(m− 1)ρ+1 − 2mρ+1 + (m+ 1)ρ+1

Ŵ(ρ + 2)
, m = 1, 2, . . . , n− 1.

(15)

3.2. The Atangana-Baleanu
Fractal-Fractional Derivative
In this case we can convert Equation (9) to the following
Atangana-Baleanu fractional form [31]:

AB
0D

ρ
t ξ (t) = τ tτ−1

N(t, ξ (t)). (16)

Upon applying the integral operator to both sides of
Equation (16), the following Volterra integral equation
is constructed:

ξ (t)− ξ (t0) =
τ − τρ

AB(ρ)
tτ−1

N(t, ξ (t))

+
τρ

AB(ρ)Ŵ(ρ)

∫ t

0
(t − ω)ρ−1ωτ−1

N(ω, ξ (ω)) dω.

(17)

Taking t = tn = t0 + n1t in (17), we have

ξ (tn) = ξ (t0)+
τ − τρ

AB(ρ)
tτ−1
n N(tn, ξ (tn))

+
τρ

AB(ρ)Ŵ(ρ)

n−1∑

i=0

∫ ti+1

ti

(tn − ω)ρ−1ωτ−1
N(ω, ξ (ω)) dω.

(18)

Now, substituting (13) into (18), we get the following implicit
Atangana-Baleanu-Caputo scheme:

ξn = ξ0 +
τ − τρ

AB(ρ)
tτ−1
n N(tn, ξn)

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0 N (t0, ξ0) +

n∑

i=0

Dn−it
τ−1
i N(ti, ξi)

)
,

(19)

where ξn and Dj are the coefficients defined in (15). A closer
look at relations (14) and (19) shows that these expressions are
implicit equations for determining yn. The Newton iteration
method is one of the most popular and efficient techniques
for solving such problems. In this article, as in Garrappa [32],
Ghanbari and Kumar [33], and Ghanbari et al. [34], we will use
the Newton method to solve these equations. By solving these
equations, approximate solutions to the original problem will
be determined.

4. NUMERICAL SIMULATIONS FOR SOME
CHAOTIC SYSTEMS

In this section, to show the validity of the proposed numerical
technique, three chaotic systems involving Atangana-Baleanu-
Caputo fractional derivatives are considered.

Example 1. Consider the following modified cyclically
symmetric Thomas attractor given by [35]

FF
0D

ρ,τ
t x(t) = sin

(
exp

(
y(t)

))
− Bx(t),

FF
0D

ρ,τ
t y(t) = cos

(
sin
(
z(t)

))
− By(t),

FF
0D

ρ,τ
t z(t) = exp

(
cos
(
x(t)

))
− Bz(t).

(20)

Now we take into account the iterative methods given by (14)
and (19) to solve (20). Taking (14) into account, we get the
iterative structure
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xn = x0 + τ1tρ

(
ξnt

τ−1
0

[
sin
(
exp

(
y0
))

− Bx0
]

+
n∑

i=0

Dn−it
τ−1
i

[
sin
(
exp

(
yi
))

− Bxi
]
)
,

yn = y0 + τ1tρ

(
ξnt

τ−1
0

[
cos
(
sin
(
z0
))

− By0
]

+
n∑

i=0

Dn−it
τ−1
i

[
cos
(
sin
(
zi
))

− Byi
]
)
,

zn = z0 + τ1tρ

(
ξnt

τ−1
0

[
exp

(
cos
(
x0
))

− Bz0
]

+
n∑

i=0

Dn−it
τ−1
i

[
exp

(
cos
(
xi
))

− Bzi
]
)
.

(21)

Moreover, from (19) we get

xn = x0 +
τ − τρ

AB(ρ)
tτ−1
n

[
sin
(
exp

(
yn
))

− Bxn
]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
sin
(
exp

(
y0
))

− Bx0
]

+
n∑

i=0

Dn−it
τ−1
i

[
sin
(
exp

(
yi
))

− Bxi
]
)
,

yn = y0 +
τ − τρ

AB(ρ)
tτ−1
n

[
cos
(
sin
(
zn
))

− Byn
]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
cos
(
sin
(
z0
))

− By0
]

+
n∑

i=0

Dn−it
τ−1
i

[
cos
(
sin
(
zi
))

− Byi
]
)
,

zn = z0 +
τ − τρ

AB(ρ)
tτ−1
n

[
exp

(
cos
(
xn
))

− Bzn
]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
exp

(
cos
(
x0
))

− Bz0
]

+
n∑

i=0

Dn−it
τ−1
i

[
exp

(
cos
(
xi
))

− Bzi
]
)
.

(22)

In Figures 1–4we plot the results of numerical simulations using
the two iterative schemes (21) and (22) with B = 0.2. For the
numerical implementations we took (x0, y0, z0) = (0, 3, 11) as
the initial condition. The results of the iterative scheme (21)
are plotted in Figures 5–8. In each figure we have taken a fixed
value of τ and different values of ρ. In these experiments we set
1t = 10−3 and T = 800.

Example 2. In this example we consider the chaotic system

FF
0D

ρ,τ
t x(t) = x(t)z(t)− Bx(t)− Dy(t),

FF
0D

ρ,τ
t y(t) = Dx(t)+ y(t)z(t)− By(t),

FF
0D

ρ,τ
t z(t) = C+ Az(t)− z(t)3

3 − x(t)2 + Ez(t)x(t)3,

(23)

To solve this chaotic system, we use the following iterative
scheme obtained from (14):

xn = x0 + τ1tρ

(
ξnt

τ−1
0

[
x0z0 − Bx0 − Dy0

]

+
n∑

i=0

Dn−it
τ−1
i

[
xizi − Bxi − Dyi

]
)
,

yn = y0 + τ1tρ

(
ξnt

τ−1
0

[
Dx0 + y0z0 − By0

]

+
n∑

i=0

Dn−it
τ−1
i

[
Dxi + yizi − Byi

]
)
,

zn = z0 + τ1tρ

(
ξnt

τ−1
0

[
C+ Az0 −

z30
3

− x20 + Ez0x
3
0

]

+
n∑

i=0

Dn−it
τ−1
i

[
C+ Azi −

z3i
3

− x2i + Ezix
3
i

]
)
.

(24)

Using (19) one gets

xn = x0 +
τ − τρ

AB(ρ)
tτ−1
n

[
xnzn − Bxn − Dyn

]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
x0z0 − Bx0 − Dy0

]

+
n∑

i=0

Dn−it
τ−1
i

[
xizi − Bxi − Dyi

]
)
,

yn = y0 +
τ − τρ

AB(ρ)
tτ−1
n

[
Dxn + ynzn − Byn

]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
Dx0 + y0z0 − By0

]

+
n∑

i=0

Dn−it
τ−1
i

[
Dxi + yizi − Byi

]
)
,

zn = z0 +
τ − τρ

AB(ρ)
tτ−1
n

[
C+ Azn −

z3n
3

− x2n + Eznx
3
n

]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
C+ Az0 −

z30
3

− x20 + Ez0x
3
0

]

+
n∑

i=0

Dn−it
τ−1
i

[
C+ Azi −

z3i
3

− x2i + Ezix
3
i

]
)
.

(25)

The approximate solutions obtained from (24) are plotted
in Figures 5, 6, and those obtained from (25) are plotted in
Figures 7, 8. The parameter values used in the model are A =
0.95, B = 0.7, C = 0.6, D = 3.5, and E = 0.1. We used the
initial guess (x0, y0, z0) = (0.1, 0, 0) for different fractional orders
of ρ and τ .

Example 3. Consider the chaotic system given by [31]

FF
0D

ρ,τ
t x(t) = A

(
y(t)− x(t)

)
,

FF
0D

ρ,τ
t y(t) = (C− A) x(t)−

[
S0z(t)− S1 sin(z(t))

]
x(t)+ Cy(t),

(26)
FF
0D

ρ,τ
t z(t) = x(t)y(t)− Bz(t),
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FIGURE 1 | Evolution of the chaotic system (20) for τ = 0.93 and different values of ρ, using the iterative scheme (21).
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FIGURE 2 | Evolution of the chaotic system (20) for τ = 0.97 and different values of ρ, using the iterative scheme (21).
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FIGURE 3 | Evolution of the chaotic system (20) for τ = 0.93 and different values of ρ, using the iterative scheme (22).
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FIGURE 4 | Evolution of the chaotic system (20) for τ = 0.97 and different values of ρ, using the iterative scheme (22).
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FIGURE 5 | Evolution of the chaotic system (23) for τ = 0.96 and different values of ρ, using the iterative scheme (24).
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FIGURE 6 | Evolution of the chaotic system (23) for τ = 0.98 and different values of ρ, using the iterative scheme (24).
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FIGURE 7 | Evolution of the chaotic system (23) for τ = 0.96 and different values of ρ, using the iterative scheme (25).
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FIGURE 8 | Evolution of the chaotic system (23) for τ = 0.98 and different values of ρ, using the iterative scheme (25).
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FIGURE 9 | Evolution of the chaotic system (26) for τ = 0.7 and different values of ρ, using the iterative scheme (27).
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FIGURE 10 | Evolution of the chaotic system (26) for τ = 0.9 and different values of ρ, using the iterative scheme (27).
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FIGURE 11 | Evolution of the chaotic system (26) for τ = 0.7 and different values of ρ, using the iterative scheme (28).
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FIGURE 12 | Evolution of the chaotic system (26) for τ = 0.9 and different values of ρ, using the iterative scheme (28).
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For this system, from (14) we obtain the following
iterative scheme:

xn = x0 + τ1tρ

(
ξnt

τ−1
0

[
A
(
y0 − x0

)]
+

n∑

i=0

Dn−it
τ−1
i

[
A
(
yi − xi

)]
)
,

yn = y0 + τ1tρ

(
ξnt

τ−1
0

[
(C− A) x0 −

[
S0z0 − S1 sin(z0)

]
x0 + Cy0

]

+
n∑

i=0

Dn−it
τ−1
i

[
(C− A) x0 −

[
S0zi − S1 sin(zi)

]
xi + Cyi

]
)
,

zn = z0 + τ1tρ

(
ξnt

τ−1
0

[
x0y0 − Bz0

]
+

n∑

i=0

Dn−it
τ−1
i

[
xiyi − Bzi

]
)
.

(27)
Moreover, from (19), the approximate solution is obtained as

xn = x0 +
τ − τρ

AB(ρ)
tτ−1
n

[
A
(
yn − xn

)]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
A
(
y0 − x0

)]
+

n∑

i=0

Dn−it
τ−1
i

[
A
(
yi − xi

)]
)
,

yn = y0 +
τ − τρ

AB(ρ)
tτ−1
n

[
(C− A) x0 −

[
S0zn − S1 sin(zn)

]
xn + Cyn

]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
(C− A) x0 −

[
S0z0 − S1 sin(z0)

]
x0 + Cy0

]

+
n∑

i=0

Dn−it
τ−1
i

[
(C− A) x0 −

[
S0zi − S1 sin(zi)

]
xi + Cyi

]
)
,

zn = z0 +
τ − τρ

AB(ρ)
tτ−1
n

[
xnyn − Bzn

]

+
τρ1tρ

AB(ρ)

(
ξnt

τ−1
0

[
x0y0 − Bz0

]
+

n∑

i=0

Dn−it
τ−1
i

[
xiyi − Bzi

]
)
.

(28)

Figures 9–12 show the portraits corresponding to the chaotic
system in (26) obtained using (27) and (28). The parameters for
the model are A = 50,B = 2,C = 30, S1 = 1, and S2 = 20. We

used the initial guess (x0, y0, z0) = (2, 1, 1) for different fractional
orders of ρ.

5. CONCLUSION

Although many numerical methods are available, the
development of new efficient numerical schemes has always been
one of the most important concerns in applied mathematics
and engineering. A foremost reason for the widespread interest
in new numerical methods is that they may reveal new facts
about real-world phenomena. This paper has presented some
efficient approximate methods for solving chaotic systems that
use new definitions for the derivative, called fractal-fractional
derivatives. The concept of memory is one of the most important
features of these types of derivatives. With this valuable feature,
the evolution of the phenomena modeled by such systems can be
more accurately predicted. The proposed new techniques have
been tested by using them to solve several important practical
problems. Application of the methods to these problems revealed
very interesting behaviors of the systems that have meaningful
interpretations. The numerical methods presented in this article
have the potential to be used for solving similar models. Since

any new numerical method should be validated in terms of
convergence, stability and consistency of solutions, these are
important research directions left to future work.
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For different nonlinear time-conformable derivative models, a versatile built-in gadget,

namely the generalized exp(−ϕ(ξ ))-expansion (GEE) method, is devoted to retrieving

different categories of new explicit solutions. These models include the time-fractional

approximate long-wave equations, the time-fractional variant-Boussinesq equations, and

the time-fractional Wu-Zhang system of equations. The GEE technique is investigated

with the help of fractional complex transform and conformable derivative. As a result,

we found four types of exact solutions involving hyperbolic function, periodic function,

rational functional, and exponential function solutions. The physical significance of the

explored solutions depends on the choice of arbitrary parameter values. Finally, we

conclude that the GEE method is more effective in establishing the explicit new exact

solutions than the exp(−ϕ(ξ ))-expansion method.

Keywords: time-fractional approximate long-wave equations, time-fractional variant-Boussinesq equations,

time-fractional Wu-Zhang system of equations, the GEE method, exact solutions

INTRODUCTION

Analytical solutions of the non-linear partial differential equation (NPDEs) are significantly
more important for describing the physical meaning for any real-world problems. Due to the
rapid expansion of computer technologies and computer-based symbolic tools, researchers have
concentrated increasingly on the analytical and numerical solutions for the NPDEs, including
integer and fractional orders. During recent decades, several analytical and semi-analytical
methods, such as the improved fractional sub-equation [1], the exp function method [2, 3], the
G′/G-expansion [4–7], the tan (8 (ξ) /2)-expansion [8], the modified Kudryashov [9, 10], the new
extended direct algebraic [11], the extended exp(−ϕ(ξ ))-expansion [12], the RB sub-ODE [13], the
sine-Gordon expansion [14–16], the unified [17, 18], and the generalized unified [19, 20] methods,
have been investigated and also employed for acquiring the new exact solutions of the well-known
NPDEs that arise in applied sciences. Presenting new exact solution of PDEs provides a better
understanding of the phenomena, which are governed by three special form of time-fractional
WKB equations.

74

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00177
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00177&domain=pdf&date_stamp=2020-06-16
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mkaplan@kastamonu.edu.tr
mailto:mofatzi@sci.cu.edu.eg
mailto:dumitru.baleanu@gmail.com
https://doi.org/10.3389/fphy.2020.00177
https://www.frontiersin.org/articles/10.3389/fphy.2020.00177/full
http://loop.frontiersin.org/people/939473/overview
http://loop.frontiersin.org/people/906891/overview
http://loop.frontiersin.org/people/869922/overview
http://loop.frontiersin.org/people/73178/overview


Kumar et al. Different Models With Conformable Derivative

The time-fractional Whitham-Broer-Kaup (WBK) equation
has the following structure [21]

Dα
t u+ uux + vx + βuxx = 0

Dα
t v+ (uv)x − βvxx + γuxxx = 0

}
, t ≥ 0, 0 < α ≤ 1. (1)

Eq. (1) describes the dispersive long wave in shallow water
[22] where u = u(x, t) is the velocity field in the horizontal
direction, v = v(x, t) is he height which deviates from the liquid
balance position, and β and γ are real parameters [23]. Dα

t (.) is
conformable derivative of order α. In the past, many researchers
studied the WBK equation via different analytical approaches
according to their field, particularly within mathematical physics
and ocean engineering. For instance, Guo et al. [24] employed
the improved sub-equationmethod to extract analytical solutions
for space- and time-fractional WBK equations. El-Borai et al.
[25] applied the exp-function method under the sense of the
modified Riemann-Liouville derivative for solving the time-
fractional coupled WBK equations.

If we choose the free parameters as β = 1
2 and γ = 0, Eq.

(1) is converted to the time-fractional approximate long-wave
equations [21]:

Dα
t u+ uux + vx + 1

2uxx = 0

Dα
t v+ (uv)x − 1

2vxx = 0

}
, t ≥ 0, 0 < α ≤ 1. (2)

In past, Eq. (2) have been solved by the fractional sub-

equation method [26], the G
′
/G-expansion method [24], and the

generalized Kudryashov method [27] for establishing different
wave solutions.

Again, we substitute β = 0 and γ = 1 in Eq. (1), and Eq. (1)
is converted to the following time-fractional variant Boussinesq
equations [21]:

Dα
t u+ uux + vx = 0

Dα
t v+ (uv)x + uxxx = 0

}
, t ≥ 0, 0 < α ≤ 1. (3)

Equation (3) was solved by Yan [26] by using fractional
sub-equation method. The improved fractional sub-
equation method [24] was applied for producing the new
generalized exact solutions of the space–time-fractional variant
Boussinesq equations.

Finally, if we choose the free parameter values β = 0 and
γ = 1

3 in Eq. (1), Eq. (1) is the converted to the following
time-fractional Wu-Zhang system of equations [27]:

Dα
t u+ uux + vx = 0

Dα
t v+ (uv)x + 1

3uxxx = 0

}
, t ≥ 0, 0 < α ≤ 1. (4)

Eslami et al. [27] solved the time-fractional Wu-Zhang system
of equations using the first integral method by considering
conformable fractional sense.

If we consider α = 1in Eq. (1), then it is converted to the
classical coupled WBK equation, which was first introduced by
Whitham [28], Broer [29], and Kaup [30]. When α = 1, β 6= 0,
and γ = 1, Eq. (1) is the classical long-wave equation that
describes the shallow water wave with diffusion. When α =

1, β = 0, and γ = 1, Eq. (1) reduces the classical variant
Boussinesq equations [31], and when α = 1, β = 0 and γ =
1/3, Eq. (1) reduces the classical Wu-Zhang system of equations
[32]. Sometimes, the classical Wu-Zhang system of equations
are introduced by the (1+1) dimensional dispersive long-wave
equations [33–35].

For the simplicity of the solutions, we did not consider
solving the time-fractional WKB equations by the generalized
exp (−ϕ(ξ))-expansion method. The main aim of this work is
to construct the new exact traveling wave solutions of the three-
special form of time-fractional WKB equations, such as the time-
fractional approximate long-wave equations, the time-fractional
variant Boussinesq equations, and the time-fractional Wu-
Zhang system of equations using the generalized exp (−ϕ(ξ))-
expansion method with a conformable derivative sense. The
generalized exp (−ϕ(ξ))-expansion method is an effectual and
easily applicable technique that is used to investigate the new
exact solution for different integer- and fractional-order PDEs.
Very recently, Lu et al. [36] used the generalized exp (−ϕ(ξ))-
expansion method and construct the exact solutions of space–
time-fractional generalized fifth-order KdV equation with
Jumarie’s modified Riemann-Liouville derivatives.

The rest of the paper is arranged as follows. In section
Conformable derivative and the generalized exp (−ϕ(ξ))-
expansion method, some basic definitions of conformable
derivative and the main steps of the generalized exp (−ϕ(ξ))-
expansion method are given. In section Application of the
generalized exp (−ϕ(ξ))-expansionmethod, we look for the exact
solutions of Eq. (2) to Eq. (4) via the generalized exp (−ϕ(ξ))-
expansion method. Finally, a brief conclusion is provided in the
last section.

THE CONFORMABLE DERIVATIVE AND
THE GENERALIZED
exp(−ϕ(ξ))-EXPANSION METHOD

Khalil et al. [37] started to give us the first definition of the
conformable derivative (CD) with a limit operator as follows.

Definition 1. If f :(0,∞) → R, then the CFD of f order α is
defined as

Dα
t f (t) = lim

ε→0

f
(
t + εt1−α

)
− f (t)

ε
, for all t > 0, 0 < α ≤ 1.

The CD satisfies some workable features that are demonstrated
in the following theorems [37–41].

Theorem 1. Let α ∈ (0, 1] and f = f (t) , g = g(t) be
α-conformable differentiable at a point t > 0, then

(i) Dα
t

(
af + bg

)
= aDα

t f + bDα
t g, for all a, b ∈ R,

(ii) Dα
t

(
tµ
)
= µtµ−α , for all µ ∈ R,

(iii) Dα
t

(
fg
)
= gDα

t

(
f
)
+ fDα

t

(
g
)
,

(iv) Dα
t

(
f

g

)
=

gDα
t

(
f
)
− fDα

t

(
g
)

g2
.

Furthermore, if f is differentiable, then Dα
t

(
f (t)

)
= t1− α df

dt
.
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Theorem 2. Let f :(0,∝) → R be a function such that f is
differentiable and α-conformable differentiable. Also, let g be a
differentiable function defined in the range of f . Then

Dα
t

(
fog
)
(t) = t1−αg(t)α−1g′(t)Dα

t

(
f (t)

)
t=g(t)

where prime denotes the classical derivatives with respect to t.
Now, we impose the generalized exp (−ϕ(ξ))-expansion

method for solving some fractional differential equations. In
this respect, we described the essential steps of the generalized
exp (−ϕ(ξ))- expansion method [36] as follows.

Step-1: Suppose that a general form of the non-linear FDEs,
say in two independent variables x and t, is given by

P1
(
u, v,Dα

t u,D
α
t v,D

2α
t u,D2α

t v, ux, vx, uxx, vxx, . . . . . .
)
= 0

P2
(
u, v,Dα

t u,D
α
t v,D

2α
t u,D2α

t v, ux, vx, uxx, vxx, . . . . . .
)
= 0

}

, 0 < α ≤ 1, t > 0,(5)

where Dα
t u and Dα

t v are conformable derivatives of u and v,
respectively, u = u(x, t) and v = v(x, t) are an unknown
functions, and P1 and P2 are a polynomial in their arguments.

Step-2: To construct the exact solution of Eq. (5), we
introduce the variable transformation, combine the real variables
x and t by a compound variable ξ

u = U (ξ) and v = V (ξ) , ξ = x−
( c

α

)
tα , (6)

where, c is a constant which is determined later. The traveling
wave transformation of Eq. (6) converts Eq. (5) into an ordinary
differential equation (ODE) for u = U (ξ) and v = V (ξ ):

Q1

(
U, V ,U ′, V ′,U ′′,V ′′, . . . . . .

)
= 0

Q1

(
U, V ,U ′, V ′,U ′′,V ′′, . . . . . .

)
= 0

}
, (7)

whereQ1andQ2 are a polynomial ofU, V, and its derivatives with
respect to ξ.

Step 3: Suppose that the traveling wave solution of system Eq.
(7) can be presented as follows

U (ξ) = a0 +
∑m

i=1 ai
(
exp (−ϕ (ξ))

)i

V (ξ) = b0 +
∑n

i=1 bi
(
exp (−ϕ (ξ))

)i

}
, (8)

where the arbitrary constants ai(i = 1, 2 . . . ,m) and bi(i =
1, 2 . . . , n) are determined latter, but am 6= 0 and bn 6= 0 and
also m and n are a positive integer, which can be determined by
using homogeneous balance principle on Eq. (7), and ϕ = ϕ(ξ )
satisfies the following new ansatz equation

ϕ′ (ξ) = p exp (−ϕ (ξ)) + q exp (ϕ (ξ)) + r (9)

where p, q, and r are constant. The general solutions of the
equation are the following.

Case-I:When p = 1 and 1 = r2 − 4q, one obtains 8.510.5

ϕ (ξ) = ln

(
−
√

1 tanh
(
1
2

√
1 (ξ+E)

)
−r

2q

)
, q 6= 0,

1 = r2 − 4q > 0

ϕ (ξ) = ln

(
−
√

1 coth
(
1
2

√
1 (ξ+E)

)
−r

2q

)
, q 6= 0,

1 = r2 − 4q > 0





, (10)

ϕ (ξ) = ln

(√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r

2q

)
, q 6= 0,

1 = r2 − 4q < 0

ϕ (ξ) = ln

(√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

2q

)
, q 6= 0,

1 = r2 − 4q < 0





, (11)

ϕ (ξ) = − ln

(
r

exp (r (ξ + E)) − 1

)
,

q = 0, r 6= 0, = r2 − 4q > 0, (12)

and

ϕ (ξ) = ln

(
−
2 (r (ξ + E) + 2)

r2 (ξ + E)

)
,

q 6= 0, r 6= 0, 1 = r2 − 4q = 0. (13)

Case-II:When r = 0, one obtains

ϕ (ξ) = ln

(√
p

q
tan

(√
pq (ξ + E)

))
, p > 0, q > 0. (14)

ϕ (ξ) = ln

(
−
√
p

q
cot
(√

pq (ξ + E)
))

, p < 0, q < 0. (15)

ϕ (ξ) = ln

(√
−
p

q
tanh

(√
−pq (ξ + E)

))
,

p > 0, q < 0. (16)

ϕ (ξ) = ln

(
−
√
−
p

q
coth

(√
−pq (ξ + E)

))
,

p < 0, q > 0. (17)

Case-III:When q = 0 and r = 0, one obtains

ϕ (ξ) = ln
(
p (ξ + E)

)
. (18)

For all cases, E is the integrating constant.
Step 4: Inserting Eq. (9) in Eq. (8) and compiling the terms

in the resulting equation yields a set of algebraic non-linear
equations. Finally, by solving this set we reach the exact solutions
of the non-linear fractional PDEs.

APPLICATION OF THE GENERALIZED
exp(−ϕ(ξ ))-EXPANSION METHOD

In this part, we will execute the generalized exp(−ϕ(ξ ))-
expansion method to solve three well-known non-linear
fractional partial differential equations in shallow water, namely,
the time-fractional approximate long wave (ALW) equations,
the time-fractional variant-Boussinesq equations, and the time-
fractional Wu-Zhang system of equations. All the above
mentioned equations are the special-form WBK equations that
describe the physical phenomena arising in fluid mechanics.

The Time-Fractional ALW Equations
Let us consider the time-fractional ALW equations

Dα
t u+ uux + vx + 1

2uxx = 0

Dα
t v+ (uv)x − 1

2vxx = 0

}
, t ≥ 0, 0 < α ≤ 1. (19)
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Now, applying under the traveling wave transformation of Eq.
(6), Eq. (19) reduces to a non-linear ODE as

−cU ′ + UU ′ + V ′ + 1
2U

′′ = 0

−cV ′ + (UV)′ − 1
2V

′′ = 0

}
. (20)

This integrates with respect to ξ of Eq. (20) and considers that the
integration constant is zero. Eq. (20) then yields

−cU + 1
2U

2 + V + 1
2U

′ = 0

−cV + UV − 1
2V

′ = 0

}
. (21)

The balancing rule in Eq. (21) yieldsm = 1 and n = 2, assuming
the general solution Eq. (21) in the presence Eq. (8) is given by

U (ξ) = a0 + a1exp(−ϕ(ξ))

V (ξ) = b0 + b1exp(−ϕ(ξ)) + b2exp(−2ϕ(ξ))

}
, (22)

where a1 6= 0 and b2 6= 0.
Plugging Eq. (22) into Eq. (21), we obtain a set of an algebraic

non-linear equations that solve to
Set-1: a0 = − 1

2 r +
1
2

√
−4pq+ r2, a1 = −p, b0 =

−pq, b1 = −pr, b2 = −p2

and c = 1
2

√
−4pq+ r2, −4pq+ r2 > 0.

By putting the values of Set-1 into Eq. (22) along with the Eq. (10)
to Eq. (18), we obtain the following traveling wave solutions for
the time-fractional ALW equations.
For p= 1:

u1 (x, t) = − 1
2 r +

1
2

√
r2 − 4q

+ 2q
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

v1 (x, t) = −q+ 2rq
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

− 4q2(√
1 tan h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (23)

u2 (x, t) = − 1
2 r +

1
2

√
r2 − 4q

+ 2q
√

1 cot h
(
1
2

√
1 (ξ+E)

)
+r

v2 (x, t) = −q+ 2rq
√

1 cot h
(
1
2
√

(ξ+E)

)
+r

− 4q2(√
1 cot h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (24)

u3 (x, t) = − 1
2 r +

1
2

√
r2 − 4q

− 2q√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r

v3 (x, t) = −q− 2rq√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r

− 4q2(√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (25)

u4 (x, t) = − 1
2 r +

1
2

√
r2 − 4q

− 2q√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

v4 (x, t) = −q− 2rq√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

− 4q2(√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (26)

u5 (x, t) = − 1
2 r +

1
2

√
r2 − 4q− r

er(ξ+E)−1

v5 (x, t) = −q− r2

er(ξ+E)−1
− r2

(er(ξ+E)−1)
2



 , (27)

and

u6 (x, t) = − 1
2 r +

1
2

√
r2 − 4q+ 1

2
r2(ξ+E)
r(ξ+E)+2

v6 (x, t) = −q+ 1
2

r3(ξ+E)
r(ξ+E)+2 −

1
4

(
r2(ξ+E)
r(ξ+E)+2

)2



 , (28)

where, ξ = x−
(
1
2

√
r2 − 4q

)
tα

α
and= r2 − 4q > 0.

For r= 0:

u7 (x, t) = 1
2

√
−4pq+

√
pq

tan(
√
pq(ξ+E))

v7 (x, t) = −pq−
( √

pq

tan(
√
pq(ξ+E))

)2



 , (29)

u8 (x, t) = 1
2

√
−4pq+

√
pq

cot(
√
pq(ξ+E))

v8 (x, t) = −pq−
( √

pq

cot(
√
pq(ξ+E))

)2



 , (30)

u9 (x, t) = 1
2

√
−4pq−

√−pq

tanh(
√−pq(ξ+E))

v9 (x, t) = −pq+
( √

pq

tanh(
√
pq(ξ+E))

)2



 , (31)

and

u10 (x, t) = 1
2

√
−4pq+

√−pq

coth(
√−pq(ξ+E))

v10 (x, t) = −pq+
( √

pq

coth(
√−pq(ξ+E))

)2



 , (32)

where, ξ = x−
(
1
2

√
−4pq

)
tα

α
, pq < 0.

For q = 0 and r = 0:

u11 (x, t) = − 1
x+E

v11 (x, t) = −
(

1
x+E

)2
}
, (33)

Set-2: a0 = − 1
2 r −

1
2

√
−4pq+ r2, a1 = −p, b0 = −pq, b1 =

−pr, b2 = − p2

and c = − 1
2

√
−4pq+ r2, −4pq+ r2 > 0.

Consequently, by substituting the values of Set-2 into Eq. (22)
along with the Eq. (10) to Eq. (18), we produce the following
traveling wave solutions for the time-fractional ALW equations.

For p= 1:

u12 (x, t) = − 1
2 r −

1
2

√
r2 − 4q

+ 2q
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

v12 (x, t) = −q+ 2rq
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

− 4q2(√
1 tan h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (34)

u13 (x, t) = − 1
2 r −

1
2

√
r2 − 4q

+ 2q
√

1 cot h
(
1
2

√
1 (ξ+E)

)
+r

v13 (x, t) = −q+ 2rq
√

1 cot h
(
1
2

√
1 (ξ+E)

)
+r

− 4q2(√
1 cot h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (35)
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u14 (x, t) = − 1
2 r −

1
2

√
r2 − 4q

− 2q√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r

v14 (x, t) = −q− 2rq√
−1 tan

(
1
2

√
− (ξ+E)

)
−r

− 4q2(√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (36)

u15 (x, t) = − 1
2 r −

1
2

√
r2 − 4q

− 2q√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

v15 (x, t) = −q− 2rq√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

− 4q2(√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (37)

u16 (x, t) = − 1
2 r −

1
2

√
r2 − 4q− r

er(ξ+E)−1

v16 (x, t) = −q− r2

er(ξ+E)−1
− r2

(er(ξ+E)−1)
2



 , (38)

and

u17 (x, t) = − 1
2 r −

1
2

√
r2 − 4q+ 1

2
r2(ξ+E)
r(ξ+E)+2

v17 (x, t) = −q+ 1
2

r3(ξ+E)
r(ξ+E)+2 −

1
4

(
r2(ξ+E)
r(ξ+E)+2

)2



 , (39)

where, ξ = x+
(
1
2

√
r2 − 4q

)
tα

α
and= r2 − 4q > 0.

For r= 0:

u18 (x, t) = − 1
2

√
−4pq−

√
pq

tan(
√
pq(ξ+E))

v18 (x, t) = −pq−
( √

pq

tan(
√
pq(ξ+E))

)2



 , (40)

u19 (x, t) = − 1
2

√
−4pq+

√
pq

cot(
√
pq(ξ+E))

v19 (x, t) = −pq−
( √

pq

cot(
√
pq(ξ+E))

)2



 , (41)

u20 (x, t) = − 1
2

√
−4pq−

√
pq

tanh(
√−pq(ξ+E))

v20 (x, t) = −pq+
( √

pq

tanh(
√−pq(ξ+E))

)2



 , (42)

and

u21 (x, t) = − 1
2

√
−4pq+

√−pq

coth(
√−pq(ξ+E))

v21 (x, t) = −pq+
( √

pq

coth(
√−pq(ξ+E))

)2



 , (43)

where, ξ = x+
(
1
2

√
−4pq

)
tα

α
, pq < 0.

For q = 0 and r = 0:

u22 (x, t) = − 1
x+E

v22 (x, t) = −
(

1
x+E

)2
}
, (44)

Figures 1, 2 represent the solutions given by Eq. (23) for different
values of α when r = 3, q = 2, and E = 0.

The Time-Fractional Variant-Boussinesq Equations
Let us consider the time-fractional variant-Boussinesq equations

Dα
t u+ uux + vx = 0

Dα
t v+ (uv)x + uxxx = 0

}
, t ≥ 0, 0 < α ≤ 1. (45)

Now, applying under the traveling wave transformation of Eq.
(6), Eq. (45) reduces to a non-linear ODE as

−cU ′ + UU ′ + V ′ = 0
−cV ′ + (UV) ′ + U ′′′ = 0

}
. (46)

This integrates with respect to ξ of Eq. (46) and considers the
integration constant to be zero. Eq. (46) then yields

−cU + 1
2U

2 + V = 0
−cV + UV + U ′′ = 0

}
. (47)

From the balancing condition in Eq. (47), we have m = 1 and
n = 2. Now, the formal solution of (47) in the existence of (8)
will be

U (ξ) = a0 + a1 exp (−ϕ (ξ))

V (ξ) = b0 + b1 exp (−ϕ (ξ)) + b2 exp (−2ϕ (ξ))

}
(48)

where a1 6= 0 and b2 6= 0.
By inserting Eq. (48) into Eq. (47) along with Eq. (9) and using

the same techniques investigated in the previous section we get
Set-1: a0 = −r±

√
−4pq+ r2, a1 = −2p, b0 = −2pq, b1 =

−2pr, b2 = −2p2

and c = ±
√
−4pq+ r2, −4pq+ r2 > 0.

Therefore, by substituting the values of Set-1 into Eq. (48),
along with the Eq. (10) to Eq. (18), we generate the
following traveling wave solutions for the time-fractional variant-
Boussinesq equations.

For p= 1:

u1 (x, t) = −r ±
√
r2 − 4q

+ 4q
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

v1 (x, t) = −2q+ 4rq
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

− 8q2(√
1 tan h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (49)

u2 (x, t) = −r ±
√
r2 − 4q

+ 4q
√

1 cot h
(
1
2

√
1 (ξ+E)

)
+r

v2 (x, t) = −2q+ 4rq
√

1 cot h
(
1
2
√

(ξ+E)

)
+r

− 8q2(√
1 cot h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (50)

u3 (x, t) = −r ±
√
r2 − 4q

− 4q√
−1 tan

(
1
2

√
− (ξ+E)

)
−r

v3 (x, t) = −2q− 4rq√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r

− 8q2(√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (51)

u4 (x, t) = −r ±
√
r2 − 4q

− 4q√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

v4 (x, t) = −2q− 4rq√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

− 8q2(√
−1 cot

(
1
2

√
− (ξ+E)

)
−r
)2





, (52)

u5 (x, t) = −r ±
√
r2 − 4q− 2r

er(ξ+E)−1

v5 (x, t) = −2q− 2r2

er(ξ+E)−1
− 2r2

(er(ξ+E)−1)
2



 , (53)

and

u6 (x, t) = −r ±
√
r2 − 4q+ r2(ξ+E)

r(ξ+E)+2

v6 (x, t) = −2q+ r3(ξ+E)
r(ξ+E)+2 −

1
2

(
r2(ξ+E)
r(ξ+E)+2

)2



 (54)
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FIGURE 1 | (A–D) The Solution u_1 (x,t) given by Eq. (23).

where ξ = x∓
(√

r2 − 4q
)

tα

α
and= r2 − 4q > 0.

For r= 0:

u7 (x, t) = ±
√
−4pq− 2

√
pq

tan(
√
pq(ξ+E))

v7 (x, t) = −2pq−
( √

2pq

tan(
√
pq(ξ+E))

)2



 , (55)

u8 (x, t) = ±
√
−4pq+ 2

√
pq

cot(
√
pq(ξ+E))

v8 (x, t) = −2pq−
( √

2pq

cot(
√
pq(ξ+E))

)2



 , (56)

u9 (x, t) = ±
√
−4pq− 2

√−pq

tanh(
√−pq(ξ+E))

v9 (x, t) = −2pq+
( √

2pq

tanh(
√−pq(ξ+E))

)2



 , (57)

u10 (x, t) = ±
√
−4pq+ 2

√−pq

coth(
√−pq(ξ+E))

v10 (x, t) = −2pq+
( √

2pq

coth(
√−pq(ξ+E))

)2



 , (58)

where, ξ = x∓
(√

−4pq
)
tα

α
, pq < 0.

For q = 0 and r = 0:

u11 (x, t) = − 2
x+E

v11 (x, t) = −2
(

1
x+E

)2
}
, (59)

Set-2: a0 = r ±
√
−4pq+ r2, a1 = 2p, b0 = −2pq, b1 =

−2pr, b2 = −2p2

and c = ±
√
−4pq+ r2, −4pq+ r2 > 0.

Consequently, by substituting the values of Set-2 into Eq.
(48) along with the Eq. (10) to Eq. (18), we generate the
following traveling wave solutions for the time-fractional variant-
Boussinesq equations:

For p= 1:

u12 (x, t) = r ±
√
r2 − 4q

− 4q
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

v12 (x, t) = −2q+ 4rq
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

− 8q2(√
1 tan h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (60)

u13 (x, t) = r ±
√
r2 − 4q

− 4q
√

1 cot h
(
1
2

√
1 (ξ+E)

)
+r

v13 (x, t) = −2q+ 4rq
√

1 cot h
(
1
2
√

(ξ+E)

)
+r

− 8q2(√
1 cot h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (61)
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FIGURE 2 | (A–D) The Solution v_1 (x,t) given by Eq. (23).

u14 (x, t) = r ±
√
r2 − 4q

+ 4q√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r

v14 (x, t) = −2q− 4rq√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r

− 8q2(√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (62)

u15 (x, t) = r ±
√
r2 − 4q

+ 4q√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

v15 (x, t) = −2q− 4rq√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r

− 8q2(√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (63)

u16 (x, t) = r ±
√
r2 − 4q+ 2r

er(ξ+E)−1

v16 (x, t) = −2q− 2r2

er(ξ+E)−1
− 2r2

(er(ξ+E)−1)
2



 , (64)

u17 (x, t) = r ±
√
r2 − 4q− r2(ξ+E)

r(ξ+E)+2

and

v17 (x, t) = −2q+ r3(ξ+E)
r(ξ+E)+2 −

1
2

(
r2(ξ+E)
r(ξ+E)+2

)2




,

where, ξ = x∓
(√

r2 − 4q
)

tα

α
and= r2 − 4q > 0.

For r= 0:

u18 (x, t) = ±
√
−4pq+ 2

√
pq

tan((ξ+E))

v18 (x, t) = −2pq−
( √

2pq
tan((ξ+E))

)2



 , (65)

u19 (x, t) = ±
√
−4pq− 2

√
pq

cot((ξ+E))

v19 (x, t) = −2pq−
( √

2pq
cot((ξ+E))

)2



 , (66)

u20 (x, t) = ±
√
−4pq+ 2

√−pq
tanh((ξ+E))

v20 (x, t) = −2pq+
( √

2pq
tanh((ξ+E))

)2



 , (67)

and

u21 (x, t) = ±
√
−4pq− 2

√−pq
coth((ξ+E))

v21 (x, t) = −2pq+
( √

2pq
coth((ξ+E))

)2



 , (68)

where, ξ = x∓
(√

−4pq
)
tα

α
, pq < 0.

For q = 0 and r = 0:

u22 (x, t) = 2
x+E

v22 (x, t) = −2
(

1
x+E

)2
}
. (69)

Figures 3, 4 represent the solutions given by Eq. (50) for different
values of α when r = 3, q = 2 and E = 0.

The Time-Fractional Wu-Zhang System of Equations
Let us consider the time-fractional Wu-Zhang system
of equations

Dα
t u+ uux + vx = 0

Dα
t v+ (uv)x + 1

3uxxx = 0

}
, t ≥ 0, 0 < α ≤ 1. (70)
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FIGURE 3 | (A–D) The Solution u_2 (x,t) given by Eq. (50).

Now, applying under the traveling wave transformation of Eq.
(6), Eq. (71) reduces to a non-linear ODE as

−cU ′ + UU ′ + V ′ = 0

−cV ′ + (UV) ′ + 1
3U

′′′ = 0

}
. (71)

Integrating with respect to ξ of Eq. (71) and considering the
integration constant is zero. Then Eq. (72) yields

−cU + 1
2U

2 + V = 0

−cV + UV + 1
3U

′′ = 0

}
, (72)

Following the steps given in the last two sections we reach to
m = 1 and n = 2. Consequently, the general solution will take
the form

U (ξ) = a0 + a1 exp (−ϕ (ξ))

V (ξ) = b0 + b1 exp (−ϕ (ξ)) + b2 exp (−2ϕ (ξ))

}
, (73)

where a1 6= 0 and b2 6= 0.
Put Eq. (74) into Eq. (73) along with Eq. (9), and we get a new

system of algebraic equations that solve to

Set-1: a0 = 1
3

√
3 r ± 1

3

√
3
(
r2 − 4pq

)
, a1 = 2

3

√
3p, b0 =

− 2
3pq, b1 = − 2

3pr, b2 = − 2
3p

2

and c = ± 1
3

√
3
(
r2 − 4pq

)
, −4pq+ r2 > 0.

Therefore, by substituting the values of Set-1 into Eq. (74)
along with the Eq. (10) to Eq. (18), we generate the following

traveling wave solutions for the time-fractional Wu-Zhang
system of equations.

For p= 1:

u1 (x, t) = 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)

− 4
3

√
3 q

√
1 tan h

(
1
2

√
1 (ξ+E)

)
+r

v1 (x, t) = − 2
3q+

4
3

rq
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

− 8
3

q2(√
1 tan h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (74)

u2 (x, t) = 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)

− 4
3

√
3 q

√
1 cot h

(
1
2

√
1 (ξ+E)

)
+r

v2 (x, t) = − 2
3q+

4
3

rq
√

1 cot h
(
1
2

√
1 (ξ+E)

)
+r

− 8
3

q2(√
cot h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (75)

u3 (x, t) = 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)

+ 4
3

√
3 q√

−1 tan
(
1
2

√
−1 (ξ+E)

)
−r

v3 (x, t) = − 2
3q−

4
3

rq√
−1 tan

(
1
2

√
−1 (ξ+E)

)
+r

− 8
3

q2(√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (76)
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FIGURE 4 | (A–D) The Solution v_2 (x,t) given by Eq. (50).

u4 (x, t) = 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)

+ 4
3

√
3 q√

−1 cot
(
1
2

√
−1 (ξ+E)

)
−r

v4 (x, t) = − 2
3q−

4
3

rq√
−1 cot

(
1
2

√
−1 (ξ+E)

)
+r

− 8
3

q2(√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (77)

u5 (x, t) = 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)
+ 2

3

√
3 r

er(ξ+E)−1

v5 (x, t) = − 2
3q−

2
3

r2

er(ξ+E)−1
− 2

3
r2

(er(ξ+E)−1)
2



 , (78)

and

u6 (x, t) = 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)
− 1

3

√
3 r2(ξ+E)
r(ξ+E)+2

v6 (x, t) = − 2
3q+

1
3

r3(ξ+E)
r(ξ+E)+2 −

1
6

(
r2(ξ+E)
r(ξ+E)+2

)2



 , (79)

where, ξ = x∓
(
1
3

√
3
(
r2 − 4q

))
tα

α
and 1 = r2 − 4q > 0.

For r= 0:

u7 (x, t) = ± 2
3

√
−3pq+ 2

3

√
3pq

tan(
√
pq(ξ+E))

v7 (x, t) = − 2
3pq−

2
3

( √
pq

tan(
√
pq(ξ+E))

)2



 , (80)

u8 (x, t) = ± 2
3

√
−3pq− 2

3

√
3pq

cot(
√
pq(ξ+E))

v8 (x, t) = − 2
3pq−

2
3

( √
pq

cot(
√
pq(ξ+E))

)2



 , (81)

u9 (x, t) = ± 2
3

√
−3pq+ 2

3

√
−3pq

tanh(
√−pq(ξ+E))

v9 (x, t) = − 2
3pq+

2
3

( √
pq

tanh(
√−pq(ξ+E))

)2



 , (82)

and

u10 (x, t) = ± 2
3

√
−3pq− 2

3

√
−3pq

coth(
√−pq(ξ+E))

v10 (x, t) = − 2
3pq+

2
3

( √
pq

coth(
√−pq(ξ+E))

)2



 , (83)

where, ξ = x∓
(
2
3

√
−3pq

)
tα

α
, pq < 0.

For q = 0 and r = 0:

u11 (x, t) = 2
3

√
3

x+E

v11 (x, t) = − 2
3

(
1

x+E

)2



 . (84)

Set-2: a0 = − 1
3

√
3 r ± 1

3

√
3
(
r2 − 4pq

)
, a1 = − 2

3

√
3p, b0 =

− 2
3pq, b1 = − 2

3pr, b2 = − 2
3p

2

and c = ± 1
3

√
3
(
r2 − 4pq

)
, −4pq+ r2 > 0.

Consequently, by substituting the values of Set-2 into Eq. (74)
along with the Eq. (10) to Eq. (18), we generate the following
traveling wave solutions for the time-fractional Wu-Zhang
system of equations.
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FIGURE 5 | (A–D) The Solution u_5 (x,t) given by Eq. (79).

For p= 1:

u12 (x, t) = − 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)

+ 4
3

√
3 q

√
1 tan h

(
1
2

√
1 (ξ+E)

)
+r

v12 (x, t) = − 2
3q+

4
3

rq
√

1 tan h
(
1
2

√
1 (ξ+E)

)
+r

− 8
3

q2(√
1 tan h

(
1
2

√
1 (ξ+E)

)
+r
)2





, (85)

u13 (x, t) = − 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)

+ 4
3

√
3 q

√
1 cot h

(
1
2

√
1 (ξ+E)

)
+r

v13 (x, t) = − 2
3q+

4
3

rq
√

1 cot h
(
1
2

√
1 (ξ+E)

)
+r

− 8
3

q2(√
1 cot h

(
1
2

√
1 (ξ+E)

)
+r
)2





(86)

u14 (x, t) = − 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)

− 4
3

√
3 q√

−1 tan
(
1
2

√
−1 (ξ+E)

)
−r

v14 (x, t) = − 2
3q+

4
3

rq√
−1 tan

(
1
2

√
−1 (ξ+E)

)
+r

− 8
3

q2(√
−1 tan

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (87)

u15 (x, t) = − 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)

− 4
3

√
3 q√

−1 cot
(
1
2

√
−1 (ξ+E)

)
−r

v15 (x, t) = − 2
3q−

4
3

rq√
−1 cot

(
1
2

√
−1 (ξ+E)

)
+r

− 8
3

q2(√
−1 cot

(
1
2

√
−1 (ξ+E)

)
−r
)2





, (88)

u16 (x, t) = − 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)
− 2

3

√
3 r

er(ξ+E)−1

v16 (x, t) = − 2
3q−

2
3

r2

er(ξ+E)−1
− 2

3
r2

(er(ξ+E)−1)
2



 , (89)

and

u17 (x, t) = − 1
3

√
3 r ± 1

3

√
3
(
r2 − 4q

)
+ 1

3

√
3 r2(ξ+E)
r(ξ+E)+2

v17 (x, t) = − 2
3q+

1
3

r3(ξ+E)
r(ξ+E)+2 −

1
6

(
r2(ξ+E)
r(ξ+E)+2

)2



 ,(90)

where, ξ = x∓
(
1
3

√
3
(
r2 − 4q

))
tα

α
and 1 = r2 − 4q > 0.

For r= 0:

u18 (x, t) = ± 2
3

√
−3pq− 2

3

√
3pq

tan((ξ+E))

v18 (x, t) = − 2
3pq−

2
3

( √
pq

tan(
√
pq(ξ+E))

)2



 , (91)

u19 (x, t) = ± 2
3

√
−3pq+ 2

3

√
3pq

cot(
√
pq(ξ+E))

v19 (x, t) = − 2
3pq−

2
3

( √
pq

cot(
√
pq(ξ+E))

)2



 , (92)
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FIGURE 6 | (A–D) The Solution v_5 (x,t) given by Eq. (79).

u20 (x, t) = ± 2
3

√
−3pq− 2

3

√
−3pq

tanh(
√−pq(ξ+E))

v20 (x, t) = − 2
3pq+

2
3

( √−pq

tanh(
√
pq(ξ+E))

)2



 , (93)

and

u21 (x, t) = ± 2
3

√
−3pq+ 2

3

√
−3pq

coth(
√−pq(ξ+E))

v21 (x, t) = − 2
3pq+

2
3

( √
pq

coth(
√−pq(ξ+E))

)2



 , (94)

where, ξ = x∓
(
2
3

√
−3pq

)
tα

α
, pq < 0.

For q = 0 and r = 0:

u22 (x, t) = 2
3

√
3

x+E

v22 (x, t) = − 2
3

(
1

x+E

)2



 . (95)

Figures 5, 6 represent the solutions given by Eq. (79) for different
values of α when r = 3, q = 2 and E = 0.

CONCLUSION

This research successfully applied the generalized exp(−ϕ(ξ ))-
expansion method combined with the complex fractional
transformation and conformable derivative to exactly solve

a special class of time-fractional WBK equations in shallow
water, such as the time-fractional ALW equations, the time-
fractional variant-Boussinesq equations, and the time fractional
Wu-Zhang system of equations. Afterwards, a sequence of new
analytical wave solutions for these models were established.
Finally, some 3D and 2D plots were added for some of the
gained solutions for every model to illustrate the effect of the
parameter α on the behaviors of these solutions. In conclusion,
we found that the method mentioned here—with the aid of
symbolic computations—is aspiring and efficient, and it is a
superior mathematical construction with which to deal with
the NPDEs.
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The boundary value problems (BVPs) have attracted the attention of many scientists

from both practical and theoretical points of view, for these problems have remarkable

applications in different branches of pure and applied sciences. Due to this important

property, this research aims to develop an efficient numerical method for solving a

class of non-linear fractional BVPs. The proposed method is free from perturbation,

discretization, linearization, or restrictive assumptions, and provides the exact solution

in the form of a uniformly convergent series. Moreover, the exact solution is determined

by solving only a sequence of linear BVPs of fractional-order. Hence, from practical

viewpoint, the suggested technique is efficient and easy to implement. To achieve an

approximate solution with enough accuracy, we provide an iterative algorithm that is

also computationally efficient. Finally, four illustrative examples are given verifying the

superiority of the new technique compared to the other existing results.

Keywords: fractional calculus, boundary value problems, series expansion, uniform convergence, iterativemethod

1. INTRODUCTION

The application of boundary value problems (BVPs) can be found in different fields of pure
and applied sciences; for instance, the narrow converting layers bounded by stable layers, which
are believed to surround A-type stars, may be modeled by BVPs [1]. Also, these problems
may model the dynamo action in some stars [2]. More discussions on the application of BVPs
have also been provided in Chandrasekhar [3], Baldwin [4], and Khalid et al. [5]. More to the
point, the approximation schemes to solve non-linear BVPs can be found in different sources of
numerical analysis [6, 7]. In Agarwal [8], Agarwal discussed the existence of unique solution for
these problems; however, no numerical method is contained therein. Boutayeb and Twizell [9]
developed the finite difference methods to solve the above-mentioned problems effectively. They
also improved a second-order method in Twizell and Boutayeb [10] to solve the general and special
BVPs. Besides, Twizell [11] advanced a finite difference scheme of order two to investigate the
solution of these problems. However, the existing methods suffer from enormous computational
effort. To solve this difficulty, some alternative schemes have been presented including the Adomian
decompositionmethod (ADM)with Green’s function [12], homotopy perturbationmethod (HPM)
[13], and variational iteration method (VIM) [14].

During the past decades, many scientists have frequently shown that themathematical equations
with fractional calculus architectures can describe the reality more precisely than the classic
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integer models with ordinary time-derivatives [15–19]. Recently,
the advantages of this approach have been extensively
investigated for various practical applications [20–27].
Concerning the fractional BVPs, some noticeable efforts
have been done in Ali et al. [28] and Ugurlu et al. [29]. The
aforesaid problems have also noteworthy real applications in
different areas of science and technology. For instance, a hybrid
Caputo fractional modeling was considered in Baleanu et al. [30]
for thermostat with hybrid boundary conditions. In Patnaik et al.
[31], the application of a fractional-order non-local continuum
model was studied for a Euler-Bernoulli beam. The authors
in Salem et al. [32] analyzed the coupled system of non-linear
fractional Langevin equations with multi-point and non-
local integral boundary conditions. The existence of extremal
solutions of fractional Langevin equation involving non-linear
boundary conditions was also investigated in Fazli et al. [33].
However, the properties of fractional BVPs should be studied
deeply and approximation schemes should be continuously
improved solving the above-mentioned problems appropriately.
To this end, some valuable studies have been carried out, and a
number of noteworthy results have been achieved. For instance,
an existence theorem was discussed in Zhang and Su [34] for
a linear fractional differential equation (FDE) with non-linear
boundary conditions by using the method of upper and lower
solutions in reverse order. In Arqub et al. [35], a new kind of
analytical method was proposed to predict and represent the
multiplicity of solutions to non-linear fractional BVPs. In Khalil
et al. [36], the authors studied a coupled system of non-linear
FDEs whose approximate solution was achieved under two
different types of boundary conditions. In Cui et al. [37], a
monotone iterative method was investigated for non-linear
fractional BVPs while the fractional order was considered
between 2 and 3. In Asaduzzaman and Ali [38], the existence of
positive solution was investigated to the BVPs for coupled system
of non-linear FDEs.

Motivated by the aforementioned statement, this manuscript
aims to design a new iterative method to generate the
approximate solution of non-linear fractional BVPs in the form
of uniformly convergent series. The proposed method is free
from perturbation, discretization, linearization, or restrictive
assumptions. Moreover, contrary to the VIM [14] or the ADM
[12], the suggested technique provides the exact solution without
identifying the Lagrange multipliers or calculating the Adomian’s
polynomials. The new scheme just requires solving a sequence
of linear fractional-order BVPs. Finally, four numerical examples
are solved to verify the efficiency of the new technique.

The rest of paper is structured in the following way.
Hereinafter, we review the fractional calculus approach and its
main definitions. Section 3 describes the problem statement. A
numerical technique is extended in section 4 solving non-linear
fractional BVPs. Numerical and comparative results are reported
in section 5, and finally, the paper is finished in section 6 by some
concluding remarks.

2. PRELIMINARIES

This part is devoted to some preliminary results concerning the
fractional operators. In the following, the Caputo derivative and

the Riemann-Liouville integral are introduced, and their main
properties are investigated as well [15].

Definition 2.1. For t ∈ (0,T) and n − 1 < α ≤ n, the αth-order
Caputo derivative of a function x(t) is defined by

C
0D

α
t (x(t)) =

1

Ŵ(n− α)

∫ t

0
(t − τ )n−α−1x(n)(τ )dτ , (1)

where Ŵ(·) is the gamma function. The corresponding Riemann-
Liouville integral is also described as

C
0I

α
t (x(t)) =

1

Ŵ(α)

∫ t

0
(t − τ )α−1x(τ )dτ . (2)

With regard to the Caputo derivative (1), we can write

C
0D

α
t (a1x1(t)+ a2x2(t)) = a1

C
0D

α
t x1(t)+ a2

C
0D

α
t x2(t). (3)

Furthermore, the Caputo derivative of a constant function is zero,
i.e., if x(t) ≡ k, then we have C

0D
α
t k = 0. Additionally, the

derivative and integral operators (1) and (2) satisfy the following
anti-derivative property

C
0I

α
t

[
C
0D

α
t x(t)

]
= x(t)− x(0). (4)

More to the point, the Lipschitz condition is satisfied by the
Caputo derivative (1)

∥∥C
0D

α
t x1(t)−

C
0D

α
t x2(t)

∥∥ ≤ L
∥∥x1(t)− x2(t)

∥∥ , (5)

where L > 0 is the Lipschitz constant.
For additional information, the interested readers can refer to

Kilbas et al. [15].

3. THE STATEMENT OF THE PROBLEM

To formulate a fractional BVP, consider the following FDE

C
0D

α
t (x(t)) = f (x(t), t), n− 1 < α ≤ n, t ∈ (0,T), (6)

where the function f (·) is analytic with regard to its arguments
and f (0, t) = 0, ∀t ∈ (0,T). The expression C

0D
α
t denotes the αth-

order Caputo derivative, and n is an even number. The boundary
conditions for Equation (6) are given by

x(2k)(0) = a2k, x
(2k)(T) = b2k, k = 0, 1, . . . ,

n

2
, (7)

where a2k, b2k (k = 0, 1, . . . , n2 ) are real finite numbers. As
is well-known, the exact solution of the fractional BVP (6)-(7)
can hardly be achieved except in very special cases. Hence, an
efficient iterative technique will be developed hereinafter in order
to derive the corresponding approximate solution.
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4. THE ITERATIVE METHOD

In this section, an efficient iterative method is improved to solve
the fractional BVP (6), (7). To this end, first the following lemma
is presented and proved.

Lemma 4.1. The solution of the fractional BVP (6)-(7) is analytic
with respect to the boundary conditions a2k, b2k, k = 0, 1, . . . , n2 .

Proof: Let x(·) be the solution of the BVP (6)-(7). Define αi =
x(i)(0) and βj = x(j)(T), i, j = 0, . . . , n − 1. Then x(·) is the
solution of the following initial value problems (IVPs)

{
C
0D

α
t (x(t)) = f (x(t), t), n− 1 < α ≤ n, t ∈ (0,T),

x(i)(0) = αi, i = 0, . . . , n− 1,
(8)

{
C
0D

α
t (x(t)) = f (x(t), t), n− 1 < α ≤ n, t ∈ (0,T),

x(j)(T) = βj, j = 0, . . . , n− 1.
(9)

Since f (x(t), t) is assumed to be analytic, x(·), as the solution of the
IVPs (8) and (9), is analytic with respect to αi and βi, respectively
[39]. Thus, x(·), as the solution of the BVP (6)-(7), is analytic with
respect to a2k, b2k, k = 0, 1, . . . , n2 .

Now, we state and prove the following theorem.

Theorem 4.1. The solution of the fractional BVP (6)-(7) is
expressed by the uniformly convergent series x(t) =

∑∞
i=1 x̂i(t),

where x̂i(t) is attained by solving the sequence of linear
fractional BVPs

{
C
0D

α
t (x̂1(t)) = λ1(t)x̂1(t),

x̂
(2k)
1 (0) = a2k, x̂

(2k)
1 (T) = b2k, k = 0, 1, . . . , n2 ,

(10)

and for i = 2, 3, 4, . . .

{
C
0D

α
t (x̂i(t)) = λ1(t)x̂i(t)+ Fi(t, x̂1(t), x̂2(t), . . . , x̂i−1(t)),

x̂
(2k)
i (0) = 0, x̂

(2k)
i (T) = 0, k = 0, 1, . . . , n2 .

(11)
The non-homogeneous term Fi is determined by

Fi(t,x̂1(t), x̂2(t), . . . , x̂i−1(t)) =
i∑

j=2

λj(t)
∑

k1 ,...,ki+1−j

j!

k1! · · · ki+1−j!

i+1−j∏

p=1

x̂
kp
p (t),

(12)

λj(t) = 1
j!

∂ j

∂xj
f (x, t)

∣∣∣
x=0

, and the summation
∑

k1 ,...,ki+1−j

is taken

over all combinations of non-negative integer indices k1 through
ki+1−j such that





i+1−j∑

p=1

kp = j,

i+1−j∑

p=1

pkp = i.

(13)

Proof: By using the Maclaurin series of f (x(t), t) with respect to
x(t), we have

C
0D

α
t (x(t)) = λ1(t)x(t)+ λ2(t)x

2(t)+ λ3(t)x
3(t)+ · · · , (14)

where λj(t) = 1
j!

∂ j

∂xj
f (x, t)

∣∣∣
x=0

. Besides, the solution of

the fractional BVP (6)-(7) for an arbitrary vector xb =(
a0, a2, . . . , an, b0, b2, . . . , bn

)
is expressed by

x(t) = g(xb, t), (15)

where the vector function g :Rn × (0,T) → R is analytic based
on Lemma 4.1. In addition, we have g(0, t) = 0, ∀t ∈ (0,T), since
we have assumed that f (0, t) = 0 for all t ∈ (0,T). Therefore, by
applying the Maclaurin series of g(xb, t) with respect to xb, from
Equation (15) we derive

x(t) = g(xb, t)
∣∣
xb=0︸ ︷︷ ︸

0

+
∂

∂xb
g(xb, t)

∣∣∣∣
xb=0

xb

︸ ︷︷ ︸
x̂1(t)

+ xTb


 1

2!

∂2

∂x2
b

g(xb, t)

∣∣∣∣∣
xb=0


 xb

︸ ︷︷ ︸
x̂2(t)

+ · · · .
(16)

Since the function g(xb, t) is analytic with respect to xb, the
Maclaurin series (16) exists and is uniformly convergent. Now,
we perturb the boundary conditions by an arbitrary parameter
ε > 0, i.e., xb → εxb. Then, Equation (16) is reformulated by

x(t) = g(εxb, t) = εx̂1(t)+ ε2x̂2(t)+ · · · . (17)

Substituting x(t) from Equation (17) into the
expansion (14) yields

C
0D

α
t (εx̂1(t)+ ε2x̂2(t)+ · · · ) = λ1(t)

(
εx̂1(t)+ ε2x̂2(t)+ · · ·

)

+λ2(t)
(
εx̂1(t)+ ε2x̂2(t)+ · · ·

)2 + · · · .
(18)

Rearranging Equation (18) with respect to the order of ε results

εC0D
α
t (x̂1(t))+ ε2C0D

α
t (x̂2(t))+ · · · + εiC0D

α
t (x̂i(t))+ · · · =

ε
(
λ1(t)x̂1(t)

)
+ ε2

(
λ1(t)x̂2(t)+ λ2(t)x̂

2
1(t)

)
+ · · ·

+εi
(
λ1(t)x̂i(t)+ Fi(t, x̂1(t), x̂2(t), . . . , x̂i−1(t))

)
+ · · · ,

(19)

where

Fi(t,x̂1(t), x̂2(t), . . . , x̂i−1(t)) =
i∑

j=2

λj(t)
∑

k1,...,ki+1−j

j!

k1! · · · ki+1−j!

i+1−j∏

p=1

x̂
kp
p (t),

(20)
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and the summation
∑

k1 ,...,ki+1−j

is taken over all combinations of

non-negative integer indices k1 through ki+1−j such that





i+1−j∑

p=1

kp = j,

i+1−j∑

p=1

pkp = i.

(21)

Since, Equation (19) must be satisfied for any ε > 0, we should
equalize the coefficient of εi on the left-hand side of Equation (19)
with its corresponding coefficient on the right-hand side. This
procedure yields

ε1 : C0D
α
t (x̂1(t)) = λ1(t)x̂1(t), (22)

ε2 : C0D
α
t (x̂2(t)) = λ1(t)x̂2(t)+ λ2(t)x̂

2
1(t), (23)

...

εi : C0D
α
t (x̂i(t)) = λ1(t)x̂i(t)+ Fi(t, x̂1(t), x̂2(t), . . . , x̂i−1(t)), (24)

...

Now, we put t = 0 and t = T in Equation (17) and in its second-
and fourth-order derivatives in order to achieve the boundary
conditions for the sequence (22)-(24). Again, we should equalize
the coefficients of εi on the both sides of the resultant equations.
Thus, we obtain

ε1 : x̂
(2k)
1 (0) = a2k, x̂

(2k)
1 (T) = b2k, k = 0, 1, . . . ,

n

2
, (25)

εi : x̂
(2k)
i (0) = 0, x̂

(2k)
i (T) = 0, k = 0, 1, . . . ,

n

2
, i ≥ 2, (26)

and the proof is complete.

As can be seen, Equation (10) formulates a homogeneous
linear BVP of fractional-order. By solving this problem, x̂1(t)
is achieved in the first step. Following the proposed procedure
in Theorem 4.1, we then obtain x̂i(t) (i ≥ 2) by solving the
non-homogeneous linear fractional BVP (11) in the ith step.
Moreover, the non-homogeneous term in (11) is determined
from Equation (12) by using the known functions provided in the
previous steps. Thus, a recursive procedure should be employed
here to solve the considered sequence.

4.1. Approximate Solution
Although Theorem 4.1 suggests a closed-form expression for the
solution of BVP (6)-(7), it is almost impossible to compute this
solution in its present form since it is an infinite series. Hence,
for the purpose of practical implementation, we need to truncate
the series by considering its first M components where M is

TABLE 1 | The suggested technique at different iterations for Example 5.1.

i (iteration time) ‖yi(t) − yi−1(t)‖∞

1 -

2 2.2× 10−3

3 4.6574× 10−6

4 1.2394× 10−8

5 3.7049× 10−11

6 1.1878× 10−13

7 3.9916× 10−16

8 1.3874× 10−18

9 4.9470× 10−21

10 1.7993× 10−23

a positive integer number. Thus, the Mth-order approximate
solution xM(t) becomes

xM(t) =
M∑

i=1

x̂i(t). (27)

To evaluate the value of M in Equation (27), the following
criterion is considered according to the required accuracy.
Indeed, the Mth-order approximate solution (27) has enough
accuracy if for δ > 0, a given positive constant, the two
consecutive solutions yM−1(t) and yM(t) satisfy

∥∥xM(t)− xM−1(t)
∥∥
∞ =

∥∥x̂M(t)
∥∥
∞ < δ, t ∈ (0,T). (28)

Here, we present an iterative algorithm to design an approximate
solution with enough accuracy.
Algorithm:

Step 1. Determine the first-order term x̂1(t) from
Equation (10) and set i = 2.
Step 2. Determine the ith-order term x̂i(t) from Equation (11).
Step 3. SetM = i. By using the expression (27), compute xM(t).
Step 4. If the condition (28) holds for a given small enough
constant δ > 0, go to Step 5; else, replace i by i + 1 and go to
Step 2.
Step 5. Consider xM(t) as the appropriate approximate
solution.

5. NUMERICAL SIMULATIONS

In this part, four numerical examples are employed in order to
verify the effectiveness of the new suggested technique. Here,
we consider the examples form [13, 14] for the purpose of
comparison with the other existing results.

Example 5.1. Consider a fractional BVP in the form below

{
C
0D

α
t x(t) = e−tx2(t), 5 < α ≤ 6, t ∈ (0, 1),

x(2k)(0) = 1, x(2k)(1) = e, k = 0, 1, 2,
(29)

whose exact solution is x(t) = et for α = 6.
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FIGURE 1 | Simulation curves of the exact solution and the second-order

approximate solution for Example 5.1.

TABLE 2 | Numerical comparison between the proposed iterative method and the

other approximation techniques for Example 5.1.

Absolute error∗

t Exact solution HPM [13] and Proposed method

VIM [14] (M = 2)

0.0 1.000000000 0.000000 0.000000

0.1 1.105170918 4.56500× 10−5 9.196986030× 10−5

0.2 1.221402758 1.1522210× 10−3 2.207276648× 10−4

0.3 1.349858808 4.4830030× 10−3 3.678794412× 10−4

0.4 1.491824698 1.1323624× 10−2 7.357588824× 10−4

0.5 1.648721271 2.3094929× 10−2 3.678794412× 10−4

0.6 1.822118800 4.1367190× 10−2 7.357588824× 10−4

0.7 2.013752707 6.7875828× 10−2 7.357588824× 10−4

0.8 2.225540928 1.04538781× 10−1 8.829106592× 10−4

0.9 2.459603111 1.53475695× 10−1 1.839397206× 10−3

1.0 2.718281828 2.17029144× 10−1 0.000000

∗ |Exact solution − Approximate solution|.

Following the new technique as in section 4, we solve
the presented sequence of fractional BVPs (10)-(11) in a
recursive manner. Simulation results up to 10th iteration
for α = 6 are reported in Table 1. As is shown, the
error is reduced further by considering more components
of x(t). To achieve an approximate solution with enough
accuracy, the new algorithm is applied with δ = 0.01.
From Table 1, we observe that the convergence is achieved
just in the second step, i.e.,

∥∥x2(t)− x1(t)
∥∥
∞ = 2.2 ×

10−3 < δ. Simulation curve of x2(t) and the exact solution
are plotted in Figure 1. This figure indicates that the second-
order approximate solution is in good agreement with the
exact solution.

The problem (31) for α = 6 has also been solved by using
the HPM [13] and the VIM [14], respectively. Notice that the
results of both methods are exactly the same as shown in Noor

TABLE 3 | The suggested technique at different iterations for Example 5.2.

i (iteration time)
∥∥y(i)(t) − y(i−1)(t)

∥∥
∞

1 -

2 1.3343× 10−5

3 4.3500× 10−10

4 1.8102× 10−14

5 8.4664× 10−19

6 4.2478× 10−23

7 2.2340× 10−27

8 1.2153× 10−31

9 6.7823× 10−36

10 3.8611× 10−40

et al. [14]. Table 2 depicts the exact solution and the absolute
errors achieved by applying two iterations of the HPM, VIM, and
the proposed technique in this paper. Comparative results in this
table verify the superiority of the suggested algorithm compared
to the other approximation methods available in the literature.

Example 5.2. Consider the following non-linear BVP of
fractional-order





C
0D

α
t x(t) = etx2(t), 5 < α ≤ 6, t ∈ (0, 1),

x(0) = 1, ẋ(0) = −1, ẍ(0) = 1,

x(1) = e−1, ẋ(1) = −e−1, ẍ(1) = e−1,

(30)

whose exact solution is in the form x(t) = e−t for α = 6.

Following the same procedure as in Example 5.1, we report the
simulation results up to 10th iteration in Table 3. This table
shows that considering more components of x(t) provides more
precise results. From this table, it is also indicated that the
proposed algorithm with δ = 10−4 converges after only two
iterations, i.e.,

∥∥x2(t)− x1(t)
∥∥
∞ = 1.3343 × 10−5 < δ. In

Figure 2, the simulation curve of x2(t) is compared with the exact
solution. Comparative results indicate that the second-order
approximate solution is very close to the exact solution. Figure 3
shows the relation between the iteration time and the error given
by the expression (28) using infinite norm for Examples 5.1 and
5.2. In this figure, the logarithmic scale is applied for the vertical
axis. This figure verifies that the error decreases significantly as
the iteration time increases.

The problem given by Equation (32) for α = 6 has also been
solved by using the HPM and the VIM in Noor and Mohyud-
Din [13] and Noor et al. [14], respectively. As can be seen in
Noor et al. [14], the results of both methods are exactly the same.
Table 4 exhibits the exact solution along with the absolute errors
related to the HPM, VIM, and the proposed iterative algorithm.
Comparing the results shows that the new approach is superior
to the other existing methods.

Example 5.3. Consider the following non-linear fractional BVP

{
C
0D

α
t x(t) = Eα(−tα)x2(t), 5 < α ≤ 6, t ∈ (0, 1),

x(2k)(0) = E
(2k)
α (tα)

∣∣∣
t=0

, x(2k)(1) = E
(2k)
α (tα)

∣∣∣
t=1

, k = 0, 1, 2,

(31)
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FIGURE 2 | Simulation curves of the exact solution and the second-order

approximate solution for Example 5.2.

FIGURE 3 | Relation between the iteration time and the error for Examples 5.1

and 5.2.

whose exact solution is x(t) = Eα(t
α) where Eα(·) is known as the

Mittag-Leffler function.

Simulation curve of x2(t), i.e., the second-order approximate
solution, for different values of α are plotted in Figure 4A.
This figure indicates that the approximate solution tends to
the classic integer solution for α = 6 when α → 6
as expected.

Example 5.4. Consider the non-linear fractional BVP

{
C
0D

α
t x(t) = Eα(t

α)x2(t), 5 < α ≤ 6, t ∈ (0, 1),

x(k)(0) = E
(k)
α (−tα)

∣∣∣
t=0

, x(k)(1) = E
(k)
α (−tα)

∣∣∣
t=1

, k = 0, 1, 2,

(32)

TABLE 4 | Numerical comparison between the proposed iterative method and the

other approximation techniques for Example 5.2.

Absolute error∗

t Exact solution HPM [13] and Proposed method

VIM [14] (M = 2)

0.0 1.000000000 0.000000 0.000000

0.1 0.9048374180 1.6258200× 10−4 1.4715178× 10−4

0.2 0.8187307531 1.2692469× 10−3 1.2140022× 10−3

0.3 0.7408182207 4.1817793× 10−3 5.3342519× 10−4

0.4 0.6703200460 9.6799540× 10−3 8.8291066× 10−4

0.5 0.6065306597 1.8469340× 10−2 5.5181916× 10−4

0.6 0.5488116361 3.1188364× 10−2 0.000000

0.7 0.4965853038 4.8414696× 10−2 5.5181916× 10−4

0.8 0.4493289641 7.0671036× 10−2 5.8860711× 10−4

0.9 0.4065696597 9.8430340× 10−2 3.3109150× 10−3

1.0 0.3678794412 1.3212056× 10−1 0.000000

∗ |Exact solution− Approximate solution|.

whose exact solution is x(t) = Eα(−tα).

In the same way as in Example 5.3, Figure 4B depicts the second-
order approximate solution tending to the classic integer solution
as α goes to 6.

6. CONCLUSION

This paper studied a new iterative scheme to provide the solution
of non-linear fractional BVPs in terms of a uniformly convergent
series. The proposed procedure was free from perturbation,
discretization, linearization, or restrictive assumptions.
Furthermore, contrary to the other approximation schemes
such as ADM [12] and VIM [14], the suggested technique
kept away from calculating the Adomian’s polynomials or
identifying the Lagrange multipliers, respectively. Hence,
from practical viewpoint, the suggested technique is more
efficient than the above-mentioned approximation methods.
Simulation results, demonstrating the efficacy, high accuracy,
and simplicity of the proposed method, were also included. In
the following, we summarize the main aspects of our numerical
findings. Tables 1, 3 provided the simulation results up to
10th iteration, and Figure 3 depicted the relation between
the iteration time and the error given by the expression (28).
From these results it is obvious that the error is reduced
further by considering more components of x(t). Simulation
curves in Figures 1, 2 also indicated that the second-order
approximate solution is in good agreement with the exact
solution. Tables 2, 4 exhibited the exact solution and the
absolute error derived by employing two iterations of the
HPM [13], VIM [14], and our new iterative algorithm. These
tables clearly indicated the improvements made by employing
the proposed method. The simulation curves for different
values of α were given in Figures 4A,B verifying that the
numerical approximate solution for α < 6 tends to the classic
integer solution as α → 6. Future works can be focused on
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FIGURE 4 | Simulation curves of the second-order approximate solution for α = 5.5, 5.6, 5.7, 5.8, 5.9, 6 [(A) Example 5.3 and (B) Example 5.4].

extending the suggested numerical technique to solve other types
of BVPs.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

All authors contributed equally to each part of this work. All
authors read and approved the final manuscript.

FUNDING

This research was in part supported by a grant fromUniversity of
Bojnord (No. 97/367/18077).

REFERENCES

1. Toomore J, Zahn JP, Latour J, Spiegel EA. Stellar convection theory II: single-

mode study of the second convection zone in A-type stars. Astrophys J. (1976)

207:545–63. doi: 10.1086/154522

2. Glatzmaier GA. Numerical simulations of stellar convection dynamics III:

at the base of the convection zone. Geophys Astrophys Fluid Dyn. (1985)

31:137–50. doi: 10.1080/03091928508219267

3. Chandrasekhar S. Hydrodynamics and Hydromagnetic Stability. New York,

NY: Dover (1981).

4. Baldwin P. A localized instability in a Benard layer. Appl Anal. (1987)

24:1127–56. doi: 10.1080/00036818708839658

5. Khalid A, Naeem MN, Ullah Z, Ghaffar A, Baleanu D, Nisar KS, et al.

Numerical solution of the boundary value problems arising in magnetic

fields and cylindrical shells. Mathematics. (2019) 7:508. doi: 10.3390/math70

60508

6. Akgul A, Akgul EK, Khan Y, Baleanu D. Solving the nonlinear system of third-

order boundary value problems. In: Tas K, Baleanu D, Machado J, editors.

Mathematical Methods in Engineering. Nonlinear Systems and Complexity.

Cham: Springer (2019). p. 24. doi: 10.1007/978-3-319-90972-1_8

7. Akgul A, Akgul EK, Baleanu D, Inc M. New numerical method for

solving tenth order boundary value problems. Mathematics. (2018) 6:245.

doi: 10.3390/math6110245

8. Agarwal RP. Boundary Value Problems for Higher Order Differential

Equations. Singapore: World Scientific (1986).

9. Boutayeb A, Twizell EH. Numerical methods for the solution of special sixth-

order boundary value problems. Int J Comput Math. (1992) 45:207–233.

doi: 10.1080/00207169208804130

10. Twizell EH, Boutayeb A. Numerical methods for the solution of special and

general sixth-order boundary value problems, with applications to Benard

layer eigen value problem. Proc R Soc AMath Phys Eng Sci. (1990) 431:433–50.

doi: 10.1098/rspa.1990.0142

11. Twizell EH. Numerical methods for sixth-order boundary value problems. In:

Agarwal RP, Chow YM, Wilson SJ, editors. Numerical Mathematics Singapore

1988. International Series of Numerical Mathematics. Basel: Birkhauser (1988).

p. 495–506. doi: 10.1007/978-3-0348-6303-2_40

12. Al-Hayani W. Adomian decomposition method with Green’s function for

sixth-order boundary value problems. Comput Math Appl. (2011) 61:1567–75.

doi: 10.1016/j.camwa.2011.01.025

13. Noor MA, Mohyud-Din ST. Homotopy perturbation method for solving

sixth order boundary value problems. Comput Math Appl. (2008) 55:2953–72.

doi: 10.1016/j.camwa.2007.11.026

14. NoorMA, Noor KI, Mohyud-Din ST. Variational iteration method for solving

sixth-order boundary value problems. Commun Nonlinear Sci Num Simu.

(2009) 14:2571–80. doi: 10.1016/j.cnsns.2008.10.013

15. Kilbas AA, Srivastava HH, Trujillo JJ. Theory and Applications of Fractional

Differential Equations. New York, NY: Elsevier (2006).

16. Baleanu D, Asad JH, Jajarmi A. The fractional model of spring pendulum: new

features within different kernels. Proc Roman Acad Ser A. (2018) 19:447–54.

17. Baleanu D, Asad JH, Jajarmi A. New aspects of the motion of a particle in a

circular cavity. Proc Roman Acad Ser A. (2018) 19:361–7.

18. Baleanu D, Jajarmi A, Mohammadi H, Rezapour S. A new study on

the mathematical modelling of human liver with Caputo-Fabrizio

fractional derivative. Chaos Solitons Fractals. (2020) 134:109705.

doi: 10.1016/j.chaos.2020.109705

19. Jajarmi A, Yusuf A, Baleanu D, Inc M. A new fractional HRSV model and its

optimal control: a non-singular operator approach. Phys A Stat Mech Appl.

(2020) 547:123860. doi: 10.1016/j.physa.2019.123860

20. Mohammadi F, Moradi L, Baleanu D, Jajarmi A. A hybrid functions numerical

scheme for fractional optimal control problems: application to non-analytic

dynamical systems. J Vibrat Control. (2018) 24:5030–43.

21. Jajarmi A, Arshad S, Baleanu D. A new fractional modelling and control

strategy for the outbreak of dengue fever. Phys A Stat Mech Appl. (2019)

535:122524. doi: 10.1016/j.physa.2019.122524

Frontiers in Physics | www.frontiersin.org 7 June 2020 | Volume 8 | Article 22093

https://doi.org/10.1086/154522
https://doi.org/10.1080/03091928508219267
https://doi.org/10.1080/00036818708839658
https://doi.org/10.3390/math7060508
https://doi.org/10.1007/978-3-319-90972-1_8
https://doi.org/10.3390/math6110245
https://doi.org/10.1080/00207169208804130
https://doi.org/10.1098/rspa.1990.0142
https://doi.org/10.1007/978-3-0348-6303-2_40
https://doi.org/10.1016/j.camwa.2011.01.025
https://doi.org/10.1016/j.camwa.2007.11.026
https://doi.org/10.1016/j.cnsns.2008.10.013
https://doi.org/10.1016/j.chaos.2020.109705
https://doi.org/10.1016/j.physa.2019.123860
https://doi.org/10.1016/j.physa.2019.122524
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Jajarmi and Baleanu A New Iterative Method for Fractional BVPs

22. Jajarmi A, Baleanu D, Sajjadi SS, Asad JH. A new feature of the fractional

Euler-Lagrange equations for a coupled oscillator using a nonsingular

operator approach. Front Phys. (2019) 7:196. doi: 10.3389/fphy.2019.00196

23. Jajarmi A, Ghanbari B, Baleanu D. A new and efficient numerical method

for the fractional modelling and optimal control of diabetes and tuberculosis

co-existence. Chaos. (2019) 29:093111. doi: 10.1063/1.5112177

24. Baleanu D, Jajarmi A, Sajjadi SS, Mozyrska D. A new fractional model and

optimal control of a tumor-immune surveillance with non-singular derivative

operator. Chaos. (2019) 29:083127. doi: 10.1063/1.5096159

25. Baleanu D, Sajjadi SS, Jajarmi A, Asad JH. New features of the fractional

Euler-Lagrange equations for a physical systemwithin non-singular derivative

operator. Eur Phys J Plus. (2019) 134:181. doi: 10.1140/epjp/i2019-12561-x

26. Baleanu D, Jajarmi A, Sajjadi SS, Asad JH. The fractional features of a

harmonic oscillator with position-dependent mass. Commun Theor Phys.

(2020) 72:055002. doi: 10.1088/1572-9494/ab7700

27. Yıldız TA, Jajarmi A, Yıldız B, Baleanu D. New aspects of time fractional

optimal control problems within operators with nonsingular kernel.

Discrete Continuous Dyn Syst S. (2020) 13:407–28. doi: 10.3934/dcdss.20

20023

28. Ali A, Shah K, Baleanu D. Ulam stability results to a class of nonlinear implicit

boundary value problems of impulsive fractional differential equations. Adv

Diff Equat. (2019) 2019:5. doi: 10.1186/s13662-018-1940-0

29. Ugurlu E, Baleanu D, Tas K. On the solutions of a fractional boundary value

problem. Turkish J Math. (2018) 42:1307–11. doi: 10.3906/mat-1609-64

30. Baleanu D, Etemad S, Rezapour S. A hybrid Caputo fractional modeling for

thermostat with hybrid boundary value conditions. Bound Value Probl. (2020)

2020:64. doi: 10.1186/s13661-020-01361-0

31. Patnaik S, Sidhardh S, Semperlotti F. A Ritz-based finite element method for a

fractional-order boundary value problem of nonlocal elasticity. arXiv preprint

arXiv:200106885 (2020).

32. Salem A, Alzahrani F, Alnegga M. Coupled system of nonlinear fractional

Langevin equations with multipoint and nonlocal integral boundary

conditions.Math Probl Eng. (2020) 2020:7345658. doi: 10.1155/2020/7345658

33. Fazli H, Sun H, Aghchi S. Existence of extremal solutions

of fractional Langevin equation involving nonlinear boundary

conditions. Int J Comput Math. (2020) doi: 10.1080/00207160.2020.17

20662

34. Zhang S, Su X. The existence of a solution for a fractional differential

equation with nonlinear boundary conditions considered using upper and

lower solutions in reverse order. Comput Math Appl. (2011) 62:1269–1274.

doi: 10.1016/j.camwa.2011.03.008

35. Arqub OA, El-Ajou A, Zhour ZA, Momani S. Multiple solutions of nonlinear

boundary value problems of fractional order: a new analytic iterative

technique. Entropy. (2014) 16:471–93. doi: 10.3390/e16010471

36. Khalil H, Al-Smadi M, Moaddy K, Khan RA, Hashim I. Toward the

approximate solution for fractional order nonlinear mixed derivative

and nonlocal boundary value problems. Discrete Dyn Nat Soc. (2016)

2016:5601821. doi: 10.1155/2016/5601821

37. Cui Y, Sun Q, Su X. Monotone iterative technique for nonlinear boundary

value problems of fractional order p ∈ (2, 3]. Adv Diff Equat. (2017) 2017:248.

doi: 10.1186/s13662-017-1314-z

38. AsaduzzamanM, Ali MZ. Existence of positive solution to the boundary value

problems for coupled system of nonlinear fractional differential equations.

AIMS Math. (2019) 4:880–95. doi: 10.3934/math.2019.3.880

39. Diethelm K. (2010). Multi-term caputo fractional differential equations.

In: The Analysis of Fractional Differential Equations. Lecture Notes

in Mathematics, Vol. 2004. Berlin; Heidelberg: Springer (2010).

doi: 10.1007/978-3-642-14574-2_8

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Jajarmi and Baleanu. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 8 June 2020 | Volume 8 | Article 22094

https://doi.org/10.3389/fphy.2019.00196
https://doi.org/10.1063/1.5112177
https://doi.org/10.1063/1.5096159
https://doi.org/10.1140/epjp/i2019-12561-x
https://doi.org/10.1088/1572-9494/ab7700
https://doi.org/10.3934/dcdss.2020023
https://doi.org/10.1186/s13662-018-1940-0
https://doi.org/10.3906/mat-1609-64
https://doi.org/10.1186/s13661-020-01361-0
https://doi.org/10.1155/2020/7345658
https://doi.org/10.1080/00207160.2020.1720662
https://doi.org/10.1016/j.camwa.2011.03.008
https://doi.org/10.3390/e16010471
https://doi.org/10.1155/2016/5601821
https://doi.org/10.1186/s13662-017-1314-z
https://doi.org/10.3934/math.2019.3.880
https://doi.org/10.1007/978-3-642-14574-2_8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 04 September 2020
doi: 10.3389/fphy.2020.00275

Frontiers in Physics | www.frontiersin.org 1 September 2020 | Volume 8 | Article 275

Edited by:

Zakia Hammouch,

Moulay Ismail University, Morocco

Reviewed by:

Marin I. Marin,

Transilvania University of Braşov,
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This present article explores the transversal magnetized flow of a viscous fluid. The

flow is confined to a vertical wall, saturated in permeable medium, along with ramped

wall temperature. In this study, the conjugate impact of heat and mass transfer with

slip and non-slip conditions are considered in the velocity field and energy equation.

The dimensionless Atangana-Baleanu fractional governing equations are derived with

Laplace transformation. Computational results are expressed graphically with the effect

of various physical parameters. Comparative graphical analysis of the Atangana-Baleanu

derivative for temperature, concentration and velocity field, with slip and non-slip impact,

shows that the memory effects of the Atangana-Baleanu derivative are better than the

results that exist in the literature.

Keywords: slip effect, heat and mass transfer, conjugate effect, magnetic effect, Stehfest’s algorithm, fractional

derivative

1. INTRODUCTION

In nature, heat and mass transfer is a common conjugate phenomenon for chemical reaction,
evaporation, and condensation caused by temperature and concentration. Consequently, the
behavior of heat transfer exists in different practical applications. The heat transfer mechanism
is linked with mass, to jointly produce electrically conducting fluid flow with a conjugate effect. In
a preamble surface the process of thermal and mass transfer with a conjugate effect have different
applications in the area of nuclear production, industry, oil production, and engineering disciplines
[1, 2]. The conjugate effect with convection flow over an infinite plate in preamble medium, along
time dependent velocity, electrically flow with a magnetic effect and have been studied by different
researchers. Ramped wall temperatures with thermal radiation have received much interest in
convection flow over boundless vertical plates [3–6]. In literature, Toki and Tokis [7] studied time

dependent boundary conditions on viscous fluid over a boundless preamble plate. Senapatil et al.
[8] investigated the influence of chemical parameters on viscous fluid over preamble medium with
a bounded slip region. Khan et al. [9] discussed the influence of heat andmass diffusion of a viscous
fluid over an oscillating plate. Das et al. [10] and Narahari and Ishaq [11] investigated the solution
of unsteady Walter’s fluids on convection flow over preamble medium with a magnetic effect and
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constant suction heat. Recently, Kumar et al. [12] discussed the
fractional model for radial fins with heat transfer. Some of the
latest results, according to this research, are given in Gupta et al.
[13], Khan et al. [14], and Imran et al. [15].

Moreover, the application of magnetic fields is significant,
with heat transfer in different situations of flow of an
incompressible fluid, for example, geothermal energy, magnetic
generator, and metallurgical processes. The influence of the slip
and non-slip condition with the magnetic field and chemical
reaction of an electrically conducting fluid over a porous surface,
have been developed by Boussinesqu’s approximation [16]. Jha
and Apere [17] and Seth et al. [18] analyzed the ion slip and
hall effect boundary conditions on a magnetized electrically
conducting flow between parallel plates. The impact of the
current and rotation with heat radiation and mass transfer, on
time depending heat observation over a preamble surface, were
taken into account. Over the last few years, fractional calculus has
played a significant role in viscoelastic models. The derivative of
the fractional order can be achieved by constitutive equations of
well-known models through time ordinary derivatives. Recently,
many fractional time derivative problems have been studied [19,
20]. Different real life problems have been investigated through
fractional time operators [21–23]. A modern fractional approach
has been presented without a singular kernel. A non-singular
kernel is used to find the solution for MHD convection flow
with ramped temperature, was investigated by Riaz et al. [24].
Furthermore, Riaz and Saeed [25] discussed the solution ofMHD
Oldroyd-B fluid using integer and fractional order derivatives
with slip effect and time boundary conditions. The Study of
natural convection flow with in channel using non-singular
kernels is discussed by Saeed et al. [26].

In this paper, we discuss the computational calculation for
the magnetized flow of Newtonian fluid with slip and conjugate
effect, through a preamble surface. Computational results for the
velocity profile, temperature gradient, and concentration field
are calculated with the Atangana-Baleanu fractional derivative,
through the Laplace transform. Tzou and Stehfest’s algorithm
is used to find the inverse Laplace transform. Further, We
show the strength of non-singular and non-kernels. Fractional
order Atangana-Baleanu (ABC) derivatives are used to analyze
fractional parameters (memory effect) on the dynamics of fluid.
We conclude that the fractional order model is best for memory
effect and flow behavior of the fluid with reference to classical
models. ABC is good at highlighting the dynamics of fluid. The
influence of transverse magnetic fields are studied for ABC and
CF. Moreover, the impact of parameters on the velocity profile
are analyzed through numerical simulation and graphs for ABC
and CF models. Expression from some limited and special cases
were also obtained in terms of the velocity profile with different
flow parameters.

2. MATHEMATICAL MODEL WITH
STATEMENT OF THE PROBLEM

In this article, we assumed the slip effect between fluid and a
wall. After t = 0+, the temperature on the plate is enhanced or

reduced to θ∞+(θω−θ∞) t
to
when t ≤ to and therefore, for t > to,

is retained at a constant temperature θω and the concentration is
enhanced to Cω. The set of governing equations are given in [27]:

vt = vξξ + Grθ + GmC − Kpv−M2v, (1)
(
Preff

)
θt = θξξ , (2)

ScCt = Cξξ . (3)

With suitable conditions

v(ξ , 0) = 0, θ(ξ , 0) = θ∞,C(ξ , 0) = C∞, ∀ξ ≥ 0, (4)

FIGURE 1 | Variations in temperature with altered values of α and other

parameters are kp = 1.5, Gr = 2, Preff = 0.1, Gm = 0.75, M = 0.9, and

Sc = 0.5.

FIGURE 2 | Variations in concentration with altered values of α and other

parameters are kp = 1.5, Gr = 2, Preff = 0.1, Gm = 0.75, and M = 0.9.
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v(ξ , t)− L(vξ |ξ=0) =
f (t)

µ
,C(0, t) = Cω, t > 0, (5)

θ(ξ , 0) = θ∞ + (θw − θ∞)
t

to
, 0 < t < to, (6)

v(y, t) = θ∞,C(y, t) = C∞, t > 0,

θ(y, t) = θω, t > to, y → ∞. (7)

We arrive at the governing equations, in terms of the Atangana-
Baleanu fractional derivative, as:

ABCDα
t v = vξξ + Grθ + GmC − kpv−M2v, (8)

ABCDα
t θ =

(
1

Preff

)
θξξ , (9)

ABCDα
t C =

(
1

Sc

)
Cξξ , (10)

where ABCDα
t is the fractional differential operator of order 0 <

α < 1 called the Atangana-Baleanu fractional operator as defined
by [21, 28]:

ABCDα
t f (ξ , τ ) =

M(α)

1− α

∫ τ

0
Eα

(
−

α(t − τ )α

1− α

)
∂f (ξ , τ )

∂τ
dτ ,

with

∞∑

m=0

(−t)αm

Ŵ(1+ αm)
= Eα(−t)α , (11)

where M(α) denotes a normalization function obeying
M(0) = M(1) = 1.

The Laplace transform of Equation (11) is as follows [26]:

L
[
ABCDα

t f (ξ , τ )
]
=

sαL[f (ξ , τ )]− sα−1f (ξ , 0)

(1− α)sα + α
. (12)

The appropriate initial and boundary conditions are:

v(ξ , 0) = θ(ξ , 0) = C(ξ , 0) = 0, ∀ξ ≥ 0, (13)

v(ξ , t)− hvξ |ξ=0 = Z(t), (14)

C(0, t) = 1, C(∞, t) = 0, t > 0, (15)

θ(∞, t) = 0, v(∞, t) = 0, t > 0, (16)

θ(0, t) = t, 0 < t ≤ 1, θ(0, t) = 1, t > 1. (17)

FIGURE 3 | Velocity profiles with altered values of α and other parameters are kp = 1.5, Gr = 2, Preff = 0.1, Gm = 0.75, M = 0.9, and Sc = 0.5.
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3. SOLUTION OF THE PROBLEM

3.1. Distribution of Temperature Gradient
With Fractional Model 0 < α < 1
In order to find the solution of fractional concentration
distribution, we employ Equation (12) into Equation (9),
and obtain:

(
sα

(1− α)sα + α

)
θ̄(ξ , s) =

1

Preff
¯θξξ (ξ , s), (18)

θ̄(ξ , s) = c1e
−ξ

√
Preff

(
sα

(1−α)sα+α

)

+ c2e
ξ

√
Preff

(
sα

(1−α)sα+α

)

, (19)

with the help of (13)–(17), we find the values of constants c1 and
c2, and we have.

θ̄(ξ , s) =
(
1− e−s

s2

)
e
−ξ

√
Preff

(
sα

(1−α)sα+α

)

. (20)

3.2. Distribution of Concentration Gradient
With Fractional Model 0 < α < 1
In order to find the solution of fractional concentration
distribution, we employ Equation (12) into Equation (10),

and obtain:

(
sα

(1− α)sα + α

)
C̄(ξ , s) =

1

Sc
¯Cξξ (ξ , s), (21)

C̄(ξ , s) = c1e
−ξ

√
Sc

(
sα

(1−α)sα+α

)

+ c2e
ξ

√
Sc

(
sα

(1−α)sα+α

)

, (22)

with the help of (13)–(17), we find the values of constants c1 and
c2, and we have.

C̄(ξ , s) =
(
1

s

)
e
−ξ

√
Sc

(
sα

(1−α)sα+α

)

. (23)

3.3. Distribution of Velocity Field With
Fractional Model 0 < α < 1
In order to find the solution of the fractional concentration
distribution, we employ Equation (12) into Equation (8), and
obtain:

(
sα

(1− α)sα + α

)
v̄(ξ , s) = vξξ + Gr θ̄(ξ , s)+ GmC̄(ξ , s)

− kpv̄(ξ , s)−M2v̄(ξ , s). (24)

FIGURE 4 | Velocity profiles with altered values of kp and other parameters are Gr = 2, α = 0.5, Preff = 0.1, Gm = 0.75, M = 0.9, and Sc = 0.5.
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The solution of the homogeneous part of the second order partial
differential equation say that (24) is,

v̄(ξ , s) = c1e
−ξ

√√√√
(

sα

(1−α)sα+α

)
+kp+M2

+ c2e
ξ

√√√√
(

sα

(1−α)sα+α

)
+kp+M2

.
(25)

The general solution can be give as follows, after making use of
θ̄(ξ , s) and C̄(ξ , s),

v̄(ξ , s) = c1e
−ξ

√√√√
(

sα

(1−α)sα+α

)
+kp+M2

+ c2e
ξ

√√√√
(

sα

(1−α)sα+α

)
+kp+M2

−
Gr(1− e−s)

(
(1− α)sα + α

)

s2
(

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

) e
−ξ

√
Preff

(
sα

(1−α)sα+α

)

−
G3

(
(1− α)sα + α

)

s

(
sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

) e
−ξ

√
Sc

(
sα

(1−α)sα+α

)

, (26)

with the help of Equations (13)–(17), we find the values of
constants c1 and c2 for the velocity equation:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(
1+ h

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
+ Z(s)

}]

(
e
−ξ

√
sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(
e−ξ

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
. (27)

The skin friction is defined as:

τ̄ (ξ , s) = −
∂ v̄(ξ , s)

∂ξ
|ξ=0, (28)

FIGURE 5 | Velocity profiles with altered values of Gr and other parameters are kp = 1.5, Gm = 0.75, Preff = 0.1, α = 0.5, M = 0.9, and Sc = 0.5 Gr = 2.
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τ̄ (ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(
1+ h

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
+ Z(s)

}]

(√
sα

(1− α)sα + α
+ kp +M2

)

−
Gr(1− e−s)

s2

( √
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

( √
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
. (29)

4. LIMITING CASES

A comparative study of the existing literature and the Atangana-
Baleanu derivative for some limiting cases are recovered from the
general solution of (Equation 30, [27]) and the general solution
of the given problem at Equation (27), are both discussed in
this section.

4.1. Results With Ramped Wall
Temperature and Without Porosity Effect
(kp → 0)
The velocity profile with the Atangana-Baleanu derivative is
expressed for a general solution of the given problem at Equation
(27) is given as:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+M2

{
Gr(1− e−s)

s2

(
1+ h

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)−M2

)

+
Gm

s

(
1+ h

√
sαSc

sα

(1−α)sα+α
(Sc − 1)−M2

)
+ Z(s)

}]

(
e
−ξ

√
sα

(1−α)sα+α
+M2

)
−

Gr(1− e−s)

s2
(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)−M2

)

−
Gm

s

(
e−ξ

√
sαSc

sα

(1−α)sα+α
(Sc − 1)−M2

)
. (30)

FIGURE 6 | Velocity profiles with altered values of Preff and other parameters are α = 0.5, Gr = 2, M = 0.9, Gm = 0.75, kp = 1.5, and Sc = 0.5.
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4.2. Results Without Thermal Radiation
(Nr → 0)
The velocity profile is obtained with the Atangana-Baleanu
derivative for the general solution of the given problem at
Equation (27) is given as:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sαPr

sα

(1−α)sα+α
(Pr − 1)− (kp +M2)

)

+
Gm

s

(
1+ h

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
+ Z(s)

}]

(
e
−ξ

√
sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(
e−ξ

√
sαPr

sα

(1−α)sα+α
(Pr − 1)− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
. (31)

4.3. Result Without Magnetic Parameter
(M → 0)
The velocity profile is obtained with the Atangana-
Baleanu derivative for the general solution
of the given problem at Equation (27) is
given as:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp

{
Gr(1− e−s)

s2

(
1+ h

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− kp

)
+

Gm

s
(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− kp

)
+ Z(s)

}](
e
−ξ

√
sα

(1−α)sα+α
+kp

)

−
Gr(1− e−s)

s2

(
e−ξ

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− kp

)

−
Gm

s

(
e−ξ

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− kp

)
. (32)

FIGURE 7 | Velocity profiles with altered values of Gm and other parameters are α = 0.5, Gr = 2, Preff = 0.1, kp = 1.5, M = 0.9, and Sc = 0.5.
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5. SPECIAL CASES

For validation and to check our general results in this section, we
will discuss some special cases by customizing the value of f (t).
Moreover, our aim is to provide a comparison of our results with
the Caputo-Fabrizio (CF) time fractional derivative.

5.1. Case-I
By putting z(t) = t into Equation (27), we obtain a suitable result
for the velocity profile:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(
1+ h

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
+

1

s2

}]

(
e
−ξ

√
sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(
e−ξ

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
. (33)

The analogs of the velocity profile are obtained by (Equation 40,
[27]) using the CF operator:

v̄(ξ , s) =
[

1

1+ h
√

s
(1−α)s+α

+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

+
Gm

s

(
1+ h

√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)
+

1

s2

}]

(
e
−ξ
√

s
(1−α)s+α

+kp+M2
)

−
Gr(1− e−s)

s2

(
e−ξ

√
sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)
. (34)

FIGURE 8 | Velocity profiles with altered values of M and other parameters are α = 0.5, Gr = 2, Preff = 0.1, Gm = 0.75, kp = 1.5, and Sc = 0.5.
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Graphs for the profiles of the velocity for both operators for
the variation of physical parameters α, Preff , M, Gr , Gm, Sc,
and kp are prepared. Moreover, the slip and no slip effects
are significant. It is noted that the memory effects obtained by
the Atangana-Baleanu derivative express more significant results
than the results recovered by the Caputo-Fabrizio derivative.

5.2. Case-II
By putting z(t) = tet into Equation (27), we obtain a suitable
result for the velocity profile:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(
1+ h

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
+

1

(s− 1)2

}]

(
e
−ξ

√
sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(
e−ξ

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
. (35)

The analogs of the velocity profile are obtained by (Equation 42,
[27]) using CF operator:

v̄(ξ , s) =
[

1

1+ h
√

s
(1−α)s+α

+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

+
Gm

s

(
1+ h

√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)
+

1

(s− 1)2

}]

(
e
−ξ
√

s
(1−α)s+α

+kp+M2
)

−
Gr(1− e−s)

s2

(
e−ξ

√
sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)
. (36)

FIGURE 9 | Velocity profiles with altered values of Sc and other parameters are α = 0.5, Gr = 2, Preff = 0.1, Gm = 0.75, kp = 1.5, and M = 0.9.
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5.3. Case-III
By putting z(t) = sin(ωt) into Equation (27), we obtain a suitable
result for the velocity profile:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(
1+ h

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
+

ω

s2 + ω2

}]

(
e
−ξ

√
sα

(1−α)sα+α
+kp+M2

)
−

Gr(1− e−s)

s2
(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
. (37)

The analogs of the velocity profile are obtained by (Equation 44,
[27]) using CF operator:

v̄(ξ , s) =
[

1

1+ h
√

s
(1−α)s+α

+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

+
Gm

s

(
1+ h

√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)
+

ω

s2 + ω2

}]

(
e
−ξ
√

s
(1−α)s+α

+kp+M2
)

−
Gr(1− e−s)

s2

(
e−ξ

√
sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)
. (38)

FIGURE 10 | Velocity profiles with altered values of α and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, Gm = 0.75, kp = 1.5, Sc = 0.5, and M = 0.9.
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5.4. Case-IV
By putting z(t) = t sin(ωt) into Equation
(27), we obtain a suitable result for the
velocity profile:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h
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sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(
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√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
+

2sω
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}]

(
e
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√
sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(
e−ξ

√
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sα

(1−α)sα+α
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)

−
Gm

s

(
e−ξ

√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)
. (39)

The analogs of the velocity profile are obtained by (Equation 46,
[27]) using CF operator:

v̄(ξ , s) =
[

1

1+ h
√

s
(1−α)s+α

+ kp +M2

{
Gr(1− e−s)

s2

(
1+ h

√
sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

+
Gm

s

(
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√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)
+

2sω
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}]

(
e
−ξ
√

s
(1−α)s+α

+kp+M2
)

−
Gr(1− e−s)

s2

(
e−ξ

√
sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

−
Gm

s

(
e−ξ

√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)
. (40)

By making α → 1 in Equations (20), (23), and (27) we obtain a
result for a classical model, the same as that discussed by Ghalib
et al. [27]. This validates our obtained results. In our flowmodels,

FIGURE 11 | Velocity profiles with altered values of kp and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, Gm = 0.75, α = 0.5, Sc = 0.5, and M = 0.9.
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FIGURE 12 | Velocity profiles with altered values of Gr and other parameters are ω = 0.2, α = 0.5, Preff = 0.1, Gm = 0.75, kp = 1.5, Sc = 0.5, and M = 0.9.

we use the Laplace transform technique to solve this model, using
the definition of the ABC model. In order to find the inverse,
we use Stehfest’s algorithms [29] for semi-analytical solutions.
Stehfest’s algorithms are used for the verification of our inverse
Laplace transformation

v(y, t) =
ln(2)

t

2m∑

j=1

djv̄(y, j
ln(2)

t
),

dj = (−1)j+m

min(j,m)∑

i=[
j+1
2 ]

im(2i)!

(m− i)!i!(i− 1)!(j− i)!(2i− j)!
.

6. RESULTS AND DISCUSSION

The physical aspects of the CF and ABC time derivative are
discussed in the given problem. Numerical results for T, C, and v
are plotted usingMATHCAD for embedded physical parameters,
such as M, kp, Preff , Gr , Gm, Sc, and slip parameter h. Figure 1
shows the behavior of α on temperature. It is shown that the
value of α increases, while the temperature of the fluid decreases.
The memory effect is explained well with the ABC derivative in
comparison to the CF derivative.

Figure 2 examines the behavior of α on concentration. It
reduces as the value of α increases. The Antangna-Baleanu
derivative shows significant behavior in comparison to the
Caputo-Febrizio derivative for different values of α. Graphs for
the velocity, with function f (t) = t, are shown in Figures 3–9,
and with function f (t) = sin(ωt), as shown in Figures 10–16.
Fluid velocity decreases with the increase of α as well as for
slip and non-slip boundary conditions. Figure 3 shows that the
memory effects of the Antangna Baleanu derivatives, with short
and long time for the velocity profile, as well as with slip and non-
slip conditions, are more significant than the memory effects of
the Caputo Febrizio derivatives. For longer times, the graphical
representation of the velocity shows inverse behavior, as the
velocity increases with the increase of the value of α, for both the
velocity profile and slip and non-slip velocity. Variation in fluid
velocity with respect to the porosity coefficient is displayed in
Figures 4, 11. It represents the increase in the porosity coefficient,
resulting in the decrease in the velocity profile, as well as the
velocity with slip and non-slip boundary conditions for both a
short and long time. The representation of the velocity profile
with the Antangna Baleanu derivatives, for a short and long time,
as well as fluid velocity with the slip and non-slip effect is more
significant than the velocities recovered with the Caputo-Fabrizio
derivatives. Figures 5, 12 illustrate the influence of the Grashof
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FIGURE 13 | Velocity profiles with altered values of Preff and other parameters are ω = 0.2, Gr = 2, M = 0.9, Gm = 0.75, α = 0.5, Sc = 0.5, and kp = 1.5.

numberGr on the fluid velocity, which increases with the increase
of the Grashof number Gr for a short time as well as for a long
time, both in the case of the slip and non-slip effects, because
the thermal buoyancy forces tend to accelerate the fluid velocity
for different times. The memory effects of the Antangna Baleanu
derivatives for the variation of Gr with a short time and long
time, oncovers more significant memory effects than the Caputo
Febrizio derivatives. The velocity profile for different values of
the effective Prandtl number Preff are shown in Figures 6, 13.
Fluid velocity decreases with the increase of Preff for different
times, also in the case of slip and non-slip boundary conditions.
Graphical representation for various values of Preff with the
Antangna-Baleanu derivative is more impressive for short and
long times as well as for slip and non-slip boundary conditions,
than it is for the caputo-Fabrizio derivatives. Figures 7, 14

display the influence of the variation of a modified Grashof
number Gm, and the fluid velocity increases with the increase
of Gm for various times, as well as with the slip and non-
slip parameters. Memory effects with the Antangna-Baleanu
derivatives are better than with the Caputo-Fabrizio derivatives.
The velocity profile for different values of magnetic field M are
given in Figures 8, 15. Fluid velocity shrinks on a large value of
M with a short time as well as with long time. It also displays the
same behavior for both slip and non-slip boundary conditions,

particularly, on increasing the value of M causes to enhance the
frictional force which tends to resist the flow of fluid and, thus,
velocity ultimately decreases. Moreover, we observed that the
fluid velocity obtained with the Atangana-Baleanu derivatives for
the variation of M, in case of both a short and long time, is more
significant than the velocity obtained with the Caputo-Fabrizio
derivatives. In Figures 9, 16 velocity profiles with variations of
Sc are shown. It was found that the velocity decreases when
increasing the value of Sc for both short and long times, as
well as for slip and non-slip parameters. The velocity profile
of different values of Sc with the Atangana-Baleanu derivatives
for various times, are more expressive than the velocity that is
obtained with the Caputo-Fabrizio derivatives. In Figure 10 fluid
velocity reduces with enlarged values of α. It also shows the same
behavior with slip as well as non-slip fluid flow conditions, and
it shows the same behavior for short and long times. Memory
effects show better results with the Atangana-Baleanu derivative
in comparison to the Caputo-Fabrizio derivative.

7. CONCLUSION

Ramped wall velocity and temperature conditions had a
significant impact on MHD fractional Oldroyd-B fluid over
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FIGURE 14 | Velocity profiles with altered values of Gm and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, α = 0.5, kp = 1.5, Sc = 0.5, and M = 0.9.

FIGURE 15 | Velocity profiles with altered values of M and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, Gm = 0.75, α = 0.5, Sc = 0.5, and kp = 1.5.
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FIGURE 16 | Velocity profiles with altered values of Sc and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, Gm = 0.75, α = 0.5, M = 0.9, and kp = 1.5.

a infinite vertical plate on a permeable surface. Fractional
derivative operators are used to find the analytical solution
using the Laplace transformation and inversion algorithm.
Fluid velocity was analyzed through graphical results with the
effect of different physical parameters. The main points of this
problem are:

• The ABC fractional derivative is more significant compared to
the classical model and other fractional models.

• The magnitude of the velocity increases with an increase in the
fractional parameter α.

• The relationship between fractional parameters α and γ

are reversed.
• Retardation time and relaxation time have a strong impact on

the motion of fluid velocity.
• Velocity enhances with an increase in the value of λr .
• The relationship between λ and λr is the opposite to

each other.

• The fluid velocity decreases with a large value of Pr .
• In the velocity field, the velocity reduces with the

expansion ofM.
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Solute transport in a single vertical fracture (SVF) cannot be reliably described by

the classical advection-dispersion equation (ADE) model, due to the heterogeneity

nature of fracture. This study conducted a group of experiments to investigate chloride

ion transport in the SVFs under different rough-walled conditions, and then applied

a time fractional advection-dispersion equation (F-ADE) model to offer an accurate

description. A comparison between F-ADE model and a classical ADE model in

describing experimental data, was also carried out. Results show that the FADE model

is better than the ADE model in describing the breakthrough curve and heavy-tail

phenomenon of solute transport in the fracture. Especially in the experiments with lower

flow rate and higher roughness fracture, the FADE model can offer a better description

for non-Fickian transport, indicating that it is a promising tool for characterizing solute

transport heterogeneous vertical fracture.

Keywords: solute transport, single vertical fracture, fractional advection-dispersion equation, non-Fickian

transport, hydrodynamics, hydraulic condition

INTRODUCTION

Fracture water as part of underground water, is of great significance in water resources. It is
closely related to the production and living activities of human beings and involves complex
natural and human factors [1]. In heterogeneous media such as rock fractures, the assessment of
solute transport in fractures can avoid overexploitation of groundwater resources and predict the
diffusion of fluids and pollutants, which is one of the main tasks of hydrogeology [2, 3]. Therefore,
quantifying pollutant transport in fractures has always been regarded as an important research topic
[4, 5]. In recent years, how to quantitatively describe and experiment solute transport in fractured
media has attracted more and more attention [6].

Until now, researchers have developed several theoretical and empirical models to quantify
solute transport in fractured media [7–9]. But solute particles in heterogeneous media will have
different retention zones due to the change of flow rate and space, then the classical solute
transport model deviates from experimental results [10–13]. In many tests, the breakthrough
curves (BTCs) showed anomalous and trailing phenomena, indicating that the classic advection-
dispersion equation (ADE) model based on the average transport could not accurately describe
these phenomena [14–17].

To overcome the drawbacks of classic ADE model, some researchers developed new models to
simulate the non-Fickian transport [18–25]. For example, a continuous time randomwalk (CTRW)
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framework using a set of Langevin equations, has been used
to approximate the random process of particle trajectory [18].
Qian et al. used the mobile-immobile (MIM) model to prove
that it is better than the ADE model in describing the dispersion
phenomenon of BTCs [19]. Fractional-order model has been
used to describe the non-Fickian phenomenon of solute transport
in recent decade. It describes the solute transport in residence
zone by introducing fractional derivative operator in time. But
there are only a few studies have been carried out in fractured
media. Sun et al. [20] developed the time F-ADE model used
to characterize sodium chloride transport in a single fracture
and capture non-Fician transport. But the selection of model
parameters and mechanism of anomalous transport have not
been fully understood.

The objective of this study is to conduct a group of
experiments to investigate chloride ion transport in the SVFs
under different rough-walled conditions, especially observe the
non-Fickian transport phenomena, and to establish a time

FIGURE 1 | The average flow velocity is v = 6.785 mm/s, the crack width is B = 4mm, and the breakthrough curves (BTCs) fitted by ADE model and FADE model

is used.

FIGURE 2 | The average flow rate is v = 13.675 mm/s, the crack width is B = 4mm, and BTCs fitted by ADE model and FADE model is used.

fractional advection-dispersion equation (F-ADE) model to offer
an effective description for the anomalous transport. This
study includes the following contents. First, we introduce the
experimental device and the experiment of NaCl transport in a
single fracture, while the classic ADE model and fractional order
model are provided. Then, we provide experimental analysis and
discussion of experimental results with a comparison of the ADE
model and the time F-ADE model. At last, some conclusions
are given.

MATERIALS AND METHODS

Experiment Description
In last century, some researchers have described breakthrough
curves and concentration profiles, revealing the important
effects of flow velocity, matrix porosity and matrix distribution
coefficient on solute transport in fractures [26]. To investigate
the solute transport in smooth and rough fractures under
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a single fracture, an experiment was conducted here. This
experiment is composed by three parts: upstream water supply
and downstream water discharge and single fracture. Some
concentration measuring devices are also included.

According to the previous experimental design, the main
body of the experimental design is cuboid, which is made of
6mm plexiglass plate. In order to conduct multiple experiments,
the width of cracks can be adjusted [27], and glass plates with
different roughness can be attached to the walls of the plexiglass
plate. To construct an artificial rough single crack, we select two
types of plexiglass plates of coarse degree to stick the inner wall
and ensured that the same rough surface of each test is parallel,
with dimensions are 40 × 40 × 1mm and 40× 40 × 2mm [28].
So, the thickness of the plywood is the concave-convex height
of the crack, denoted by the symbol 1. The relative roughness
is 1/e. Regarding the average fracture width e, a formula can
be given

e =
Volf

1
2

(
h1 + h2

)
l

(1)

where, Volf represents the water volume in the fracture, h1 is the
water level of the inlet of the fracture, h2 is the water level of
theoutlet of the fracture, and l is the distance from the inlet of
the fracture to the outlet.

In addition, to maintain the stability of water pressure at the
inlet, the high-water tank is used for water supply in the test. The
overflow tank is set in the water tank to keep the water level in the
tank stable. In this way, the problem of unstable water pressure
and flow due to voltage instability can be avoided in the water
supply by the inlet pump to reduce the systematic error of the
test. The flow meter is installed at both ends of the test device. By
adjusting the flow meter valves at the inlet and outlet, the solute
transport can be measured at different flow rates.

FIGURE 3 | The average flow rate is v = 20.36 mm/s, the crack width is B = 4mm, and BTCs fitted by using the ADE model and the FADE model.

FIGURE 4 | The average flow rate is v = 26.962 mm/s, the crack width is B = 4mm, the BTCs are fitted by ADE model and FADE model.

Frontiers in Physics | www.frontiersin.org 3 September 2020 | Volume 8 | Article 378113

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Qiao et al. Experimental Investigation and Fractional Derivative Model

METHODS

Experimental Method
First, we make the model according to the designed size, and
then confirm the water tightness of the whole device is intact
before further test. Second, adjust the upstream and downstream
water tanks and fill them with water to stabilize the water level.

TABLE 1 | Parameter fitting of the FADE model with fracture width of 4mm at

different flow rates.

V(mm/s) α R2 RMSE

6.785 0.95 0.9529 0.0663

13.675 0.9 0.9898 0.0268

20.36 0.9 0.9408 0.0612

26.962 0.86 0.9172 0.0743

The configured NaCl solution is then rapidly injected, and the
timing starts. Samples were taken at regular intervals and the
concentration was measured. Third, clean the equipment after
every experiment. According to the above method, two kinds of
experiments were carried out in the crack with different flow rate,
different surface roughness and different crack width.

(1) Seven pulse tracer tests are successfully carried out under
different hydraulic conditions and different fracture widths.

(2) Five experiments are carried out on the cracks under
different occurrence conditions, including multiple gap
widths, multiple relative roughness and multiple average
flow rates.

Test Methods
NaCl solution is used as the tracer solution in this experiment.
Since trace determination is needed, the conductivity method
is selected for the determination within the permitted range of

FIGURE 5 | The average flow rate is v = 9.02 mm/s, the crack width is B = 6mm, the BTCs are fitted by ADE model and FADE model.

FIGURE 6 | The average flow rate is v = 7.924 mm/s, the crack width is B = 7mm, the BTCs are fitted by ADE model and FADE model.
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experimental conditions. Its basic principle is the conductivity
of water and its inorganic acid, alkali, salt content has a certain
relationship. When the concentration is low, the conductivity
increases with the concentration, so this index can be used to
predict the total concentration or salt content of ions in water.
The solution concentration can be converted by measuring the
conductivity of the solution and the background value of the
conductivity of tap water. The conductivity used in the test has
the function of temperature compensation, that is, regardless of
the solution temperature, it can be automatically converted to the
conductivity value at 25◦C.

Before the experiment, a series of NaCl solutions with different
concentrations were accurately prepared by using an electronic
balance, and their conductivity values were measured [29].
Then, the standard curve equation is solved by using the least
square method

c = 0.0006771∗EC + 0.00014 (2)

Where c is the concentration of NaCl in g/L, EC is the electrical
conductivity value in us/cm, and the correlation coefficient of the
equation is 0.99977.

Model Methods
For many years, the advection—dispersion equation (ADE)
based on Fick’s law has been used to simulate the curve (BTCs)
of solute transport in uniform media. For one-dimensional flow,
the expression of ADE is

∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
(3)

Where C is the solute concentration, D is the dispersion
coefficient, v is the average flow rate, x is the solute transport
distance, and t is the transport time. In recent years, fractional
differential equations have been used more and more widely,
which can better describe some natural physical phenomena and

dynamic processes [30–32]. In the aspect of solute transport in
groundwater, F-ADE model can be used to describe the non-
Fickian phenomena and anomalous diffusion in solute transport
[33, 34]. If time dependence is considered, the time FADE is
established as

∂αC (x, t)

∂tα
= D

∂2C (x, t)

∂x2
− v

∂C (x, t)

∂x
(4)

In the formula, α is the fractional derivative order. According
to the experimental results of Sun et al. [20], because the time
fractional derivative term can well-describe the influence of
fracture heterogeneity, the time fractional derivative model can
accurately describe the overall trend of BTCs, especially the
phenomena of tail-dragging [35].

To evaluate the fitting results of the time fractional advection-
dispersion equation, the root mean square error (RMSE) and the
coefficient of determination (R2) are selected as the important
parameters [36, 37]. RMSE is also known as the effective value
[37], which is the square root of the square number of deviations
between the predicted value and the true value and the ratio
of n times of observation. R2 shows the extent to which all the

explanatory variables included in the model affect the association
of dependent variables. In this experiment, the closer the error
value is to 0, the value of the coefficient is to 1, indicating that the

TABLE 2 | Parameters of the FADE model with similar low average velocity and

different fracture widths.

B(mm) V(mm/s) α R2 RMSE

4 6.785 0.95 0.9529 0.0663

6 9.02 0.93 0.955 0.0607

7 7.924 0.94 0.9062 0.096

9 6.161 0.94 0.9239 0.0858

FIGURE 7 | The average flow velocity is v = 6.161 mm/s, the crack width is B = 9mm, the BTCs are fitted by ADE model and FADE model.
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fitting result is better. The expression is

RMSE =

√√√√ 1

N

N∑

i=1

(Cio − Cie)
2 (5)

R2 = 1−
∑N

i=1 (Cio − Cie)
2

∑N
i=1 (Cio − Cio)

2
(6)

where N is the number of individual observation points,Cio is
the measured value of the concentration,Cie is the simulated
value of the concentration, C̄io is the average value of the
measured concentration.

RESULTS AND DISCUSSION

Non-Fickian Transport of Solute in Smooth
Fractures
In order to better observe the trailing phenomenon of solute
transport, Figure 1(left) is the graph of test results after taking
logarithm, and the right side is the graph of test results under
normal coordinate system.

Figures 1–4 show the fitting curves of different average flow
rates for the same crack width B = 4mm, and Table 1 shows
the fitting results of the FADE model. The results show that
the ADE model approximately presents a normal distribution,
while the FADE model can well-describe the tail phenomenon
of BTCs. It shows that the time fractional derivative has an
obvious advantage in describing the non-Fickian phenomenon
of solute transport. In addition, according to the observation,

FIGURE 8 | With the average flow velocity v = 40.5887 mm/s, the average fracture width is e = 4.9mm, the concentration of the relative roughness 1/e is 0.2041

test data, the BTCs are fitted by ADE model and FADE model.

FIGURE 9 | With the average flow velocity v = 31.2064 mm/s, the average fracture width is e = 4.9mm, the concentration of the relative roughness 1/e is 0.2041

test data, the BTCs are fitted by ADE model and FADE model.
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FIGURE 10 | With the average flow velocity v = 23.3541 mm/s, the average fracture width is e = 4.9mm, the concentration of the relative roughness 1/e is 0.2041

test data, the BTCs are fitted by ADE model and FADE model.

FIGURE 11 | With the average flow velocity v = 22.5909 mm/s, the average fracture width is e = 4.5mm, the concentration of the relative roughness 1/e is 0.4444

test data, the BTCs are fitted by ADE model and FADE model.

the fitting accuracy of the fade-away model is the highest at a
lower average flow rate, indicating that the average flow rate
plays an important role in characterization of the solute transport
in fracture.

Figures 5–7 show the fitting curve of similar low average
flow rate with different fracture widths. Table 2 shows the fitting
results of the FADEmodel with 4 types of fracture widths ranging
from 4 to 9mm. The results show, the peak arrival time of BTCs
curve is gradually delayed and the peak duration is gradually
prolonged with the increase of fracture width. Although the
ADE model also offered an approximate trend, there is still a
gap to the fitting results, while the FADE model is accurate. In
addition, it is found that the FADEmodel provides a higher fitting
accuracy in the smaller fracture widths, indicating that fracture
width is also an important factor affecting the description of
non-Fickian phenomena.

Non-Fickian Transport of Solute in Coarse
Fractures
The First (Non-anastomosis) Experiment
Three experiments are conducted on the fracture pattern of a
parallel plexiglass plate with a spacing of 6mm and a length,
width and height of 40 × 40 × 1mm in the adhesion of a rough
plastic plate (with a protuberance of 1 mm).

The Second (Non-anastomosis) Experiment
Three experiments are conducted on the fracture pattern of a
parallel plexiglass plate with a spacing of 6mm and a length,
width and height of 40 × 40 × 2mm in the adhesion of a rough
plastic plate (with a protuberance of 1 mm).

Figures 8–12 show the fitting curves of the experimental
results of two kinds of different fracture occurrence, whileTable 3
shows the fitting results of the FADE model of the five groups of
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FIGURE 12 | With the average flow velocity v = 18.0257 mm/s, the average fracture width is e = 4.5mm, the concentration of the relative roughness 1/e is 0.4444

test data, the BTCs are fitted by ADE model and FADE model.

TABLE 3 | Parameter fitting of the FADE model with different mean flow rates

under two groups of same relative roughness fracture conditions.

e(mm) 1/e v(mm/s) α R2 RMSE

4.9 0.2041 40.5887 0.8 0.9285 0.084

4.9 0.2041 31.2064 0.92 0.9626 0.0585

4.9 0.2041 23.3541 0.75 0.9268 0.0905

4.5 0.4444 18.0257 0.88 0.9774 0.0468

4.5 0.4444 22.5909 0.83 0.9681 0.054

experiments. Under the same relative roughness condition, the
peak arrival time of the medium and low average flow rate is
gradually delayed, and the accuracy of ADE model description is
reduced accordingly. However, it can be observed from Table 3

that the fitting accuracy of the FADE model is better. Under
different roughness conditions, the higher the relative roughness
value is, the better the fitting result of the FADE model in the
experiment of low average flow rate is. It also indicates that
the average flow rate and fracture roughness have significant
influence on the non-Fickian phenomenon of solute transport in
the fracture.

CONCLUSIONS

Two groups of experiments, a total of 12 times for different flow
velocity, roughness of fracture, the width of fracture condition
were carried out. Non-Fickian phenomena of solute transport
were clearly observed. According to the fitting results of BTCs
diagram and numerical analysis, it is clear that the heavy-tail
phenomena of BTCs can be well-captured and described by the
FADE model, while the ADE model can only roughly describe
the peak value of BTCs. In addition, we found that the BTCs
peak of rough fracture reaches earlier than that of smooth crack,
and the phenomenon of long tail is more obvious. Compared
with the traditional ADE model, the FADE model has a great

advantage in describing the anomalous transport in a single
fracture under the conditions of rough fracture and low average
flow rate. However, the main disadvantage of the FADE model
is that it takes more computational time, which is caused by the
inclusion of convolution integral in the model. In the future,
we can also study the law of solute transport in porous media
and a more complicated transport process of reactive solutes.
Furthermore, there are still many problems for our model to be
solved such as how to determine the fractional derivative order,
non-linear modeling of the fractional order and so on. More and
more theoretical analysis and complex experiments need to be
carried out to study in depth.
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In this paper, we discuss the relationship between the Zain Ul Abadin Zafar (ZZ) transform

with Laplace and Aboodh transforms. Further, the ZZ transform is applied to the fractional

derivative with the Mittag-Leffler kernel defined in both the Caputo and Riemann-Liouville

sense. In order to illustrate the validity and applicability of the transform, we solve some

illustrative examples.

Keywords: ZZ transform, fractional calculus, aboodh transform, non-singular kernel, mittag-leffler kernel

1. OUTLINE AND MOTIVATION

In recent years, fractional calculus (FC) has gained considerable achievements in various fields of
science and engineering. Many physical problems [1–7] are modeled by using fractional differential
equations (FDE) more accurately than classical differential equations [8–11]. Earlier, various
real-life problems were modeled by using the Caputo and Riemann-Liouville (R-L) fractional
derivatives. However, Caputo and Fabrizio proposed a new idea that reflects the exponential kernel
[12] to address a new way of modeling phenomena with non-local effects. Further, in [13], a
new fractional operator (AB) with a Mittag-Leffler kernel was developed. So, in this regard, many
researchers [14–16] have given their interest in this definition to solve various problems/models. In
fact, in modeling real phenomena, we need a variety of fractional operators to thoroughly describe
the complexity of the problem studied. Some other studies regarding fractional calculus and special
functions can be found in the literature [17–26].

In the present study, we establish the relationship between the ZZ transform (ZZT) with the
Aboodh transform (AT), and the Laplace transform (LT) having their various applications given in
[27–31]. Next, the ZZT has been applied to AB fractional operators defined in the Caputo and R-L
sense, which are described in terms of theorems. Later, we have solved some test examples defined
in the AB sense using this ZZT. The contribution of the present authors to this manuscript are (i)
firstly establishing the relationship among ZZT, LT, and AT, (ii) secondly applying ZZT to fractional
differential equations defined in the AB derivative to get the solution of the problems. The ZZ
transform is the generalization of some famous transforms and we can relate this transformation to
other well-known transforms. If we divide the ZZ transform by the transformed variable, then we
get the Natural transform. Similarly, relations with other integral transforms in terms of theorems
have been included in this paper. The main benefit of this transformation is that it may converge to
the Sumudu transform and is advantageous in solving FDEs with variable coefficients.

The organization of the paper is as follows: In section Preliminaries and Basic Definitions, we
establish the connection between the Aboodh and ZZ transform; we prove some significant results
and create the relationships between AB derivatives with ZZT. In section Applications, some FDEs
are solved using ZZT. Finally, a conclusion section is included in section Conclusion.
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2. PRELIMINARIES AND BASIC
DEFINITIONS

Definition 2.1
The Aboodh transform is obtained on the set of functions

B =
{
f (t) : ∃ M,m1,m2 > 0,

∣∣f (t)
∣∣ < Me−st

}

and is defined as [27, 28]

A
{
f (t)

}
=

1

s

∞∫

0

f (t) e−stdt, t > 0 andm1 ≤ s ≤ m2

Theorem 2.1
Let us consider G and Fas the Aboodh and Laplace transforms of
f (t) ∈ B then [32]

G (s) =
F (s)

s
. (2.1)

The ZZT was introduced by Zain Ul Abadin Zafar [29, 30]. It
generalizes the Aboodh and Laplace integral transforms. In the
following definition, we discuss the definition of ZZT.

Definition 2.2 (ZZ Transform)
Suppose f (t) ∀ t ≥ 0 is a function then the ZZT Z (v, s) of f (t) is
defined as [29, 30]

ZZ
(
f (t)

)
= Z (v, s) = s

∞∫

0

f (vt) e−stdt.

Similar to the Aboodh and Laplace transforms, the ZZT is also
linear. The MLF is an extension of exponential function which is
defined as.

Eα (z) =
∞∑

n=0

zn

Ŵ (1+ nα)
, Re (α) > 0.

Definition 2.3
Let us consider a function ξ (x, t) ∈ H1

(
a, b

)
, then for α ∈

(0, 1), the Atangana-Baleanu Caputo (ABC) derivative is written
as [13].

ABC
aD

α
t ξ (x, t) =

ψ (α)

1− α

t∫

a

ξ ′ (x, τ) Eα

(
−α(t − τ)α

1− α

)
dτ .

Definition 2.4
Let ξ (x, t) ∈ H1

(
a, b

)
, then for α ∈ (0, 1), the Atangana-Baleanu

Riemann-Liouville (ABR) derivative is given as [13]

ABR
a Dαt ξ (x, t) =

ψ (α)

1− α
d

dt

t∫

a

ξ (x, τ) Eα

(
−α(t − τ)α

1− α

)
dτ ,

whereψ (α)is a function with the conditionsψ (0) = ψ (1) =
1and b > a.

Theorem 2.2
The LT of ABC and ABR derivative are, respectively, given
as [13]

L
{
ABC
a Dαt ξ (x, t)

}
(s) =

ψ (α)

1− α
sαL {ξ (x, t)} − sα−1ξ (x, 0)

sα + α
1−α

(2.2)

and

L
{
ABR
a Dαt ξ (x, t)

}
(s) =

ψ (α)

1− α
sαL {ξ (x, t)}
sα + α

1−α
. (2.3)

The following theorems have been proposed where it is
assumed that f (t) ∈ H1

(
a, b

)
, b > aand α ∈ (0, 1).

Theorem 2.3
The AT of ABC derivative is given as.

G (s) = A
{
ABC
a Dαt ξ (x, t)

}
(s)

=
1

s

[
ψ (α)

1− α
sαL {ξ (x, t)} − sα−1ξ (x, 0)

sα + α
1−α

]
. (2.4)

Proof: Using Theorem 2.1 and Equation. (2.2), we may get the
desired result.

Theorem 2.4
The Aboodh transform of ABR derivative is written as.

G (s) = A
{
ABR
a Dαt ξ (x, t)

}
(s) =

1

s

[
ψ (α)

1− α
sαL {ξ (x, t)}
sα + α

1−α

]
.

(2.5)

Proof
Applying the Theorem 2.1 and Equation (2.3), we obtain the
required result.

The connection between the transforms of Aboodh and ZZ is
given in the theorem below.

Theorem 2.5
IfG (s) andZ (v, s) are the Aboodh and ZZ transforms of f (t) ∈ B.
Then, we obtain

Z (v, s) =
s2

v2
G

( s

v

)
.

Proof. From the definition of ZZ transform we have

Z (v, s) = s

∞∫

0

f (vt) e−stdt. (2.6)
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Substituting vt = τ in Equation (2.6) we get

Z (v, s) =
s

v

∞∫

0

f (τ ) e−
sτ
v dτ . (2.7)

The right-hand side of the above Equation (2.7) may be
written as.

Z (v, s) =
s

v
F

( s

v

)
, (2.8)

where F (.) denotes the Laplace transform of f (t).
Applying the Theorem 2.1, Equation (2.8) can be expressed as

Z (v, s) =
s

v

F
(
s
v

)
(
s
v

) ×
( s

v

)
=

( s

v

)2
G

( s

v

)
, (2.9)

where G (.) denotes the Aboodh transform of f (t).

Theorem 2.6
ZZ transform of f (t) = tα−1 is given as

Z (v, s) = Ŵ (α)

(v
s

)α−1
. (2.10)

Proof. The Aboodh transform of f (t) = tα ,α ≥ 0 is

G (s) =
Ŵ (α)

sα+1
,

Now, G
( s

v

)
=
Ŵ (α) vα+1

sα+1
.

Using Equation (2.9), we obtain.

Z (v, s) =
s2

v2
G

( s

v

)
=

s2

v2
Ŵ (α) vα+1

sα+1
= Ŵ (α)

(v
s

)α−1
.

Theorem 2.7
Let α,ω ∈ C and Re (α) > 0, then the ZZ transform of Eα (ωt

α)

is given as

ZZ
{(
Eα

(
ωtα

))}
= Z (v, s) =

(
1− ω

(v
s

)α)−1
(2.11)

Proof.We know that Aboodh transform of Eα (ωt
α) is written as.

G (s) =
F (s)

s
=

sα−1

s (sα − ω)
, (2.12)

So, G
( s

v

)
=

(
s
v

)α−1

(
s
v

) ((
s
v

)α − ω
) , (2.13)

Using the Theorem 2.9, we obtain.

Z (v, s) =
( s

v

)2
G

( s

v

)
=

( s

v

)2 (
s
v

)α−1

(
s
v

) ((
s
v

)α − ω
)

=
(
s
v

)α
(
s
v

)α − ω
=

(
1− ω

(v
s

)α)−1
.

Theorem 2.8
If G (s) and Z (v, s) are the Aboodh and ZZ transforms of f (t).
Then the ZZT of ABC derivative is written as.

ZZ
{
ABC
0 Dαt f (t)

}
=

[
ψ (α)

1− α

sα+2

vα+2G
(
s
v

)
− sα

vα f (0)

sα

vα + α
1−α

]
. (2.14)

Proof. Using the Equations (2.1) and (2.4), we have

G
( s

v

)
==

v

s

[
ψ (α)

1− α

(
s
v

)α+1
G

(
s
v

)
−

(
s
v

)α−1
f (0)

(
s
v

)α + α
1−α

]
. (2.15)

So, the ZZ transform of ABC is given as.

Z (v, s) =
( s

v

)2
G

( s

v

)

=
( s

v

)2 v
s

[
ψ (α)

1− α

(
s
v

)α+1
G

(
s
v

)
−

(
s
v

)α−1
f (0)

(
s
v

)α + α
1−α

]

=

[
ψ (α)

1− α

(
s
v

)α+2
G

(
s
v

)
−

(
s
v

)α
f (0)

(
s
v

)α + α
1−α

]

Theorem 2.9
Let us assume thatG (s) and Z (v, s) are the Aboodh and ZZ
transform of f (t). Then the ZZ transform of ABR derivative is
given as

ZZ
{
ABR
0 Dαt f (t)

}
=

[
ψ (α)

1− α

sα+2

vα+2G
(
s
v

)

sα

vα + α
1−α

]
. (2.16)

Proof. Using the Equations (2.1) and (2.5), we get

G
( s

v

)
=

v

s

[
ψ (α)

1− α

(
s
v

)α+1
G

(
s
v

)
(
s
v

)α + α
1−α

]
. (2.17)

From the Equation (2.9), the ZZ transform of ABR is written as.

Z (v, s) =
( s

v

)2
G

( s

v

)
=

( s

v

)2 (v
s

) [
ψ (α)

1− α

(
s
v

)α+1
G

(
s
v

)
(
s
v

)α + α
1−α

]

=

[
ψ (α)

1− α

(
s
v

)α+2
G

(
s
v

)
(
s
v

)α + α
1−α

]
.
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3. APPLICATIONS

Let us consider the following initial value problem (IVP) defined
in ABC sense [15]

{
ABC
0 Dαt y (t) = f

(
t, y (t)

)
, t > 0 ,

y (0) = k, k ∈ ℜ .
(3.1)

Suppose Z (v, s) and T (v, s) are the ZZ transforms of y (t)and f ,
respectively. Then by taking the ZZT on both sides of Equation
(3.1) and using Equations (2.9) and (2.14), we may get

[
ψ (α)

1− α

(
s
v

)α
Z (v, s)−

(
s
v

)α
y (0)

(
s
v

)α + α
1−α

]
= T (v, s) .

[
ψ (α)

Z (v, s)− k(
1− α + α

(
v
s

)α)
]
= T (v, s)

Thus,Z (v, s) =
1− α + α

(
v
s

)α

ψ (α)
T (v, s)+ k. (3.2)

Then, by applying the inverse ZZT on both sides of Equation
(3.2), we obtain the exact solution.

Similarly, we may solve Equation (3.1) defined in
ABR derivative.

Example 3.1
Let us take the following fractional IVP [15]

{
ABC
0 Dαt y (t) = y (t) , t > 0 ,
y (0) = 1.

(3.3)

Firstly, we apply the ZZT on both sides of Equation (3.3)
which gives

[
ψ (α)

1− α

(
s
v

)α
Z (v, s)−

(
s
v

)α
y (0)

(
s
v

)α + α
1−α

]
= Z (v, s) . (3.4)

Simplifying Equation (3.4) and using the initial condition,
we have

[
ψ (α)

Z (v, s)− 1(
1− α + α

(
v
s

)α)
]
= Z (v, s) . (3.5)

The simplification of Equation (3.5) gives us the following:

Z (v, s) =
1

1− 1−α+α( vs )
α

ψ(α)

=
ψ (α)

ψ (α)− 1+ α − α
(
v
s

)α . (3.6)

Equation (3.6) may be rewritten as.

Z (v, s) =
ψ (α)

(ψ (α)− 1+ α)

(
1−

α

ψ (α)− 1+ α

(v
s

)α)−1

(3.7)

Applying the inverse of the ZZT on Equation (3.7) and using
Equation (2.11), Equation (3.7) is reduced to

y (t) =
ψ (α)

(ψ (α)− 1+ α)
Eα

(
α

ψ (α)− 1+ α
tα

)
, (3.8)

where Eα (t) is the MLF.
Substituting α = 1 in Equation (3.8), we obtain

y (t) = E1 (t) = et , (3.9)

which is the exact solution of Equation (3.3) when α = 1.

Example 3.2
Considering the following fractional IVP [15]

{
ABC
0 Dαt y (t) = η t , t > 0 ,
y (0) = 0.

(3.10)

Taking the ZZT on both sides of Equation (3.10) and plugging the
initial condition, we get

[
ψ (α)

1− α

(
s
v

)α
Z (v, s)−

(
s
v

)α
y (0)

(
s
v

)α + α
1−α

]
= η

(v
s

)
,

[
ψ (α)

Z (v, s)(
1− α + α

(
v
s

)α)
]
= η

(v
s

)
,

Z (v, s) = η
(v
s

) (
1− α + α

(
v
s

)α)

ψ (α)

=
η

ψ (α)

[
(1− α)

(v
s

)
+ α

(v
s

)α+1
]
. (3.11)

Applying inverse ZZT on both sides of Equation (3.11), we obtain

y (t) =
η

ψ (α)

[
(1− α) t +

α

Ŵ (α + 2)
tα+1

]
. (3.12)

It is noticed that if we put α = 0, then Equation (3.12)
reduces to y (t) = η t and substituting α = 1 in Equation

(3.12), we obtain y (t) = η t2

2 . Plugging α = 0.5, we get y (t) =
η

ψ(0.5)

[
t
2 +

2
3
√
π
t
3
2

]
.

4. CONCLUSION

In this manuscript, the ZZT is debated and the associated
properties of ZZT are established. Some theorems related to the
connection between the ZZ, Aboodh, and Laplace transforms
are successfully proven. ZZT was applied to FDEs within the
AB derivatives. Besides, some fractional initial value problems
are solved in order to illustrate the validity and performance of
this transformation.
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In this article we develop a numerical algorithm based on redefined extended cubic

B-spline functions to explore the approximate solution of the time-fractional Klein–Gordon

equation. The proposed technique employs the finite difference formulation to discretize

the Caputo fractional time derivative of order α ∈ (1, 2] and uses redefined extended

cubic B-spline functions to interpolate the solution curve over a spatial grid. A stability

analysis of the scheme is conducted, which confirms that the errors do not amplify during

execution of the numerical procedure. The derivation of a uniform convergence result

reveals that the scheme is O(h2 + 1t2−α ) accurate. Some computational experiments

are carried out to verify the theoretical results. Numerical simulations comparing the

proposed method with existing techniques demonstrate that our scheme yields superior

outcomes.

Keywords: redefined extended cubic B-spline, time fractional Klein-Gorden equation, Caputo fractional derivative,

finite difference method, convergence analysis

1. INTRODUCTION

The subject of fractional-order differential equations has attracted considerable interest due to
its applications in a wide range of fields, such as traffic flow, earthquakes and other physical
phenomena, signal processing, finance, control theory, fractional dynamics, and mathematical
modeling [1–10]. In recent years, the analytical and numerical study of fractional-order differential
equations has become a dynamic area of research. Several numerical and analytical techniques
have been developed to handle these types of equations [11–22]. There are a number of different
definitions of fractional-order derivatives, with different applications. An excellent overview can be
found in the works [23–31]. This article is concerned with the following time-fractional non-linear
Klein–Gordon equation (KGE):

∂α

∂tα
v(x, t)+ ρ

∂2

∂x2
v(x, t)+ ρ1v(x, t)+ ρ2vσ (x, t) = f (x, t), 0 < x ≤ L, t0 < t ≤ T, (1)
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v(x, t0) = ϕ1(x), vt(x, t0) = ϕ2(x), (2)

v(0, t) = ϕ3(t), v(L, t) = ϕ4(t), (3)

where ∂α

∂tα represents the Caputo fractional time derivative, v =
v(x, t) denotes the displacement of the wave at (x, t), α ∈ (1, 2]
is the fractional order of the time derivative, f (x, t) is the source
term, ρ, ρ1 and ρ2 are real numbers, and σ = 2 or 3.

The fractional KGE plays a significant role in quantum
mechanics, the study of solitons, and condensed matter physics.
Many approaches have been adopted to solve equations of
Klein/sine–Gordon type efficiently, including the Adomian
decomposition method, the variational iteration method [32–
34], and the homotopy analysis method [35]; see also the
references cited in these works. Jafari et al. proposed using
fractional B-splines for approximate solution of fractional
differential equations [36]. In Vong and Wang [37, 38] space
compact difference schemes were applied to one- and two-
dimensional time-fractional Klein–Gordon-type equations, and
stability and convergence of the proposed numerical approaches
were established with the aid of an energy method. In Dehghan
et al. [39] the authors used a meshless method based on
radial basis functions to develop an unconditionally stable
numerical scheme for fractional Klein/sine–Gordon equations.
The Adomian decomposition method and an iterative method
were applied in Jafari [40] to solve Klein–Gordon-type equations
involving fractional time derivatives. A fully spectral approach
was employed in Chen et al. [41] that uses finite differences for
time discretization and Legendre spectral approximation in the
spatial direction to construct numerical solutions of non-linear
partial differential equations involving fractional derivatives. A
sinc–Chebyshev collocation method (SCCM) was developed in
Nagy [42] for numerical treatment of the time-fractional non-
linear KGE. Recently, in Kanwal et al. [43], Genocchi polynomials
were employed together with the Ritz–Galerkin scheme to solve
fractional KGEs and diffusion wave equations. A linearized
second-order scheme was introduced in Lyu and Vong [44] to
solve non-linear time-fractional Klein–Gordon-type equations.
Later on, in Doha et al. [45], a space–time spectral approximation
was proposed for solving non-linear variable-order fractional
Klein/sine–Gordon differential equations.

In this article we propose using redefined extended cubic B-
spline (RECBS) functions for numerical solution of the time-
fractional KGE. RECBS functions are basically a generalization
of typical cubic B-spline functions that involve a free parameter
which provides the flexibility to fine-tune the solution curve. We
employ the usual finite central difference approach to discretize
the Caputo fractional time derivative and use RECBS functions
for spatial integration.

This article is organized as follows. The Caputo definition of
fractional time derivative and the finite difference formulation
for temporal discretization are reviewed in section 2; this section
also includes a brief introduction to extended cubic B-spline and
RECBS functions and their applications to space discretization.
The stability analysis of the proposed algorithm is presented
in section 3, and the description of theoretical convergence is

given in section 4. The approximate results are reported and
discussed in section 5. Finally, concluding remarks are given
in section 6.

2. DESCRIPTION OF NUMERICAL
TECHNIQUE

2.1. Time Discretization
Let the time domain [0,T] be divided into R subintervals of equal
length 1t = T

R with endpoints 0 = t0 < t1 < · · · < tR = T,
where tr = r1t and r = 0 : 1 :R. We first discretize the Caputo
fractional derivative at t = tr+1 as [46]

∂αv(x, tr+1)

∂tα
=

1

Ŵ(2− α)

tk∫

0

∂2v(x,w)

∂w2
(tr+1 − w)−α+1 dw

(1 < α ≤ 2)

=
1

Ŵ(2− α)

r∑

k=0

tk+1∫

tk

∂2v(x,w)

∂w2
(tr+1 − w)−α+1 dw.

=
1

Ŵ(2− α)

r∑

k=0

v(x, tk+1)− 2v(x, tk)+ v(x, tk−1)

1t2

tk+1∫

tk

(tr+1 − w)−α+1 dw+ lr+1
1t (4)

=
1

Ŵ(2− α)

r∑

k=0

v(x, tk+1)− 2v(x, tk)+ v(x, tk−1)

1t2

tr−k+1∫

tr−k

(ǫ)−α+1 dǫ + lr+1
1t

=
1

Ŵ(2− α)

r∑

k=0

v(x, tr−k+1)− 2v(x, tr−k)+ v(x, tr−k−1)

1t2

tk+1∫

tk

(ǫ)−α+1 dǫ + lr+1
1t

=
1

Ŵ(3− α)

r∑

k=0

v(x, tr−k+1)− 2v(x, tr−k)+ v(x, tr−k−1)

1tα

((k+ 1)2−α − k2−α)+ lr+1
1t

=
1

Ŵ(3− α)

r∑

k=0

pk

v(x, tr−k+1)− 2v(x, tr−k)+
v(x, tr−k−1)

1tα
+ lr+1

1t ,

where pk = (k + 1)2−α − k2−α , ǫ = (tr+1 − w), and lr+1
1t is the

truncation error. The truncation error is bounded, i.e.,

|lr+1
1t | ≤ ψ(1t)2−α , (5)

where ψ is a constant. The coefficients pk in (4) possess the
following attributes:

Frontiers in Physics | www.frontiersin.org 2 September 2020 | Volume 8 | Article 288127

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Amin et al. Numerical Treatment of TFKGE Using RECBS

• the pk’s are non-negative for k = 0, 1, 2, . . . , r;
• 1 = p0 > p1 > p2 > p3 > · · · > pn, and pn → 0 as n → ∞;
• (2p0−p1)+

∑r−1
k=1(−pk+1+2pk−pk−1)+(2pr−pr−1)−pr = 1.

Substituting Equation (4) into Equation (1), we get

1

Ŵ(3− α)(1t)α

r∑

k=0

pk
[
v(x, tr−k+1)− 2v(x, tr−k)+ v(x, tr−k−1)

]

+ρvxx(x, t)+ ρ1v(x, t)+ ρ2vσ (x, t) = f (x, t)

(r = 0, 1, 2, . . . ,R− 1). (6)

Suppose β = 1
Ŵ(3−α)(1t)α

and v(x, tr+1) = vr+1. Applying a

θ-weighted scheme, Equation (6) takes the form

βp0(v
r+1 − 2vr + vr−1)+ β

r∑

k=1

pk(v
r−k+1 − 2vr−k + vr−k−1)

+ θ(ρvr+1
xx

+ ρ1vr+1) = f r+1 − (1− θ)(ρvrxx + ρ1v
r)− ρ2(vσ )r

(r = 0, 1, 2, . . . ,R− 1). (7)

For θ = 1, we obtain the following semi-discretized
numerical scheme:

(βp0 + ρ1)vr+1 + ρvr+1
xx = 2βp0v

r + β
r∑

k=1

pk(v
r−k+1 − 2vr−k

+ vr−k−1)− ρ2(vσ )r − βp0vr−1 + f r+1(r = 0, 1, 2, . . . ,R− 1).
(8)

2.2. Extended Cubic B-Spline Functions
Let the spatial domain [a, b] be partitioned intoM parts of equal
length h = b−a

M with boundary points a = x0 < x1 < · · · <
xM = b, where xm = x0 +mh form = 0 : 1 :M. For a sufficiently
continuous function v(x, t), there always exists a unique extended
cubic B-spline (ECBS) approximation V∗(x, t):

V∗(x, t) =
M+1∑

m=−1

ξm(t)Sm(x, λ), (9)

where the ξm(t) are to be calculated and the fourth-degree
ECBS blending functions Sm(x, λ) are defined as [47]

Sm(x, λ) =
1

24h4





4h(x− xm−2)
3(1− λ)+ 3(x− xm−2)

4λ if x ∈ [xm−2, xm−1),

h4(4− λ)+ 12h3(x− xm−1)+ 6h2(x− xm−1)
2(2+ λ)

− 12h(x− xm−1)
3 − 3(x− xm−1)

4λ if x ∈ [xm−1, xm),

h4(4− λ)− 12h3(x− xm+1)− 6h2(x− xm+1)
2(2+ λ)

+ 12h(x− xm+1)
3 + 3(x− xm−1)

4λ if x ∈ [xm, xm+1),

−4h(x− xm+2)
3(1− λ)− 3(x− xm+2)

4λ if x ∈ [xm+1, xm+2),

0 otherwise.

(10)

Here λ, with−n(n− 2) ≤ λ ≤ 1, is a real number responsible
for fine-tuning the curve, and n gives the degree of the ECBS used
to generate different forms of ECBS functions. The approximate
solution (V∗)rm = V∗(xm, tr) and its first two derivatives with

respect to the spatial variable x at the rth time step can be
expressed in terms of ξm as [48]





(V∗)rm = b1ξ
r
m−1 + b2ξ

r
m + b1ξ

r
m+1,

(V∗
x )

r
m = b3ξ

r
m−1 − b3ξ

r
m+1,

(V∗
xx)

r
m = b4ξ

r
m−1 + b5ξ

r
m + b4ξ

r
m+1,

(11)

where b1 = 4−λ
24 , b2 = 16+2λ

24 , b3 = −1
2h
, b4 = 2+λ

2h2
, and

b5 = −4−2λ
2h2

.

2.3. Redefined Extended Cubic B-Spline
Functions
In the typical ECBS collocation method, the basis functions
S−1, S0, . . . , SM+1 do not vanish at the boundaries of the
spatial domain when Dirichlet-type end conditions are imposed.
Therefore, we need to redefine them so that the resulting set of
basis functions will vanish at the boundaries. For this, a weight
function 8(x, t) is introduced to eliminate ξ−1 and ξM+1 from
Equation (9) in the following manner [49]:

V(x, t) = 8(x, t)+
M∑

m=0

ξm(t)S̃m(x, λ), (12)

where the weight function 8(x, t) and the redefined ECBS
(RECBS) functions are given by

8(x, t) =
S−1(x, λ)

S−1(x0, λ)
ϕ3(t)+

SM+1(x, λ)

SM+1(xM , λ)
ϕ4(t) (13)

and.





S̃m(x, λ) = Sm(x, λ)−
Sm(x0 ,λ)

S−1(x0 ,λ)
S−1(x, λ) form = 0, 1,

S̃m(x, λ) = Sm(x, λ) form = 2 : 1 :M − 2,

S̃m(x, λ) = Sm(x, λ)−
Sm(xM ,λ)

SM+1 (xM ,λ)
SM+1 (x, λ) form = M − 1,M.

(14)

2.4. Space Discretization
Using Equation (12) in Equation (8) at t = tr+1, we obtain

(βp0 + ρ1)Vr+1 + ρVr+1
xx = 2βp0V

r + β
r∑

k=1

pk(V
r−k+1

− 2Vr−k + Vr−k−1)− ρ2(Vσ )r − βp0Vr−1 + f r+1.

(15)

Discretizing at x = xj, we get

(β + ρ1)Vr+1
j + ρ(Vxx)

r+1
j = 2βVr

j + β
r∑

k=1

pk(V
r−k+1
j − 2Vr−k

j
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+ Vr−k−1
j )− ρ2(V

σ )rj − βVr−1
j + f r+1

j (j = 0, 1, 2, . . . ,M).

(16)

Using (12), the last expression takes the form

(β + ρ1)

[
8r+1

j +
M∑

m=0

ξ r+1
m S̃m(xj, λ)

]
+ ρ

[
(8xx)

r+1
j

+
M∑

m=0

ξ r+1
m S̃m(xj, λ)

]

= 2βVr
j + β

r∑

k=1

pk(V
r−k+1
j − 2Vr−k

j + Vr−k−1
j )

− ρ2(Vσ )rj − βV
r−1
j + f r+1

j

(j = 0, 1, 2, . . . ,M). (17)

Consequently, we get the following system ofM+ 1 equations in
M + 1 unknowns:




a∗1
a1 a2 a1

a1 a2 a1
. . .

. . .
. . .

a1 a2 a1
a1 a2 a1

a∗1







ξ r+1
0

ξ r+1
1
...
...

ξ r+1
M−1

ξ r+1
M




=




y0
y1
...
...

yM−1

yM




, (18)

where

a∗1 =
12ρ(λ+ 2)

h2(λ− 4)
, a1 =

h2(β + ρ1)(λ− 4)+ 12ρ(λ+ 2)

24h2
,

a2 =
h2(β + ρ1)(λ+ 8)− 12ρ(λ+ 2)

12h2
,

yj = 2βVr
j + β

r∑

k=1

pk(V
r−k+1
j − 2Vr−k

j + Vr−k−1
j )

− ρ2(Vσ )rj − βV
r−1
j +9r+1

j ,

9r
j = f rj − (β + ρ1)8r

j − ρ(8xx)
r
j .

To start the numerical procedure, we use the given initial
conditions to obtain the set of equations





(V ′)0m = ϕ
′
1(xm) form = 0,

(V)0m = ϕ1(xm) form = 1 : 1 :M − 1,

(V ′)0m = ϕ
′
1(xm) form = M.

(19)

The matrix representation of (19) is




b1
∗ b2

∗

b1 b2 b1
b1 b2 b1

. . .
. . .

. . .

b1 b2 b1
b1 b2 b1

−b2
∗ −b1

∗







ξ 00
ξ 01
...
...

ξ 0M−1

ξ 0M




(20)

=




(ϕ′1)0 − (8′)00
(ϕ1)1 −80

1
...
...

(ϕ1)M−1 −80
M−1

(ϕ′1)M − (8′)0M




,

where b1
∗ = 8+λ

h(4−λ) and b2
∗ = 1

h
. We solve (20) to obtain

[ξ 00 , ξ
0
1 , . . . , ξ

0
M]T . The ξj values are then substituted into (12) to

get V0. Now we can use (18) for r = 0, 1, 2, . . . ,R − 1. However,
for r = 0 the term involving V−1 appears in Equation (18). This
issue is resolved by using the following substitution derived from
the velocity condition given in (2):

V−1 = V0 −1tφ2(x).

3. STABILITY ANALYSIS

We use the Fourier method to study the stability of the proposed
numerical method. Let εrm and ε̃rm denote, respectively, the exact
and approximate growth factors of the Fourier modes. The error,
̺rm, is given by

̺rm = εrm − ε̃rm, m = 1 : 1 :M − 1, r = 0 : 1 :R, (21)

where ̺r = [εr1, ε
r
2, . . . , ε

r
M−1]

T .
For the sake of simplicity, we shall investigate the stability of

the proposed scheme with f = 0. The equation for the round-off
error is derived from Equations (8) and (21) as

(βb1 + ρ1b1 + ρb4)̺r+1
m−1 + (βb2 + ρ1b2 + ρb5)̺r+1

m

+ (βb1 + ρ1b1 + ρb4)̺r+1
m+1

= 2β
(
b1̺

r
m−1 + b2̺

r
m + b1̺

r
m+1

)
− β

(
b1̺

r−1
m−1 + b2̺

r−1
m

+ b1̺
r−1
m+1

)

− β
r∑

k=1

pk

[
b1
(
̺r−k+1
m−1 − 2̺r−k

m−1 + ̺
r−k−1
m−1

)

+ b2
(
̺r−k+1
m − 2̺r−k

m + ̺r−k−1
m

)

+ b1
(
̺r−k+1
m+1 − 2̺r−k

m+1 + ̺
r−k−1
m+1

)]
. (22)

The error equation satisfies the end conditions

̺0m = ϕ1(xm), m = 1 : 1 :M, (23)

and

̺r0 = ϕ3(tr), ̺rM = ϕ4(tr), r = 0 : 1 :R. (24)

We define the grid function as

̺r =

{
̺rm if xm − h

2 < x ≤ xm + h
2 , for m = 1 : 1 :M − 1,

0 if a ≤ x ≤ 2a+h
2 or 2b−h

2 ≤ x ≤ b.

(25)
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Now, ̺r(x) can be written in the form of a Fourier
series as follows:

̺r(x) =
∞∑

r=−∞
εr(n)e

2πιnx
b−a , r = 1 : 1 :R, (26)

where

εr(n) =
1

b− a

∫ b

a
̺r(x)e

−2πιnx
b−a dx. (27)

Taking the ‖ · ‖2 norm, we get

‖̺r‖2 =

(
R−1∑

n=1

h|̺rn|
2

) 1
2

=

(∫ a+ h
2

a
|̺r|2 dx+

R−1∑

n=1

∫ xn+ h
2

xn− h
2

|̺r|2 dx+
∫ b

b− h
2

|̺r|2 dx

) 1
2

=

(∫ b

a
|̺r|2 dx

) 1
2

.

From Parseval’s equality we have
∫ b
a |̺r(n)|2 dx=

∑∞
−∞ |εn(m)|2,

so the above expression can be written as

‖̺r‖22 =
∞∑

r=−∞
|εr(n)|2. (28)

Next, we consider the solution in terms of Fourier series,

̺rk = εre
ινkh, (29)

where ι =
√
−1 and ν = 2πn

b−a
. Using Equation (29) in Equation

(22) and then dividing by eiνkh gives

(βb1 + ρ1b1 + ρb4)εr+1e
−ινh + (βb2 + ρ1b2 + ρb5)εr+1

+ (βb1 + ρ1b1 + ρb4)εr+1e
ινh

= 2β
(
b1εre

−ινh + b2εr + b1εre
iνh
)
− β

(
b1εr−1e

−ινh

+ b2εr−1 + b1εr−1e
iνh
)

− β
r∑

k=1

pk

[
b1
(
εr−k+1e

−ινh − 2εr−k + εr−k−1e
ινh
)

+ b2
(
εr−k+1 − 2εr−k + εr−k−1

)

+ b1
(
εr−k+1e

−ινh − 2εr−ke
ινh + εr−k−1e

ινh
)]
. (30)

We know that eiνh + e−iνh = 2 cos(νh), so after collecting like
terms, the following useful relation is obtained:

εr+1 =
1

η

[
2εr−εr−1−

r∑

k=1

pk
(
εr−k+1−2(b1+b2)εr−k+εr−k−1

)]
,

(31)

where η = 1+ ρ1
β
+ 12ρ(2+ν) sin2(νh/2)
βh2{−6+(4−ν) sin2(νh/2)} . Now it is obvious that

η ≥ 1 for ν > −2.

TABLE 2 | Absolute and relative errors for Example 5.1 with M = 100,

1t = 0.001, and α = 1.6.

SCCM [42] Proposed method

t x L∞ L2 L∞ L2

0.4

0.4 9.3726× 10−4 1.3282× 10−2 1.6174× 10−5 1.2207× 10−5

0.6 9.4592× 10−4 1.6950× 10−2 6.3939× 10−6 1.1035× 10−6

0.8 6.5448× 10−4 1.4462× 10−1 5.1612× 10−6 3.2573× 10−6

0.8

0.4 1.7359× 10−4 8.6999× 10−4 2.4030× 10−5 9.1532× 10−6

0.6 1.2080× 10−4 1.6683× 10−3 6.7766× 10−6 2.8126× 10−6

0.8 2.4657× 10−4 1.9263× 10−2 3.5003× 10−6 9.0128× 10−7

TABLE 1 | Absolute errors for Example 5.1 with M = 100, 1t = 0.001, and different values of α.

SCCM [42] Proposed method

x α = 1.5 α = 1.7 α = 1.9 α = 1.5 α = 1.7 α = 1.9

0.1 8.7105× 10−4 4.3675× 10−4 5.0452× 10−4 1.0827× 10−6 4.6777× 10−6 9.5482× 10−6

0.2 8.7781× 10−4 9.8359× 10−4 7.5328× 10−5 9.2126× 10−6 1.1035× 10−6 3.6308× 10−5

0.3 6.2089× 10−4 4.8897× 10−5 1.1241× 10−4 2.9024× 10−6 1.2573× 10−5 9.1646× 10−6

0.4 5.7015× 10−4 7.6534× 10−4 1.6772× 10−4 3.6966× 10−6 8.1441× 10−6 7.0990× 10−6

0.5 5.1476× 10−4 9.3043× 10−4 2.5022× 10−4 8.3386× 10−6 2.5203× 10−7 2.3918× 10−5

0.6 4.8948× 10−4 9.4248× 10−4 2.5022× 10−4 1.0128× 10−5 7.3829× 10−6 9.8467× 10−5

0.7 5.1671× 10−4 7.5585× 10−5 2.5022× 10−4 8.9851× 10−6 7.1672× 10−6 7.1855× 10−6

0.8 5.3919× 10−4 5.2006× 10−4 2.5022× 10−4 5.3467× 10−6 7.2518× 10−6 3.2774× 10−5

0.9 6.0660× 10−4 5.4848× 10−4 2.5022× 10−5 1.7505× 10−7 9.7572× 10−6 2.8528× 10−6
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Lemma 3.1. Let εr be the solution of Equation (31). Then |εr| ≤
|ε0| for r = 0 : 1 :R.

Proof: For r = 0 in (31), we have

|ε1| =
1

η
|ε0| ≤ |ε0| for η ≥ 1.

Suppose that the result is true for r = 1 : 1 :R. Then, from
Equation (31) we get

|εr+1| ≤
1

η
|εr| −

1

η

r∑

k=1

pk
(
|εr−k+1| − 2|εr−k| + |εr−k−1|

)

≤
1

η
|ε0| −

1

η
|ε0| −

r∑

k=1

pk
(
|ε0| − |ε0|

)

≤ |ε0|.

Theorem 1. The implic it collocation technique presented in
Equation (13) is unconditionally stable.

Proof: Using Lemma (3.1) and Equation (28), we obtain

‖̺r‖2 ≤ |̺0|2, r = 0 : 1 :R.

4. CONVERGENCE OF THE SCHEME

To investigate the convergence of the proposed scheme, we follow
the approach in Khalid et al. [50]. Before proceeding, we state the
following useful theorems [51, 52].

Theorem 2. Let 5 = {a = x0, x1, . . . , xM = b} be a partition
of [a, b] with xm = mh for m = 0, . . . ,M, and let v ∈ C4[a, b]

TABLE 3 | Comparison of absolute errors for Example 5.1 using three different

methods with M = 100, 1t = 0.001, and α = 1.4 or 1.6.

α (x, t) VIM [34] SCCM [42] Proposed method

1.4

(0.1, 0.1) 9.2852× 10−3 8.4385× 10−4 3.6460× 10−7

(0.2, 0.2) 2.2201× 10−3 1.1433× 10−4 3.0191× 10−7

(0.3, 0.3) 3.5651× 10−2 5.3780× 10−3 1.1558× 10−6

(0.4, 0.4) 4.9628× 10−2 1.5545× 10−4 1.6174× 10−5

(0.5, 0.5) 6.4449× 10−2 5.3227× 10−4 8.4214× 10−6

(0.6, 0.6) 7.9514× 10−2 1.3268× 10−3 6.5725× 10−6

(0.7, 0.7) 9.1443× 10−2 1.9159× 10−3 3.6215× 10−6

(0.8, 0.8) 8.7942× 10−2 2.0414× 10−3 3.5112× 10−6

(0.9, 0.9) 9.2321× 10−4 1.8996× 10−3 5.7354× 10−8

1.6

(0.1, 0.1) 4.1518× 10−4 1.1685× 10−4 7.3256× 10−6

(0.2, 0.2) 1.0319× 10−3 2.5887× 10−4 2.3576× 10−5

(0.3, 0.3) 1.7757× 10−2 2.8863× 10−5 2.1107× 10−5

(0.4, 0.4) 2.6987× 10−2 2.3912× 10−4 1.6174× 10−5

(0.5, 0.5) 3.8327× 10−2 1.7692× 10−5 8.3440× 10−6

(0.6, 0.6) 5.0993× 10−2 1.4174× 10−4 6.9744× 10−7

(0.7, 0.7) 6.1379× 10−2 1.4334× 10−5 3.5898× 10−6

(0.8, 0.8) 5.6577× 10−2 1.6653× 10−4 3.5003× 10−6

(0.9, 0.9) 3.8618× 10−2 1.7449× 10−5 5.5205× 10−8

and f ∈ C2[a, b]. Suppose Ṽ(x, t) is the spline that interpolates the
solution curve of this problem at the knots xm ∈ 5. Then there
exist constants̥m, not depending on h, such that

‖ξ j
(
v(x, t)− Ṽ(x, t)

)
‖∞ ≤ ̥jh

4−j ∀ t ≥ 0, j = 0, 1, 2. (32)

Lemma 4.1. The extended B-splines in (10) satisfy the inequality

M∑

m=0

|Sm(x, λ)| ≤ 1.75 for 0 ≤ x ≤ 1. (33)

Proof: By the triangle inequality we have

∣∣∣∣∣

M∑

m=0

Sm(x, λ)

∣∣∣∣∣ ≤
M∑

m=0

|Sm(x, λ)|.

For any knot xm, we have

M∑

m=0

|Sm(x, λ)| = |Sm−1(xm, λ)| + |Sm(xm, λ)|

+ |Sm+1(xm, λ)| = 1 <
7

4
.

From (11) we obtain

Sm(xm, λ) =
1

12
(8+ λ), Sm−1(xm−1, λ) =

1

12
(8+ λ),

Sm+1(xm, λ) =
1

24
(4− λ), Sm−2(xm−1, λ) =

1

24
(4− λ).

Then, for x ∈ [xm−1, xm], Sm(x, λ) and Sm−1(x, λ) are bounded
above by 1

12 (8+ λ).
Similarly, Sm+1(x, λ) and Sm−2(x, λ) are bounded above

by 1
24 (4− λ)

FIGURE 1 | Numerical solution of Example 5.1 with 1t = 0.001, M = 100,

and α = 1.5 at different time stages.

Frontiers in Physics | www.frontiersin.org 6 September 2020 | Volume 8 | Article 288131

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Amin et al. Numerical Treatment of TFKGE Using RECBS

For any point xm−1 ≤ x ≤ xm, we obtain

M∑

m=0

|Sm(x, λ)| = |Sm−1(x, λ)| + |Sm(x, λ)| + |Sm+1(x, λ)|

+|Sm−2(x, λ)| =
1

12
(λ+ 20).

Since λ ∈ [−8, 1], we have 1 ≤ 5
3 + λ ≤ 1.75. Hence,

M∑

m=0

|Sm(x, λ)| ≤ 1.75.

Theorem 3. The extended cubic B-spline approximation V(x, t)
for the analytical exact solution v(x, t) of problem (1)–(3) exists,
and if f ∈ C2[0, 1] then

‖v(x, t)− V(x, t)‖∞ ≤ ˜̥h2 ∀ t ≥ 0, (34)

where h is reasonably small and ˜̥ > 0 is a constant not depending
on h.

Proof: Let Ṽ(x, t) =
∑M

m=0 dm(t)ηm(x) be the calculated spline
for the approximate solutionV(x, t) and the exact solution v(x, t).

Let Lv(xm, t) = LV(xm, t) = ỹ(xm, t), with m = 0 : 1 :M, be
the collocation conditions. Then

LṼ(x, t) = ỹ(xm, t), m = 0 : 1 :M.

Now, at any time step, the problem can be expressed in the form
of a difference equation L(Ṽ(xm, t)− V(xm, t)) as

(βb1 + ρ1b1 + ρb4)ζ r+1
m−1 + (βb2 + ρ1b2 + ρb5)ζ r+1

m (35)

+ (βb1 + ρ1b1 + ρb4)ζ r+1
m+1

= 2β
(
b1ζ

r
m−1 + b2ζ

r
m + b1ζ

r
m+1

)
− β

(
b1ζ

r−1
m−1 + b2ζ

r−1
m

+ b1ζ
r−1
m+1

)
− β

r∑

k=1

pk

[
b1
(
ζ r−k+1
m−1 − 2ζ r−k

m−1 + ζ
r−k−1
m−1

)

+ b2
(
ζ r−k+1
m − 2ζ r−k

m + ζ r−k−1
m

)

+ b1
(
ζ r−k+1
m+1 − 2ζ r−k

m+1 + ζ
r−k−1
m+1

)]
+

1

h2
ηr+1
m .

The boundary conditions can be rewritten as

b1ζ
r+1
m−1 + b2ζ

r+1
m + b1ζ

r+1
m+1 = 0, m = 0,M,

FIGURE 3 | Absolute error for Example 5.1 when M = 100, α = 1.50, and

1t = 0.001.

FIGURE 4 | Approximate solution of Example 5.1 with M = 100, t = 0.5, and

different values of α.

FIGURE 2 | Exact and approximate solutions of Example 5.1 with M = 100, 1t = 0.001, and α = 1.50. (A) Exact. (B) Numerical.
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where

ζ rm = ξ rm − drm, m = 0 : 1 :M,

and

ηrm = h2[yrm − ỹrm], m = 0 : 1 :M.

From (32) we have

|ηrm| = h2|yrm − ỹrm| ≤ ̥h4.

We define ηr = max{|ηrm| : 0 ≤ m ≤ M}, ẽrm = |ζ rm| and
ẽr = max{|erm| : 0 ≤ m ≤ M}.

For r = 0, Equation (35) transforms into the
following relation:

(βb1 + ρ1b1 + ρb4)ζ 1m−1 + (βb2 + ρ1b2 + ρb5)ζ 1m
+ (βb1 + ρ1b1 + ρb4)ζ 1m+1

= (β + ρ1)
(
b1ζ

0
m−1 + b2ζ

0
m + b1ζ

0
m+1

)
+

1

h2
η1m.

Using the initial condition e0 = 0, we obtain

(βb2 + ρ1b2 + ρb5)ζ 1m = (βb1 + ρb4)(ζ 1m+1 − ζ
1
m−1)

+ρ1b1(ζ 1m+1 − ζ
1
m−1)+

1

h2
η1m.

Taking absolute values of ηrm and ζ rm and with adequately small h,
we have

ẽ1m ≤
6̥h4

βh2(λ+ 2)+ 12(−2− λ)ρ + ρ1h2(2+ λ)

TABLE 4 | Experimental order of convergence (EOC) for Example 5.1 with

α = 1.3 and 1t = 0.001.

M L∞ EOC L2 EOC

10 3.1950× 10−2 — 2.9355× 10−2 —

20 9.0451× 10−3 1.8206 8.7109× 10−3 1.7527

40 2.4778× 10−3 1.8680 2.2128× 10−3 1.9769

80 6.3842× 10−4 1.9564 5.9376× 10−4 1.8979

using the boundary conditions, from which we conclude that

ẽ1 ≤ ̥1h
2, (36)

where̥1 is independent of the spatial grid spacing.

Using the induction technique, we assume that ẽkm ≤ ̥kh
2 is

true for k = 1 : 1 : r.
Let̥ = max{̥k : 0 ≤ k ≤ r}; then Equation (35) becomes

(βb1 + ρ1b1 + ρb4)ζ r+1
m−1 + (βb2 + ρ1b2 + ρb5)ζ r+1

m

+ (βb1 + ρ1b1 + ρb4)ζ r+1
m+1

= 2β
(
b1ζ

r
m−1 + b2ζ

r
m + b1ζ

r
m+1

)
− β

(
b1ζ

r−1
m−1 + b2ζ

r−1
m + b1ζ

r−1
m+1

)

+ β
[
(p0 − 2p1 + p2)(b1ζ

r
m−1 + b2ζ

r
m + b1ζ

r
m+1)

+ (p1 − 2p2 + p3)(b1ζ
r−1
m−1 + b2ζ

r−1
m + b1ζ

r−1
m+1)

+ · · · + (pr−4 − 2pr−3 + pr−2)(b1ζ
1
m−1 + b2ζ

1
m

+ b1ζ
1
m+1)+ pr−1(b1ζ

0
m−1 + b2ζ

0
m + b1ζ

0
m+1)

]
+

1

h2
ηr+1
m .

Again, taking absolute values of ηrm and ζ rm, we have

ẽr+1
m ≤

6̥h2

βh2(2+ λ)+ 12(−2− λ)ρ + ρ1h2(2+ λ)[
2β(b1ζ

r
m−1 + b2ζ

r
m + b1ζ

r
m)

− β
r−1∑

k=0

(pk+1 − 2pk − pk−1)̥h2 +̥h2
]
.

TABLE 6 | Absolute and relative errors for Example 5.2 when M = 100,

1t = 0.001 and α = 1.6.

SCCM [42] Proposed method

t x L∞ L2 L∞ L2

0.4

0.4 3.1780× 10−6 9.0475× 10−5 1.1769× 10−7 9.1321× 10−8

0.6 3.1780× 10−6 9.0475× 10−5 1.0126× 10−6 8.0341× 10−7

0.8 2.1040× 10−5 9.6921× 10−4 7.2740× 10−6 1.2573× 10−6

0.8

0.4 5.8118× 10−4 7.6534× 10−4 1.8278× 10−5 8.9616× 10−6

0.6 2.4754× 10−4 5.8118× 10−4 1.2788× 10−6 7.8014× 10−7

0.8 4.7365× 10−4 1.7994× 10−3 1.0951× 10−5 9.5597× 10−6

TABLE 5 | Absolute errors for Example 5.2 when M = 100, 1t = 0.001 using different values of α.

SCCM [42] Proposed method

x α = 1.5 α = 1.7 α = 1.9 α = 1.5 α = 1.7 α = 1.9

0.1 1.6396× 10−3 1.5471× 10−3 1.4380× 10−3 2.6129× 10−6 8.4422× 10−6 9.8439× 10−6

0.2 1.2808× 10−3 1.1272× 10−3 9.4914× 10−4 3.0564× 10−5 1.4959× 10−7 6.7965× 10−6

0.3 1.0869× 10−3 8.9663× 10−4 6.7913× 10−4 9.7609× 10−6 2, 7610× 10−6 1.0853× 10−5

0.4 8.4196× 10−4 6.3348× 10−4 3.9687× 10−4 1.9015× 10−6 5.8360× 10−6 7.0990× 10−6

0.5 7.8252× 10−4 5.6868× 10−4 3.2651× 10−4 3.2181× 10−6 7.1727× 10−6 3.1898× 10−5

0.6 8.4196× 10−4 6.3348× 10−4 3.9687× 10−4 1.9015× 10−5 5.8360× 10−6 4.1207× 10−6

0.7 1.0869× 10−3 8.9663× 10−4 6.7913× 10−4 9.7609× 10−6 2.7610× 10−6 8.6781× 10−6

0.8 1.2808× 10−3 1.1272× 10−3 9.4914× 10−4 3.0564× 10−5 1.4959× 10−7 6.7965× 10−6

0.9 1.6396× 10−3 1.5471× 10−3 1.4380× 10−3 2.6129× 10−6 8.4422× 10−6 9.8439× 10−6
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Using the boundary conditions, we have

ẽr+1
m ≤ ̥h2.

Hence, for all values of n,

ẽr+1
m ≤ ̥h2. (37)

Now,

Ṽ(x, t)− V(x, t) =
M∑

m=0

(
dm(t)− ξm(t)

)
Sm(x).

Taking the infinity norm and applying Lemma (3.1), we obtain

‖Ṽ(x, t)− V(x, t)‖∞ ≤ 1.75̥h2. (38)

Making use of the triangle inequality, we get

‖v(x, t)−V(x, t)‖∞ ≤ ‖v(x, t)−Ṽ(x, t)‖∞+‖Ṽ(x, t)−V(x, t)‖∞.
(39)

Using the inequalities (32) and (38) in (39), we obtain

‖v(x, t)− V(x, t)‖∞ ≤ ̥0h
4 + 1.75̥h2 = ˜̥h2,

where ˜̥ = ̥0h
2 + 1.75̥.

Using the above theorem with expression (5), it is
easy to conclude that the numerical approach converges
unconditionally. Therefore,

‖v(x, t)− V(x, t)‖∞ ≤ ˜̥h2 + ψ(1t)2−α ,

where ˜̥ is a constant and α ∈ (1, 2]. Hence, theoretically, the
proposed scheme is O(h2 +1t2−α) accurate.

5. NUMERICAL RESULTS AND
DISCUSSION

To examine the accuracy of the proposed method, we conduct
a numerical study of some test problems. The L∞ and L2 error
norms are calculated as [53]

L∞ = max
0≤m≤M

|V(xm, t)− v(xm, t)|,

L2 =

√√√√h

M∑

m=0

|V(xm, t)− v(xm, t)|2.

Also, the experimental order of convergence (EOC) is computed
by the following important formula [54]:

EOC =
1

log 2
log

[
L∞(2m)

L∞(m)

]
.

All numerical computations were performed using
Mathematica 9.0.

Example 5.1. Consider the non-linear time-fractional KGE [42]

∂αv

∂tα
−
∂2v

∂x2
+v2(x, t) = f (x, t), 0 < t ≤ 1, 0 < x ≤ 1, (40)

TABLE 7 | Absolute errors for Example 5.2 when M = 100 and 1t = 0.001.

α (x, t) VIM [34] SCCM [42] Proposed method

1.4

(0.1, 0.1) 3.9211× 10−5 2.3809× 10−5 1.9749× 10−6

(0.2, 0.2) 6.1713× 10−4 5.2644× 10−5 1.7326× 10−5

(0.3, 0.3) 2.1989× 10−3 6.0187× 10−6 5.2839× 10−6

(0.4, 0.4) 2.5545× 10−3 6.6640× 10−5 9.9062× 10−6

(0.5, 0.5) 5.3405× 10−3 4.0011× 10−5 1.3396× 10−6

(0.6, 0.6) 3.1409× 10−2 1.5837× 10−4 1.3557× 10−5

(0.7, 0.7) 8.0092× 10−2 9.1922× 10−4 9.6832× 10−6

(0.8, 0.8) 1.3528× 10−1 2.9084× 10−3 3.5290× 10−5

(0.9, 0.9) 1.4272× 10−1 3.8732× 10−3 9.0059× 10−6

1.6

(0.1, 0.1) 1.0402× 10−5 2.3809× 10−5 1.4963× 10−6

(0.2, 0.2) 1.4424× 10−4 5.2644× 10−5 1.5765× 10−6

(0.3, 0.3) 6.7115× 10−5 6.0187× 10−6 2.1699× 10−7

(0.4, 0.4) 3.0493× 10−3 6.4440× 10−5 1.1769× 10−6

(0.5, 0.5) 1.6350× 10−2 4.0011× 10−5 1.2375× 10−6

(0.6, 0.6) 4.9599× 10−2 1.5837× 10−4 2.1232× 10−6

(0.7, 0.7) 1.0675× 10−1 9.1922× 10−4 1.8721× 10−6

(0.8, 0.8) 1.6942× 10−1 2.9084× 10−3 1.0951× 10−5

(0.9, 0.9) 1.7521× 10−1 3.8732× 10−3 2.2989× 10−5

TABLE 8 | Experimental order of convergence (EOC) for Example 5.2 with

α = 1.5 and 1t = 0.001.

M L∞ EOC L2 EOC

10 2.0835× 10−2 – 1.8459× 10−2 –

20 5.2813× 10−3 1.9760 4.7833× 10−3 1.9482

40 1.3057× 10−3 2.0161 1.1406× 10−3 2.0688

80 3.2509× 10−4 2.0059 2.8172× 10−4 2.0174

FIGURE 5 | Numerical solution for Example 5.2 with 1t = 0.001, M = 100,

and α = 1.5 at different time stages.
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FIGURE 6 | Exact and numerical solutions of Example 5.2 with M = 100, 1t = 0.001, and α = 1.5. (A) Exact. (B) Numerical.

where f (x, t) = Ŵ( 52 )

Ŵ( 52−α)
(1−x)

5
2 t

3
2−α− 15

4 (1−x)
1
2 t

3
2 + (1−x)5t3.

The initial/end conditions can be extracted from the analytical

exact solution (1− x)
5
2 t

3
2−α .

For Example 5.1, the piecewise-defined approximate
solution obtained using the proposed method with α = 1.25,
0 ≤ x ≤ 1, n = 100, and 1t = 0.01 is given by

V(x) =





0.+ x(297.276+ x(−29930.4+ x(993222.+ 225927.x))) if x ∈ [0.00, 0.01],

0.999999+ x(−2.49738+ x(1.82587+ (1.38305− 27.8749x)x)) if x ∈ [0.01, 0.02],

0.99999+ x(−2.49605+ x(1.75961+ (2.48215− 27.7432x)x)) if x ∈ [0.02, 0.03],

0.99996+ x(−2.49308+ x(1.66094+ (3.57055− 27.6103x)x)) if x ∈ [0.03, 0.04],
...

...

−0.118298+ x(6.72761+ x(−26.6775+ (38.9565− 20.3042x)x)) if x ∈ [0.49, 0.50],

−0.201484+ x(7.21369+ x(−27.5747+ (39.3734− 20.1068x)x)) if x ∈ [0.50, 0.51],
...

...

−2.7339+ x(13.6165+ x(−24.3154+ (18.715− 5.28228x)x)) if x ∈ [0.96, 0.97],

−1.89304+ x(10.2593+ x(−19.2941+ (15.3811− 4.45319x)x)) if x ∈ [0.97, 0.98],

−0.518579+ x(5.07656+ x(−12.0155+ (10.8746− 3.41708x)x)) if x ∈ [0.98, 0.99],

4.86293+ x(−13.1733+ x(10.3424+ (−0.616646− 1.41541x)x)) if x ∈ [0.99, 1.00].

The absolute numerical errors at different grid points of the
RECBS solution for Example 5.1 using1t = 0.001 andM = 100
are reported in Table 1. It can easily be seen that our scheme is
more accurate than the SCCM [42]. In Table 2 the absolute and
relative numerical errors are listed for ourmethod withM = 100,
1t = 0.001, and α = 1.6 at x = 0.4, 0.6, 0.8 when t = 0.4, 0.8.
We can see that the computational results are superior to those
obtained from the SCCM [42]. Table 3 compares the absolute
errors of the proposed method, the variational iteration method
(VIM) [34], and the SCCM [42] under different values of α.
Figure 1 shows the behavior at different time stages of numerical
solutions obtained using α = 1.5, M = 100, and 1t = 0.001.
The 3D visuals of exact and numerical solutions with α = 1.5

and M = 100 are shown in Figure 2. The comparison between
the exact and approximate solutions using M = 100 is plotted
in Figure 3. Figure 4 depicts the absolute error between the exact
and numerical solutions when α = 1.3, M = 100, and 1t =
0.001. The values of the EOC along the spatial grid, using 1t =
0.001 and α = 1.5, are given in Table 4. The experimental rate of
convergence of the proposed method is found to be in line with
the theoretical results.

Example 5.2. Consider the fractional KGE [34, 42]

∂α

∂tα
v(x, t)−

∂2

∂x2
v(x, t)+ v(x, t)+

3

2
v3(x, t) = f (x, t),

0 < x ≤ 1, 0 < t ≤ 1, (41)

where the forcing term f (x, t) on right-hand side is given by

f (x, t) =
1

2
Ŵ(3+ α) sin(πx)t2 + (1+ π2)t2+α sin(πx)

+
3

2

[
sin(πx)t2+α

]3
,
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FIGURE 7 | Absolute error for Example 5.2 when M = 100, α = 1.5, and

1t = 0.001.

For Example 5.2, the piecewise-defined numerical solution
obtained using the proposed method with α = 1.5, 0 ≤ x ≤ 1,
n = 100, and1t = 0.01 is given by

V(x) =





8.71156× 10−19 + x(3.13867+ x(2.8549× 10−14+ (−4.97167− 11.4015x)x)) if x ∈ [0.00, 0.01],

−1.14461× 10−6 + x(3.13904+ x(−0.041176+ (−3.14329− 34.194x)x)) if x ∈ [0.01, 0.02],

−0.0000194466+ x(3.14196+ x(−0.205754+ (0.51013− 56.9551x)x)) if x ∈ [0.02, 0.03],

−0.000112001+ x(3.15183+ x(−0.575584+ (5.98188− 79.6639x)x)) if x ∈ [0.03, 0.04],
...

...

−40.7681+ x(339.328+ x(−1039.38+ (1422.21− 733.23x)x)) if x ∈ [0.49, 0.50],

−44.2829+ x(360.934+ x(−1083.83+ (1453.18− 733.97x)x)) if x ∈ [0.50, 0.51],
...

...

−71.1059+ x(298.709+ x(−460.613+ (312.674− 79.6639x)x)) if x ∈ [0.96, 0.97],

−53.5088+ x(223.56+ x(−340.406+ (227.31− 56.9551x)x)) if x ∈ [0.97, 0.98],

−34.2394+ x(143.149+ x(−214.635+ (139.919− 34.194x)x)) if x ∈ [0.98, 0.99],

−13.2345+ x(57.3823+ x(−83.3239+ (50.5776− 11.4015x)x)) if x ∈ [0.99, 1.00].

The initial/boundary conditions can be extracted from the
analytical exact solution v(x, t) = sin(πx)t2+α . The absolute
numerical errors at different grid points of the RECBS solution
for Example 5.2 using 1t = 0.001 and M = 100 are listed
in Table 5. Again it can be observed that our scheme is more
accurate than the SCCM [42]. Table 6 reports the absolute and
relative errors in our numerical computation with M = 100,
1t = 0.001, and α = 1.6 at x = 0.4, 0.6, 0.8 when t = 0.4, 0.8.
It is clear that the results are better than those obtained by the
SCCM [42].Table 7 compares the absolute errors of the proposed
method, VIM [34], and SCCM [42] under different values of α.

The EOC in the spatial direction, using1t = 0.001 and α = 1.50,
is tabulated in Table 8. The experimental rate of convergence of
the proposed scheme is found to be in line with the theoretical
prediction. Figure 5 shows the behavior at different time stages
of numerical solutions obtained using α = 1.5, M = 100, and
1t = 0.001. The 3D plots of exact and numerical solutions with
α = 1.5 and M = 100 are displayed in Figure 6. The absolute
error between the exact and approximate solutions using α = 1.3,
M = 100, and1t = 0.001 is plotted in Figure 7.

6. CONCLUSION

In this work we have conducted a numerical investigation
of the time-fractional Klein–Gordon equation by applying
the redefined extended cubic B-spline collocation method. A
finite central difference formulation is employed for temporal
discretization, while a set of redefined extended cubic B-spline
functions is used to interpolate the solution curve in the spatial
direction. The unconditional stability of the proposed scheme is
established, and the orders of convergence along the space and

time grids are shown to be O(h2) and O(1t)2−α , respectively.
The computational outcomes of the proposed algorithm show
that the order of convergence agrees with the theoretical results.
The numerical scheme has been tested on different problems, and
comparison of the results reveals our method’s advantage over
VIM [34] and SCCM [42].
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In this paper, we present a computational method to solve the fractional Klein-Gordon

equation (FKGE). The proposed technique is the grouping of orthogonal polynomial

matrices and collocation method. The benefit of the computational method is that it

reduces the FKGE into a system of algebraic equations which makes the problem

straightforward and easy to solve. The main reason for using this technique is its high

accuracy and low computational cost compared to other methods. The main solution

behaviors of these equations are due to fractional orders, which are explained graphically.

Numerical results obtained by the proposed computational method are also compared

with the exact solution. The results obtained by the suggested technique reveals that the

method is very useful for solving FKGE.

Keywords: fractional Klein-Gordon equation, fractional derivative, numerical solution, Chebyshev polynomials,

operational matrices

INTRODUCTION

The standard Klein-Gordon equation (KGE) is written as

∂2v

∂t2
−

∂2v

∂x2
+ v = h (x, t) , x ≥ 0, t ≥ 0 (1)

where v indicates an unknown function in variables x and t, and h(x, t) stands for the source
term. Due to the non-local nature and real-life applications of fractional derivatives, the fractional
extension of this equation is very useful [1–12]. The fractional extension of this model handles
the initial and boundary conditions of the model very accurately. The non-integer derivative helps
in understanding the complete memory effect of the system. A broad literature of models with
fractional derivatives can be found in [13–17]. Therefore, motivated by our ongoing research work
into this special branch of mathematics (namely, fractional calculus), we study non-integer KGE by
changing integer order derivative in both time and space using the Liouville-Caputo derivative of
fractional order in the following manner:
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∂βv(x, t)

∂tβ
−

∂γ v (x, t)

∂xγ
+ v (x, t)

= h (x, t) , 1 < β ≤ 2, 1 < γ ≤ 2 (2)

having the initial conditions:

v (x, 0) = h1(x),
∂v(x, 0)

∂t
= h2(x), for 0 ≤ x, t ≤ 1 (3)

and boundary conditions:

v (0, t) = g1(t), v (1, t) = g2 (t) (4)

The KGE is used in science, plasma (especially in quantum
field theory), optical fibers, and dispersive wave-phenomena.
Due to the great importance of KGE, many authors have
studied it using various numerical and analytical schemes [18–
27], each with their own limitations and shortcomings. The
operational matrix method [28–38] is also applied to solve
problems in fractional calculus. There are several other numerical
and analytical methods which have been used to solve non-linear
problems pertaining to fractional calculus, which can be found
in [39, 40]. Some other applications of orthogonal polynomials-
based solutions can be found in [41, 42].

In this paper, we present a computational technique
which is a combination of the operational matrix and
collocation method. We have used Chebyshev polynomials
as a basis function for the construction of operational
matrices of differentiations and integrations. In our proposed
method, first the unknown function and their derivatives are
approximated by taking finite dimensional approximations.
Then, by using these approximations along with operational
matrices of differentiations and integrations in the FKGE,
we obtain a system of equations. Finally, by collocating this
system, we get an approximate solution for the FKGE. The
efficiency and accuracy of the used technique is shown by
making a comparison amongst the results derived by our
technique, exact solutions, and numerical results by some
existing methods.

SOME BASIC DEFINITIONS

In this paper, we use non-integer order integrals and derivatives
in the Riemann-Liouville and Caputo sense, respectively, which
are given as:

Definition 2.1: The Riemann-Liouville non-integer integral
operator of order α is presented as

Iα f (x) =
1

Γ (α)

∫ x

0
(x− t)α−1 f (t)dt,α > 0, x > 0,

I0f (x) = f (x).

Definition 2.2: The Liouville-Caputo non-integer derivative
of order β are defined as [1–3]

Dβ f (x) = Il−βDlf (x) = 1
Ŵ(l−β)

∫ x
0 (x− t)l−β−1 dl

dtl
f (t)dt,

l− 1 < β < l, x > 0 and l is a natural number.
Chebyshev polynomial of the third kind of degree i on [0, 1] is

given as,

Hi (t) =
i∑

k=0

(−1)i−k Ŵ(i+ 3
2 )Ŵ(i+ k+ 1)

Ŵ
(
k+ 3

2

)
Ŵ (i+ 1)

(
i− k

)
!k!

tk (5)

The orthogonal property of these polynomials is given as:

∫ 1

0
Hn (t)Hm (t)w (t) dt =

{
π
2 , n = m
0, n 6= m

(6)

where, w (t) =
√

t
1−t , is a weight function and n and m are the

degrees of polynomials.
A function g(x, t) ∈ L2

w(t) ([0, 1]× [0, 1]) can be

approximated as

g (x, t) ∼=
n1∑

i1=0

n2∑

i2=0

ci1 ,i2Hi1 ,i2 (x, t) = CTθn1 ,n2 (x, t) (7)

where, C = [c0,0, . . . , c0,n2 , . . . , cn1 ,1, . . . , cn1 ,n2 ]
T and

θn1 ,n2 (x, t) = [H0,0 (x, t) , . . . ,H0,n2 (x, t) ,

. . . .Hn1 ,0 (x, t) , . . .Hn1 ,n2 (x, t )]T .

For any approximation taking n1 = n2 = n then Equation (6),
can be written as,

g(x, t) ∼= θTn (x)Cθn(t) (8)

The matrix C in Equation (8), is given as:

C = P−1

(∫ 1

0

∫ 1

0
θn(x)CθTn (t)w(x)w(t)dxdt

)
P−1 (9)

where, P =
∫ 1
0 θn(x)θ

T
n (x)w(x)dx, is called the matrix of dual.

Theorem 1. If θn(t) = [H0,H1, . . . .,Hn]
T , is Chebyshev

vector and we consider v > 0, then

IvHi (t) = I(v)θn (t) (10)

where, I(v) =
(
e
(
i, j

))
, is (n+ 1) × (n + 1) matrix of integral of

non-integer order v and its entries are given by
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e
(
i, j

)
=

i∑

k=0

j∑

l=0

(−1)i+j−k−l

×
Ŵ( 12 )Ŵ(i+

3
2 )Ŵ(i+ k+ 1)Ŵ(j+ l+ 1)Ŵ(v+ k+ l+ 3

2 )
(
2j+ 1

)
j!

(
i− k

)
!
(
j− l

)
!(l)! Ŵ(k+ 3

2 )Ŵ(i+ 1)Ŵ(v+ k+ 1)Ŵ(j+ 1
2 )Ŵ(l+

3
2 )Ŵ

(
k+ l+ v+ 2

) .

Proof. Please see [30, 32, 38].
Theorem 2. If θn(t) = [H0,H1, . . . .,Hn]

T , is Chebyshev
vector and we consider β > 0, then

DβHi (t) = D(β)θn (t) (11)

where, D(β) =
(
s
(
i, j

))
, is (n+ 1) × (n + 1) matrix of

differentiation of non-integer order β and its entries are given by

s
(
i, j

)
=

i∑

k=⌈β⌉

j∑

l=0

(−1)i+j−k−l

×
Ŵ( 12 )Ŵ(i+

3
2 )Ŵ(i+ k+ 1)Ŵ(j+ l+ 1)Ŵ(k+ l− β + 3

2 )
(
2j+ 1

)
j!

(
i− k

)
!
(
j− l

)
!(l)! Ŵ(k+ 3

2 )Ŵ(i+ 1)Ŵ(k− β + 1)Ŵ(j+ 1
2 )Ŵ(l+

3
2 )Ŵ

(
k+ l− β + 2

) .

Proof. Please see [38].

METHOD OF SOLUTION

In this section, we apply our proposed algorithm to solve a
fractional model of KGE.We use equal number basis elements i.e.
n1 = n2 = n, for any approximations of space and time variables.
We initially approximate the time derivative of the unknown
function as follows:

∂βv(x, t)

∂tβ
= θTn (x)Cθn(t) (12)

Taking integral of order β with respect to t on both sides of
Equation (12), we have

v (x, t) = θTn (x)CI(β)θn (t) + θTn (x)AI(1)θn (t)

+θTn (x)Bθn (t) (13)

where I(β)and I(1) are operational matrices of integration of
order β and 1, respectively, and are given by Equation (10) and

∂v(x, 0)

∂t
= h2(x) = θTn (x)Aθn(t) (14)

v (x, 0) = h1(x) = θTn (x)Bθn(t) (15)

where A and B are known square matrices and can be calculated
using Equation (9).

Taking the differentiation of order γ on both sides of Equation
(13), we get

∂γ v (x, t)

∂xγ
= θTn (x)D(γ ), TCI(β)θn (t) + θTn (x)D(γ ), TAI(1)θn (t)

+ θTn (x)D(γ ), TBθn (t) (16)

where, D(γ )is the operational matrix of differentiation of order γ

and is given by Equation (11). Further, the inhomogeneous term
can be approximated as

h(x, t) = θTn (x)Eθn(t) (17)

where E is the known square matrix and can be calculated using
Equation (9).

Grouping Equations (12), (13), (16), (17), and (2), we get

θTn (x)Cθn (t) −
(
θTn (x)D(γ ), TCI(β)θn (t)

+ θTn (x)D(γ ), TAI(1)θn (t) + θTn (x)D(γ ), TBθn (t)
)

+θTn (x)CI(β)θn (t) + θTn (x)AI(1)θn (t)

+θTn (x)Bθn (t) = θTn (x)Eθn(t)

(18)

Equation (18), can be written as

C − D(γ ), TCI(β) − D(γ ), TAI(1) − D(γ ), TB+ CI(β)

+ AI(1) + B = E (19)

Equation (19) is a system of equations which is easy to handle
using the collocation method to determine the unknown matrix.
By making use of the value of C in Equation (13), we can obtain
an approximate solution for FLGE.

NUMERICAL EXPERIMENTS AND
DISCUSSION

Example 1. Firstly, we take the time fractional KGE [26] given as
∂βv(x,t)

∂tβ
− ∂2v(x,t)

∂x2
− v (x, t) = 0, 1 < β ≤ 2, having the ICs:

v (x, 0) = 1 + sin (x), ∂v(x,0)
∂t = 0, for 0 ≤ x, t ≤ 1, and

boundary conditions:
v (0, t) = cosh (t), v (1, t) = sin (1)+ cosh (t).

The exact solution is v (x, t) = sin (x)+ cosh (t).
In Figure 1, we have shown the three-dimensional trajectory

of the approximate solution obtained by our used technique for
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FIGURE 1 | Approximate solution at β = 2.

FIGURE 2 | Absolute errors at β = 2.

integer KGE. In Figure 2, we have shown absolute errors by our
proposed method for integer order KGE at n = 4.

From Figure 2 it is detected that absolute errors are very low,
showing good agreement between the exact and approximate
solution. In Figure 3, we have plotted fractional order KGE by
changing the values of β and t at x = 0.8. In Figure 4, we have
plotted fractional order KGE by changing the values of β and t at
x = 1.

From Figures 3, 4, it can be seen that the solution changes
consistently from fractional order to integer solution, showing
the consistency of the proposed algorithm for time fractional
order models.

Example 2. Secondly, taking the space fractional KGE [26]
given as

∂2v(x,t)
∂t2

− ∂γ v(x,t)
∂xγ = h (x, t) , 1 < γ ≤ 2, having the ICs:

v (x, 0) = xγ (1 − x), ∂v(x,0)
∂t = xγ (x − 1), for 0 ≤ x, t ≤ 1,

and boundary conditions:

FIGURE 3 | Approximate solution at different values of t and β at x = 0.8.

FIGURE 4 | Approximate solution at different values of t and β at x = 1.

v (0, t) = 0, v (1, t) = 0, with source function h (x, t) =
xγ (1− x) exp (−t) − [⌈(γ + 1) − ⌈(γ + 2) x] exp (−t)and the
exact solution v (x, t) = xγ (1− x) exp (− t).

In Figure 5, we have shown the three-dimensional trajectory
of the approximate solution obtained by our proposed method
for integer KGE. In Figures 6–8, we have shown absolute errors
by our proposedmethod for integer order KGE at different values
of n = 3, 5, and 7, respectively.

From Figures 6–8, it is detected that absolute errors are
very low and show good agreement between the exact and
approximate solution. It is also observed that absolute errors
decrease when increasing the basis elements. In Figure 9, we have
plotted fractional order KGE by changing the values of γ and x at
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FIGURE 5 | Approximate solution at γ = 2.

FIGURE 6 | Absolute errors at n = 3 and γ = 2.

FIGURE 7 | Absolute errors at n = 5 and γ = 2.

FIGURE 8 | Absolute errors at n = 7 and γ = 2.

FIGURE 9 | Approximate solution at different values of x and γ at t = 0.5.

FIGURE 10 | Approximate solution at different values of x and γ at t = 1.
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TABLE 1 | Comparison of absolute errors by our method and the method in [26]

at t = 1, Example 2.

x n= 3 n= 5

Present method Method in [26] Present method Method in [26]

0.0 1.6402e-05 1.1234e-03 2.2794e-08 8.1245e-04

0.1 1.0593e-05 2.7894e-03 1.4125e-08 6.8754e-04

0.2 3.4033e-06 4.4561e-03 2.6052e-09 4.9541e-04

0.3 4.5760e-06 1.7418e-03 1.0543e-08 2.4875e-04

0.4 1.2753e-05 7.8527e-03 2.4098e-08 8.5154e-04

0.5 2.0535e-05 5.9634e-03 3.6840e-08 4.0092e-04

0.6 2.7330e-05 6.8527e-03 4.7547e-08 6.1457e-04

0.7 3.2547e-05 3.1237e-03 5.4998e-08 6.9541e-04

0.8 3.5593e-05 1.7595e-03 5.7972e-08 7.1478e-04

0.9 3.5876e-05 3.0030e-03 5.5247e-08 2.0854e-04

1.0 3.2804e-05 0.0129e-03 4.5603e-08 0.0034e-04

TABLE 2 | Comparison approximate and exact solution at γ = 2 and n = 5,

Example 2.

(x, t) Exact solution Present method Absolute errors

(0.1, 0.1) 0.00814353 0.00814354 5.9041e-09

(0.2, 0.2) 0.02619938 0.02619938 4.3087e-09

(0.3, 0.3) 0.04667154 0.04667152 2.0611e-08

(0.4, 0.4) 0.06435072 0.06435071 1.2501e-08

(0.5, 0.5) 0.07581633 0.07581635 2.4796e-08

(0.6, 0.6) 0.07902887 0.07902889 2.3619e-08

(0.7, 0.7) 0.07299803 0.07299801 2.7123e-08

(0.8, 0.8) 0.05751410 0.05751405 4.9922e-08

(0.9, 0.9) 0.03293214 0.03293211 2.3894e-08

t = 0.5. In Figure 10, we have plotted fractional order KGE by
changing the values of γ and x at t = 1.

From Figures 9, 10, it can be seen that the solution changes
consistently from fractional order to integer solution, showing
the consistency of the proposed algorithm for space fractional
order models. In Table 1, we have compared absolute errors by
our method and the method used in [26] and observed that our
used technique is more accurate in comparison to the technique
used in [26].

In Table 2, we have compared our solution with the exact
solution for different values of x and t at γ = 2.

CONCLUDING REMARKS

The key benefit of the used algorithm is that it works for
both time and space FKGE. Using the proposed algorithm,
we can derive an approximate solution for FKGE when
the analytical solutions are not possible. It is also easy
for computational purposes because FKGE is reduced into
algebraic equations. We can apply this method together for
time and space fractional, which reduces the time period of
computation. Integer and fractional order behavior of KGE is
shown. The outcomes of the present study are very helpful
for scientists and engineers working in the mathematical
modeling of natural phenomena. In a nutshell, we can say
that with the aid of this scheme we can examine FKGE
for use in quantum field theory, plasma, optical fibers, and
dispersive wave-phenomena.
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In this paper we present an analogous result of the famous Kalman controllability criterion

for first order linear ordinary differential equations with constant coefficients that applies

to the case of linear differential equations of fractional order with constant coefficients. We

use the fractional Gramianmatrix, the range space and the Kalmanmatrix asmain tools to

derive a sufficient and necessary condition for the controllability of the fractional system.

Moreover, we provide some simple examples, including a linear fractional harmonic

oscillator, to illustrate our results. Finally, several open problems arising from this topic are

suggested, including another simple linear system of incommensurate fractional orders.

Keywords: linear differential equations, controllability, fractional Gramian, fractional differential equations, Kalman

matrix

1. INTRODUCTION

Controllability is a mathematical problem consisting in determining the targets to which one can
drive the state of a dynamical system by means of a control input appearing in the equation. We
have a dynamical system on which we can exert a certain influence. Is it possible to use this to make
the system reach a desirable state? In other words, given a future time, an initial state and a target
state, is it possible to find a control function such that the solution of the system starting from the
initial state reaches the desirable state at the prescribed future time? For some classical and modern
references on control theory we refer to references [1–3].

On the other hand, fractional calculus and fractional differential equations have recently been
applied in various areas of engineering, mathematics, physics and bio-engineering, and other
applied sciences. We refer the reader to the monographs [4–7] and the articles [8, 9]. In particular,
there are a growing number of research areas in physics which employ fractional calculus [10]
and it has many applications among its different branches, ranging from imaging processing to
fractional quantum harmonic oscillator [11]. Recently, in Yıldız [12] the dynamics of a waterborne
pathogen fractional model under the influence of environmental pollution has been studied and
the solutions of a generalized fractional kinetic equations are obtained [13] using the generalized
fractional integrations of the generalized Mittag-Leffler type function. Finally, we highlight that
different fractional systems have also been considered in the framework of control theory [14–18].

In the context of the latter application of fractional calculus, we present the current work, which

deals with the controllability of a linear fractional differential equation with constant coefficients.
The paper is organized as follows: In section 2, we recall the Kalman criterion for controllability
of a linear system of first order. In section 3 we consider a linear system of fractional order, whose
general solution is presented in terms of the Mittag-Leffler function. By using that representation
we finally give in section 4 a new criterion for controllability.
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Although this criterion is known since 1996 [19] we give
another approach and use some elements of fractional calculus
and a different proof to obtain the results. Also we reveal some
interesting connections between linear differential equations of
fractional order, control problems, linear algebra, Mittag-Leffler
functions, geometry and physics.

For the relation between controllability of standard and
fractional systems, see Klamka [20]. The calculation of the
Gramian is useful to find a control to steer a given initial state
to another prescribed final state.

2. CLASSICAL LINEAR CONTROL

Let A ∈ Mn×n(R) and f :[0,∞) → R be continuous. Consider
the linear system

x′(t) = Ax(t)+ f (t), (1)

with the initial condition

x(0) = x0 ∈ R
n. (2)

The solution of problem (1) and (2) is given by

x(t) = eAtx0 +
∫ t

0
eA(t−s)f (s)ds.

Now consider the same system with a control function, so (1) is
written like

x′(t) = Ax(t)+ Bu(t), (3)

where B ∈ Mn×m(R) and u :[0,∞) → R
m is a possible control.

For a given continuous control input u, the solution of (3) with
initial condition x(0) = x0 is

x(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds.

For a given time t > 0 and an initial state x(0) = x0, the reachable
set of (1) at time t > 0 related to x0 is the set Rt(x0) of all states
x(t) that can be reached from x0 by any control input. The linear
system (3) is controllable if for any x0, x1 ∈ R

n, there exists a
control u such that the corresponding solution satisfies x(0) = x0
and x(t) = x1.

There is a simple criterion, the celebrated Kalman criterion
for controllability.

Theorem 1. The linear system (3) is controllable if and only if the
Kalman matrix

K = (B|AB|A2B| . . . |An−1B)

has full rank.

To prove this (see [21]), one of the main ingredients is the
controllability Gramian of matrices A and B:

W(t) :=
∫ t

0
eAsBB∗eA

∗sds ∈ Mn×n(R), (4)

whereA∗ and B∗ are, respectively, the adjointmatrices ofA and B.
The matrixW(t) is positive semi-definite and its range coincides
with the range of the Kalman matrix.

Also a relevant ingredient is the following property for a
matrix A. Let ϕ(z) =

∑∞
k=0 akz

k be an analytic complex
function. An application of the Cayley-Hamilton Theorem
implies that there exists a polynomial p of degree less than n such
that ϕ(A) = p(A), i.e.,

ϕ(A) = p(A) =
n−1∑

k=0

ckA
k,

for certain c0, . . . , cn−1 ∈ C.
We recall a relevant geometric interpretation. The subspace

R := R(B|AB| . . . |An−1B)

is the smallest A-invariant subspace containing R(B). The linear
system (3) is controllable if and only if W(t) is non-singular for
t > 0. A physical interpretation of the controllability Gramian is
that the input of the system is white Gaussian noise. Then, W(t)
is the covariance of the state (see p. 854 in [22]).

3. LINEAR CONTROL OF FRACTIONAL
ORDER

Consider now the linear differential equation of fractional
order α ∈ (0, 1]

Dαx(t) = Ax(t)+ f (t), (5)

with initial condition

x(0) = x0 ∈ R
n, (6)

where, as before, A ∈ Mn×n(R), f ∈ C([0,∞),Rn) and
Dαx is the fractional derivative of x. We use here the Caputo
fractional derivative, which can be defined for any x :[0,∞) →
R
n absolutely continuous and has the following form:

Dαx(t) =
1

Ŵ(1− α)

∫ t

0
(t − s)−αx′(s)ds,

where Ŵ is the classical gamma function. For some applications
of fractional differential equations we refer, for example, to
references [5, 23, 24].

Note that Dαx(t) = I1−αx′(t), where I1−α is the
fractional integral of Riemann-Liouville. In fact, for β > 0
and x ∈ L1

loc
(0,∞),

Iβx(t) =
1

Ŵ(β)

∫ t

0
(t − s)β−1x(s)ds.

Now, let B ∈ Mn×m(R) and u ∈ C([0,∞),Rm). Letting f (t) =
Bu(t), we rewrite the Equation (5) as

Dαx(t) = Ax(t)+ Bu(t). (7)
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Analogously to the ordinary case, for any t > 0, Rα
t will be

defined as the reachable set of (7) related to the origin, which is
the set of all states x(t) that can be reached from the initial state
zero for some continuous control input. We say that the system
(7) is controllable if for any x0, x1 ∈ R

n there exists a control u
such that the solution of (7) with x(0) = x0 satisfies x(t) = x1.

The solution of the first order equation (1) is given in terms of
f and the exponential of A:

eAt =
∞∑

k=0

Aktk

k!
.

For the fractional order equation (5) the role of this exponential
is played by theMittag-Leffler functions: for α > 0 and for z ∈ C,

Eα(z) =
∞∑

k=0

zk

Ŵ(αk+ 1)
.

Note that for α = 1, Eα(z) = ez .
In general, for α,β > 0, the function

Eα,β (z) =
∞∑

k=0

zk

Ŵ(αk+ β)
. (8)

is well-defined in C, since the series in (8) is convergent for every
z ∈ C [25]. For instance, if β = 1, we recover the previous
case: Eα,1(z) = Eα(z).

We can substitute z by amatrixA in (8) and the corresponding
series converges. Hence, we can define theMittag-Leffler function
of a matrix A as

Eα,β (A) =
∞∑

k=0

Ak

Ŵ(αk+ β)
.

The solution of (5) is given by the variation of constants formula
for fractional differential equations (see Theorem 5.15, p. 323 in
[5] or Theorem 7.2, p. 135 in [23]):

x(t) = Eα(t
αA)c+

∫ t

0
(t − s)α−1Eα,α((t − s)αA)f (s)ds,

where c is any constant. Imposing the initial condition x(0) = x0,
then c = x0.

In the case of (7) with the initial condition (6), the solution is
[5, 17]

x(t) = Eα(t
αA)x0 +

∫ t

0
(t − s)α−1Eα,α((t − s)αA)Bu(s)ds.

At this point, we raise the following questions: In the fractional
case, is there an analogous rule to the Kalman criterion? What is
the Gramian matrix in such case?

4. PROOF OF THE FRACTIONAL CONTROL

We are ready to provide the reasoning that will lead us toward a
controllability criterion for system (5).

Let α ∈ (0, 1). By applying the definition of the Mittag-Leffler
function, the expression

∫ t

0
(t − s)α−1Eα,α((t − s)αA)Bu(s)ds

is equal to

∫ t

0
(t − s)α−1

∞∑

k=0

[(t − s)αA]k

Ŵ(αk+ α)
Bu(s)ds.

Then, by using the uniform convergence, we arrive to the
following expression

∞∑

k=0

∫ t

0
(t − s)α−1 (t − s)αkAk

Ŵ(αk+ α)
Bu(s)ds,

which is obviously equal to

lim
N→∞

N∑

k=0

AkB

∫ t

0
(t − s)α−1 (t − s)αk

Ŵ(αk+ α)
u(s)ds.

In the previous series, each term is a linear combination of the
columns of B,AB,A2B, . . . ,ANB. Any of these matrices is a linear
combination of B,AB, A2B, . . . ,An−1B. Hence, the vector

N∑

k=0

AkB

∫ t

0
(t − s)α−1 (t − s)αk

Ŵ(αk+ α)
u(s)ds (9)

is a linear combination of the columns of B,AB,A2B, . . . ,An−1B,
i.e., it belongs to the range space of the Kalman matrix K.
Therefore, as in the ordinary case, we get Rα

t ⊂ R(K). This is
a necessary condition for controllability of the linear fractional
system (7): The Kalman matrix has full rank. We cannot reach
any state outside the range of the Kalman matrix.

The question is how can we get a control u so that

∫ t

0
(t − s)α−1Eα,α((t − s)αA)Bu(s)ds = x1.

In order to do that, we define the α-Gramian as

Wα
t =

∫ t

0
(t − s)α−1Eα,α((t − s)αA)BB∗Eα,α((t − s)αA∗)(t − s)α−1ds

=
∫ t

0
(t − s)2α−2Eα,α((t − s)αA)BB∗Eα,α((t − s)αA∗)ds.

Note that for α = 1 we recover the Gramian in (4).
If we prove thatR(K) ⊂ R(Wα

t ), then, for x1 ∈ R(K), we get
x1 ∈ R(Wα

t ) and there exists y such that Wα
t y = x1. By taking

the control

u(s) = B∗Eα,α((t − s)αA∗)(t − s)α−1y,
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we see that

x1 = Wα
t y

=
∫ t

0
(t − s)2α−2Eα,α((t − s)αA)BB∗Eα,α((t − s)αA∗)yds

=
∫ t

0
(t − s)α−1Eα,α((t − s)αA)Bu(s)ds.

Thus, we steers the initial condition 0 to the state x1 at time
t > 0. This proves that R(K) ⊂ Rα

t . It only remains proving
thatR(K) ⊂ R(Wα

t ).
Let z ∈ R

n and suppose that (Wα
t )

∗z ≡ z∗Wα
t = 0. For every

z ∈ R
n, this leads to

0 = z∗Wα
t z = 〈z,Wα

t z〉

=
∫ t

0
(t − s)2α−2z∗Eα,α((t − s)αA)BB∗Eα,α((t − s)αA∗)zds

=
∫ t

0
(t − s)2α−2||z∗Eα,α((t − s)αA)B||2ds ≥ 0.

For s ∈ [0, t], (t − s)α ∈ [0, tα]. Therefore,

z∗
∞∑

k=0

xkAk

Ŵ(αk+ α)
B = 0, x ∈ [0, tα].

Differentiating k times (k = 0, 1, 2, . . . ) with respect to x and
taking the limit when x → 0+ implies that z∗AkB = 0, for
k = 0, . . . , n− 1; i.e.,

z∗B = 0, . . . , z∗An−1B = 0.

This gives us that

z∗ ∈ N (Wα
t ) = N ((Wα

t )
∗) ⇒ z∗ ∈ N (K∗).

We have that N ((Wα
t )

∗) ⊂ N (K∗) and we can write N (K∗)⊥ ⊂
N ((Wα

t )
∗)⊥. Therefore, we arrive toR(K) ⊂ R(Wα

t ).
By gathering all the previous reasonings, we can finally state

the following result.

Theorem 2. The fractional system (7) is controllable if and only if
the Kalman matrix K has full rank.

As a direct implication, given α′,α′′ ∈ (0, 1], there exists a link
between the controllability of the system (7) for order α’ and the
one for order α”:

Corollary 3. If the fractional system (7) is controllable for a
certain order α̂ ∈ (0, 1], then the system is controllable for every
order α ∈ (0, 1].

To conclude, we give several examples showing how Theorem
2 can be applied.

Example 1. Let α ∈ (0, 1). Consider the case n = 2,m = 1, with

x(t) =
(
x1(t)
x2(t)

)
, A =

(
1 0
0 1

)
, B =

(
1
0

)
.

The system can be written as

{
Dαx1(t) = x1(t)+ u(t),
Dαx2(t) = x2(t).

(10)

The system is not controllable since the second equation is
independent of the control as in the first order case (α = 1).
Nevertheless, it is possible to control x1 and in that sense onemay
say that (10) is partially controllable. In this example,

K =
(
1 1
0 0

)

and rank(K) = 1 < 2.

Example 2. Let n = 2,m = 1, α ∈ (0, 1] and consider the system

Dαx(t) = Ax(t)+ Bu(t),

where

A =
(
−2 2
2 1

)
, B =

(
B1
B2

)
∈ M2×1(R).

The Kalman matrix would be a 2× 2 real matrix, whose columns
are identified with B and AB. Moreover, if B is identified with
an eigenvector of A, the system will not be controllable. For
example, if

B =
(
1
2

)
,

the Kalman matrix takes the form of

K =
(
1 2
2 4

)
,

which has not full rank [rank(K) = 1 < 2]. The system would
not be therefore controllable.

Something similar happens with the choice

B =
(
−2
1

)
.

Nonetheless, any other choice of B which is not a multiple of one
of the previous cases, leads to a controllable system regardless the
value of α ∈ (0, 1].

Example 3. The classical linear harmonic oscillator ξ”+ξ = u is
equivalent to the system (3) taking the position x1 = ξ and the

velocity x2 = ξ ′ with

A =
(

0 1
−1 0

)
, B =

(
0
1

)
.

A fractional control harmonic oscillator would be (7), which
takes the form

{
Dαx1 = x2,
Dαx2 = u− x1.

(11)
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The first equation is independent of the control, but it appears
in the second equation, involving both components and the
fractional control system (11) is controllable. Indeed, the
Kalman matrix

K =
(
0 1
1 0

)

has full rank.

Example 4. Another possibility is to consider a coupled system
of linear incommesurate fractional differential control system
α1,α2 ∈ (0, 1):

{
Dα1x1 = a11x1 + a12x2 + u1,
Dα2x2 = a21x1 + a22x2 + u2,

(12)

but, to the best of our knowledge, no analytical solution is known.

5. CONCLUSIONS

In this work, we have studied the controllability of the linear
fractional differential equation

Dαx(t) = Ax(t)+ Bu(t),

where the Caputo fractional derivative is considered, A ∈
Mn×n(R), B ∈ Mn×m(R) and u is a m-dimensional
control function. In particular, we have shown that such
a system is controllable if and only if the Kalman matrix
has full rank, which constitutes the main result, namely
Theorem 2.

Although the criterion given in Theorem 2 does not
depend on α and thus it becomes an analogous result to
the classic one (ordinary case), the tools that we have used
actually involve some adaptated reasonings. There are still
several relations between the controllability of the system,
the corresponding Gramian matrix Wα

t , the kernel of the
associated operator, the range space Rα

t and the Kalman
matrix, but some arguments depend on the fractional order
α. For instance, we recall that the Gramian matrix Wα

t

has a singularity if α ∈ (0, 1) and the control steering
the initial data x0 to a final state x1 depends on α,
so as the coefficients of the linear combination of the
matrices B, . . . ,An−1B (which form the Kalman matrix) do in
Equation (9).

In the future, some research deserves to be done
with respect to further questions related to this work.
For example, a couple of crucial problems are the cases
where the matrices A and B are not constant, that is, the
control system

Dαx(t) = A(t)x(t)+ B(t)u(t),

and the non-linear case

Dαx(t) = f (x(t), u(t)),

which is also very relevant in applications and will be considered
in detail. In general, in many situations, delay may also appear
and functional fractional differential equations of the type

Dαx(t) = f (x(t), x(t − τ ), u(t))

have to be considered.
In addition to the former comments, systems with impulses

due to impacts are of interest too. Indeed, in Spong [26] andNieto
and Tisdell [27], the problem of controlling a physical object
through impacts, called impulsive manipulation, is studied and
it arises in a number of robotic applications [28, 29].

Another interesting line is to address the controllability
of fractional order systems in the light of other fractional
derivatives, such as Riemann-Liouville, Hadamard, Caputo-
Fabrizio, etc.

Furthermore, some physical models will be considered under
those fractional calculus approaches and the relations among
them will be scrutinized.

Moreover, the incommesurate fractional system of Example 4
will also be a relevant problem to consider.

Finally, partial differential equations of fractional
order could be treated both from the mathematical
point of view and from the physical point of
view too.
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In this paper we introduce the (k, s)-Hilfer-Prabhakar fractional derivative and discuss its

properties. We find the generalized Laplace transform of this newly proposed operator.

As an application, we develop the generalized fractional model of the free-electron laser

equation, the generalized time-fractional heat equation, and the generalized fractional

kinetic equation using the (k, s)-Hilfer-Prabhakar derivative.

Keywords: modified (k, s) fractional integral operator, (k, s)-Prabhakar fractional derivative, (k, s)-Hilfer-Prabhakar

fractional derivative, fractional heat equation, fractional kinetic equation

1. INTRODUCTION

Fractional calculus is the area of mathematical analysis that deals with the study and application
of integrals and derivatives of arbitrary order. In recent decades, fractional calculus has become
of increasing significance due to its applications in many fields of science and engineering [1–5].
The first application of fractional calculus was given by Abel [6] and includes the solution to the
tautocrone problem. Fractional calculus also has applications in biophysics, wave theory, polymers,
quantum mechanics, continuum mechanics, field theory, Lie theory, group theory, spectroscopy,
and other scientific areas [7–9]. Although this calculus has a long history, over the past few
decades it has attracted greater attention because of the fascinating results obtained when it is
used to model certain real-world problems [10–13]. What makes fractional calculus special is that
there are numerous types of fractional operators, so any scientist modeling real-world phenomena
can choose the operator that fits their purposes the best. Each classical fractional derivative is
usually defined in terms of a specific integral. Among the most well-known concepts of fractional
derivatives are the Riemann-Liouville, Caputo, Grünwald-Letnikov, and Hadamard derivatives
[10, 14, 15], whose formulations involve single-kernel integrals and which are used to investigate,
for example, memory effect problems [16].

The Riemann-Liouville fractional derivative is remarkable, but it has some drawbacks when
used to model physical phenomena because of its improper physical conditions. Caputo’s great
contribution was to develop a concept of fractional derivative appropriate for physical conditions
[17]. A number of other families of fractional operators have been established, such as the Liouville,
Erdlyi-Kober, Hadamard, Grünwald-Letnikov, Hilfer, Hilfer-Prabhakar, and k-Hilfer-Prabhakar
operators, to mention just a few [10, 18–20]. Because there are so many concepts of fractional
operator, it has become necessary to define generic fractional operators, of which the classical ones
are particular cases. One class of extensions of Riemann-Liouville fractional operators comprises
the so-called k-Prabhakar integral operators, which can be found in [21]. Inspired by the definitions

152
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of k-Prabhakar integral operators and k-Hilfer-Prabhakar
derivatives [20], the authors introduced the (k, s)-Hilfer
fractional derivative, which unifies a large class of fractional
operators [19, 20]; [Samraiz et al., accepted].

In recent years, the generalization of integral and differential
operators has become an important subject of research in
fractional calculus [9, 20, 22–28]. Different special functions,
including the Gauss hypergeometric function, Mittag-Leffler-
style functions, the Wright function, Meijer’s G function, and
Fox’s H function, appear in the kernels of several generalizations
of the integral operators. R. Hilfer introduced theHilfer fractional
derivative in [9], which is a generalization of the Riemann-
Liouville and Caputo fractional derivatives.The Prabhakar
integral and derivative operators are obtained from the Riemann-
Liouville integral operator by extending its kernel to involve the
three-parameter Mittag-Leffler function [19].

This paper is motivated by the rich applications of fractional
differential equations (FDEs) in physics, economics, engineering,
and many other branches of science [8, 10, 13, 17]. Since no
general method exists that can be used to analytically solve
every FDE, one of the most pressing and challenging tasks
is to develop suitable methods for finding analytical solutions
to certain classes of FDEs [29–31]. Researchers have become
interested in fractional interpretations of the classical integral
transforms, i.e., Laplace and Fourier transforms [32–34], in the
past few years. It can be shown that integral transformations
such as the Laplace, Fourier, generalized Laplace, and ρ-Laplace
transforms are useful methods for obtaining analytical solutions
to some classes of FDEs. In this framework, we use a generalized
Laplace transform to obtain analytical solutions to certain
classes of FDEs that contain (k, s)-Hilfer-Prabhakar fractional
derivatives. Given the wide range of fractional operators available
in the literature, it can be difficult to choose the most suitable
approach for a given problem. It is therefore essential to consider
generalizations of classical fractional operators to aid in choosing
an appropriate operator.

Diaz et al. [35] defined k-gamma and k-beta functions as
follows.

DEFINITION 1.1. The k-gamma function is a generalization of the
classical Ŵ function given by

Ŵk(θ) = lim
n→∞

n!kn(nk)
θ
k
−1

(θ)n,k
, k > 0, Re(θ) > 0,

where (θ)n,k = θ(θ + k)(θ + 2k) · · · (θ + (n − 1)k) for n ≥ 1 is
called the Pochhammer k symbol. The integral representation is

Ŵk(θ) =
∞∫

0

xθ−1e
−xk

k dx, Re(θ) > 0.

Clearly, Ŵ(θ) = limk→1 Ŵk(θ) and Ŵk(θ) = k
θ
k
−1Ŵ( θ

k
).

DEFINITION 1.2. For Re(θ) > 0, k > 0, and Re(ζ ) > 0, the
k-beta function is given by

Bk(θ , ζ ) =
1

k

∫ 1

0
τ

θ
k
−1(1− τ )

ζ
k
−1 dτ .

The functions Ŵk and Bk are related by an identity

Bk(θ , ζ ) =
Ŵk(θ)Ŵk(ζ )

Ŵk(θ + ζ )
.

The k-Mittag-Leffler function given in [36] is defined as follows.

DEFINITION 1.3. Let n ∈ N, k ∈ R
+, µ, ρ, γ ∈ C, Re(ρ) > 0,

and Re(µ) > 0. Then the k-Mittag-Leffler function is defined by

E
γ

k,ρ,µ
(θ) =

∞∑

n=0

(γ )n,kθ
n

Ŵk(ρn+ µ)n!
.

The modified (k, s)-fractional integral operator involving the k-
Mittag-Leffler function given in [Samraiz et al., accepted] is
defined as follows.

DEFINITION 1.4. Let s ∈ R\{−1}, k ∈ R
+, µ, ρ,ω, γ ∈ C,

Re(ρ) > 0, Re(γ ) > 0, Re(µ) > 0, and 8 ∈ L1[0,β].
Then the modified (k, s)-fractional integral operator involving the
k-Mittag-Leffler function is given by

(skJ
ω,γ
0+;ρ,µ8)(θ) =

(s+ 1)1−
µ
k

k∫ θ

0
(θ s+1 − ζ s+1)

µ
k
−1ζ s E

γ

k,ρ,µ
(ω(θ s+1 − ζ s+1)

ρ
k )

8(ζ ) dζ . (1.1)

DEFINITION 1.5 ([Samraiz et al., accepted]). Let s ∈ R\{−1},
k ∈ R

+, µ, ρ,ω, γ ∈ C, Re(ρ) > 0, Re(µ) > 0, n =
[

µ
k

]
+ 1,

and 8 ∈ L1[0,β]. Then the (k, s)-Prabhakar fractional derivative
operator with the k-Mittag-Leffler function as its kernel is given by

(skD
ω,γ
0+;ρ,µ8)(θ) =

(
1

θ s

d

dθ

)n
kn(skJ

ω,−γ

0+;ρ,nk−µ
8)(θ). (1.2)

DEFINITION 1.6 ([Samraiz et al., accepted]). Let s ∈ R\{−1},
k ∈ R

+, µ, ρ,ω, γ ∈ C, Re(ρ) > 0, Re(µ) > 0, n =
[

µ
k

]
+ 1, and

8 ∈ Cn[0,β] with 0 < θ < β < ∞. Then the regularized version
of the (k, s)-Prabhakar derivative is

C
s,kD

ω,γ
0+;ρ,µ8(θ) = knskJ

ω,−γ

0+;ρ,nk−µ

(
1

θ s

d

dθ

)n
8(θ). (1.3)

DEFINITION 1.7. Let g ∈ Cn[α,β] such that g′(ζ ) > 0 on [α,β].
Then

ACn
g [α,β] =

{
8 :[α,β] → C with 8[n−1] ∈ AC[α,β]

}
,

where 8[n−1] =
(

1
g′(ζ )

d
dζ

)n−1
8.

The generalized Laplace transform introduced by Jarad et al.
[34] is presented in the following definition.
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DEFINITION 1.8. Let8 and g be real-valued functions on [α,∞)
such that g(ζ ) is continuous and g′(ζ ) > 0 on [α,∞). The
generalized Laplace transform of 8 is

Lg{8(θ)}(u) =
∫ ∞

α

e−u(g(θ)−g(α))8(θ)g′(θ) dθ

for all values of u.

DEFINITION 1.9 ([34]). Let 8 and 9 be two piecewise-
continuous functions on each interval [0,T] that are of exponential
order. The generalized convolution of 8 and 9 is given by

(8 ∗g 9)(θ) =
∫ θ

α

8(ζ )9
(
g−1(g(θ)+ g(α)− g(ζ ))

)
g′(ζ ) dζ .

THEOREM 1.10 ([34]). Let8 ∈ Cn−1
g [α,T] be such that8[1] is of

g-exponential order. Let 8[1] be a piecewise-continuous function
on the interval [α,T]. Then the generalized Laplace transform of
8[1](ζ ) exists and

Lg{8[1](θ)}(u) = sLg{8(θ)}(u)− 8(α).

PROPOSITION 1.11. Let s ∈ R\{−1}, k ∈ R
+, µ, ρ,ω, γ ∈ C,

Re(ρ) > 0, Re(µ) > 0, and β > 0. Then the integral operator
s
k
J

ω,γ
0+;ρ,µ is bounded on C[0,β], i.e.,

|(skJ
ω,γ
0+;ρ,µ8)(θ)| ≤ G‖8‖C[0,β],

where

‖8‖C[0,β] = max{|8| : 0 < x < β}

and

G =
(s+ 1)−

µ
k (βs+1)Re(

µ
k
)

k
∞∑

n=0

|(γ )n,kωn|
|Ŵk(ρn+ µ)|n!

(βs+1)Re(
ρ
k
)n

[
nRe( ρ

k
)+ Re(µ

k
)
] . (1.4)

THEOREM 1.12. Let s ∈ R\{−1}, k ∈ R
+, µ, ρ,ω, γ ∈ C,

Re(ρ) > 0, Re(γ ) > 0, and Re(µ) > 0. Let 8 ∈ L1[0,β] be
a piecewise-continuous function on each interval [0, θ] that is of
g(θ)-exponential order. Then

Lg{(skJ
ω,γ
0+;ρ,µ8)(θ)}(u)

=
(
(s+ 1)(ku)

)− µ
k
(
1− kω(ku)−

ρ
k
)− γ

k Lg{8(θ)}(u).

THEOREM 1.13 ([Samraiz et al., accepted]). Let k ∈ R
+, s ∈

[0,∞), µ, ρ,ω, γ ∈ C, Re(ρ) > 0, Re(γ ) > 0, Re(µ) > 0,
and g(θ) = θ s+1. Let 8 ∈ ACn

g [0,β] and
s
k
J

ω,γ
0+;ρ,nk−m−µ

8 for

m = 0, 1, 2, . . . , n− 1 be of g(θ)-exponential order. Then

Lg{(skD
ω,γ
0+;ρ,µ8)(θ)}(u)

= (s+ 1)−
nk−µ
k (ku)

µ
k
(
1− kω(ku)−

ρ
k
) γ

k Lg{8(t)}(u)

−
n−1∑

m=0

kn−mun−m−1
(s
k
D

ω,−γ

0+;ρ,µ−(n−m)k
8

)
(0+),

with |kω(ku)−
ρ
k | < 1.

THEOREM 1.14 ([Samraiz et al., accepted]). The generalized
Laplace transform of the regularized version of the (k, s)-Prabhakar
fractional derivative is

Lg{Cs,kD
ω,γ
0+;ρ,µ8(θ)}(u)

= (s+ 1)−
nk−µ
k

[
(ku)

µ
k
(
1− kω(ku)−

ρ
k
) γ

k Lg{8(θ)}(u)

−
n−1∑

m=0

km+1(ku)
µ−(m+1)k

k
(
1− kω(ku)−

ρ
k
) γ

k
(
8[m]

)
(0+)

]
,

with |kω(ku)−
ρ
k | < 1.

2. THE (k,s)-HILFER-PRABHAKAR
FRACTIONAL DERIVATIVE AND
GENERALIZED LAPLACE TRANSFORMS

In this section we introduce a new family of operators called
the (k, s)-Hilfer-Prabhakar fractional derivative. The generalized
Laplace transforms of these operators are also studied in
this section.

DEFINITION 2.1. Let 8 ∈ C1[0,β], 0 < θ < β < ∞,
s ∈ R\{−1}, k, ρ > 0, ω, γ ∈ R, µ ∈ (0, 1), ν ∈ [0, 1], and

(
8 ∗

s
k
J

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

)
(θ) ∈ AC1[0,β]. The (k, s)-Hilfer-Prabhakar

derivative is defined as

s
kD

γ ,µ,ν
0+;ρ,ω8(θ) = k

(
s
kJ

ω,−γ ν

0+;ρ,ν(k−µ)

( 1

θ s

d

dθ

)
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8

)
(θ).

Note that if we choose ν = 0 in the above definition, we get (1.2)
corresponding to m = 1; and if we take ν = 1, we obtain (1.3)
corresponding tom = 1.

THEOREM 2.2. For s ∈ R\{−1}, k, ρ > 0, ω, γ ∈ R, µ ∈ (0, 1),
ν ∈ [0, 1], and 8 ∈ L1[0,β], the operator s

k
D

γ ,µ,ν
0+;ρ,ω is bounded on

C[0,β], i.e.,

‖skD
γ ,µ,ν
0+;ρ,ω8(θ)‖ ≤ C1C2‖8‖[0,β],

where

C1 =
(s+ 1)−

ν(k−µ)
k (βs+1)Re(

ν(k−µ)
k

)

k
∞∑

n=0

|(−γ ν)n,kω
n|

|Ŵk(ρn+ ν(k− µ))|n!
(βs+1)Re(

ρ
k
)n

[
nRe( ρ

k
)+ Re( ν(k−µ)

k
)
] (2.1)

and

C2 =
(s+ 1)−

(1−ν)(k−µ)−k
k (βs+1)Re(

(1−ν)(k−µ)−k
k

)

k
∞∑

m=0

|(γ (ν − 1))m,kω
m|

|Ŵk(ρm+ (1− ν)(k− µ))|m!

×
(βs+1)Re(

ρ
k
)m

[
mRe( ρ

k
)+ Re( (1−ν)(k−µ)

k
)
] . (2.2)
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PROOF Using the estimates in Proposition 1.11, we get

‖skD
γ ,µ,ν
0+;ρ,ω8(θ)‖

=
∥∥∥k

(
s
kJ

ω,−γ ν

0+;ρ,ν(k−µ)

( 1

θ s

d

dθ

)(
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8
)
(θ)

∥∥∥

≤ C1

∥∥∥
( 1

θ s

d

dθ

)(
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8
)
(θ)

∥∥∥

= C1

∥∥∥
(
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)−k

8
)
(θ)

∥∥∥
≤ C1C2‖8‖[0,β],

where C1 and C2 are the constants defined by (2.1) and (2.2).

PROPOSITION 2.3. Let s ∈ R\{−1}, k, ρ, λ > 0, ω, γ , σ ∈ R,
µ ∈ (0, 1), ν ∈ [0, 1], λ > µ + νk− µν, and 8 ∈ L1[0,β]. Then

(
s
kD

γ ,µ,ν
0+;ρ,ω

(s
k
J

ω,σ
0+;ρ,λ8

))
(θ) =

(s
k
J

ω,σ−γ

0+;ρ,λ−µ
8

)
(θ).

In particular,

(
s
kD

γ ,µ,ν
0+;ρ,ω

(s
k
J

ω,γ
0+;ρ,µ8

))
(θ) = 8(θ).

PROOF. By using Definition 2.1 and the semigroup property of
the modified (k, s)-fractional integral operator with the k-Mittag-
Leffler function, we obtain

(
s
kD

γ ,µ,ν
0+;ρ,ω

(s
k
J

ω,σ
0+;ρ,λ8

))
(θ)

= k

(
s
kJ

ω,−γ ν

0+;ρ,ν(k−µ)

( 1

θ s

d

dθ

)
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

(s
k
J

ω,σ
0+;ρ,λ8

))
(θ)

= k

(
s
kJ

ω,−γ ν

0+;ρ,ν(k−µ)

( 1

θ s

d

dθ

)(
s
kJ

ω,−γ (1−ν)+σ

0+;ρ,(1−ν)(k−µ)+λ
8

))
(θ)

=
(
s
kJ

ω,−γ ν

0+;ρ,ν(k−µ)

(
s
kJ

ω,−γ (1−ν)+σ

0+;ρ,(1−ν)(k−µ)+λ−k
8

))
(θ)

=
(
s
kJ

ω,σ−γ

0+;ρ,λ−µ
8

)
(θ).

This completes the proof.

THEOREM 2.4. Let s ∈ R\{−1}, k, ρ, λ > 0, ω, γ ∈ R,µ ∈ (0, 1),
ν ∈ [0, 1], λ > µ + νk− µν, and 8 ∈ L1[0,β]. Then

(s
k
Jλ0+

(
s
kD

γ ,µ,ν
0+;ρ,ω8

))
(θ) =

(s
k
J

ω,−γ

0+;ρ,λ−µ
8

)
(θ).

PROOF. By using Definition 2.1 and Theorem 2 in [Samraiz et
al., accepted], we get

(
s
kJ

λ
0+

(
s
kD

γ ,µ,ν
0+;ρ,ω8

))
(θ)

= k
(
s
kJ

λ
0+

s
kJ

ω,−γ ν

0+;ρ,ν(k−µ)

( 1

θ s

d

dθ

)
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8
)
(θ)

= k
(
s
kJ

ω,−γ ν

0+;ρ,ν(k−µ)+λ

( 1

θ s

d

dθ

)
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8
)
(θ)

=
(
s
kJ

ω,−γ ν

0+;ρ,ν(k−µ)+λ

(
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)−k

8
))
(θ)

=
(
s
kJ

ω,−γ

0+;ρ,λ−µ
8

)
(θ),

and thus the result is proved.

THEOREM 2.5. The Laplace transform of the (k, s)-Hilfer-
Prabhakar fractional derivative is

Lg{skD
γ ,µ,ν
0+;ρ,ω8(θ)}(u)

= (s+ 1)
µ−k
k (ku)

µ
k
(
1− kω(ku)−

ρ
k
) γ

k

× Lg{8(θ)}(u)− k(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k

×
(
1− kω(ku)−

ρ
k
) γ ν

k s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(0+).

PROOF. By using Definition 2.1, Theorem 1.12, and Theorem
1.10, we obtain

Lg{skD
γ ,µ,ν
0+;ρ,ω8(θ)}(u)

= k(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k

Lg

{
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

[1]
8(θ)

}
(u)

= k(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k

×
[
uLg

{
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(θ)
}
(u)− s

kJ
ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(0+)
]

= (ku)(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k

Lg{skJ
ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(θ)}(u)

− k(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(0+)

= (ku)(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k

×
[
(s+ 1)−

(1−ν)(k−µ)
k (ku)

−(1−ν)(k−µ)
k

(
1− kω(ku)−

ρ
k
) γ (1−ν)

k

Lg{8(θ)}(u)
]

− k(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(0+)

= (s+ 1)
µ−k
k (ku)

µ
k
(
1− kω(ku)−

ρ
k
) γ

k Lg{8(θ)}(u)

− k(s+ 1)−
ν(k−µ)

k

× (ku)
−ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(0+),

which proves the result.

3. GENERALIZATION OF THE
FREE-ELECTRON LASER EQUATION

The integrodifferential free-electron laser equation describes
the unsaturated behavior of the free-electron laser. Several
attempts have been made to solve the generalized fractional
integrodifferential free-electron laser equation in recent years. In
this section, we develop a generalized fractional model of the
free-electron laser equation that involves the novel (k, s)-Hilfer-
Prabhakar derivative.

THEOREM 3.1. The solution of the Cauchy problem

s
kD

γ ,µ,ν
0+;ρ,ω8(θ) = λskJ

σ ,ω
0+;ρ,µ8(θ)+ f (θ), (3.1)

s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(0+) = C, C ≥ 0, (3.2)
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where θ ∈ (0,∞), f ∈ L1[0,∞), µ ∈ (0, 1), ν ∈ [0, 1], ω, λ ∈ R,
ρ > 0, and γ , σ ≥ 0, is given by

8(θ) = C

∞∑

m=0

λm(s+ 1)−
ν(k−µ)+µ−k

k (θ s+1)
ν(k−µ)+µ(1+2m)

k
−1

× E
(γ+σ )m−γ (ν−1)
k,ρ,ν(k−µ)+µ(1+2m)

(
ω(θ s+1)

ρ
k
)

+
∞∑

m=0

λm(s+ 1)2m
(s
k
J

ω,(γ+σ )m+γ

k,ρ,µ(1+2m)
f
)
(θ).

PROOF. By applying the generalized Laplace transform to
both sides of (3.1) and using Theorems 2.5 and 1.12, we get

Lg{skD
γ ,µ,ν
0+;ρ,ω8(θ)}(u) = λLg{skJ

σ ,ω
0+;ρ,µ8(θ)}(u)+ Lg{f (θ)}(u),

which can also be written as

Lg{8(θ)}(u) =
Ck(s+ 1)−

ν(k−µ)
k (ku)

−ν(k−µ)
k

(
1− kω(ku)

ρ
k
) γ ν

k

(s+ 1)
µ−k
k (ku)

µ
k
(
1− kω(ku)

−ρ
k

) γ

k

+
Lg{f (θ)}(u)

(s+ 1)
µ−k
k (ku)

µ
k
(
1− kω(ku)

−ρ
k

) γ

k

(
1− λ(ku)−

2µ
k

(
1− kω(ku)

−ρ
k

)− γ+σ

k

)−1
.

Using the binomial expansion gives

Lg{8(θ)}(u) =
Ck(s+ 1)−

ν(k−µ)
k (ku)

−ν(k−µ)
k

(
1− kω(ku)

ρ
k
) γ ν

k

(s+ 1)
µ−k
k (ku)

µ
k
(
1− kω(ku)

−ρ
k

) γ

k

+
Lg{f (θ)}(u)

(s+ 1)
µ−k
k (ku)

µ
k
(
1− kω(ku)

−ρ
k

) γ

k

∞∑

m=0

λm(ku)−2 µm
k

(
1− kω(ku)

−ρ
k

)− (γ+σ )
k

m

= Ck

∞∑

m=0

λm(s+ 1)−
ν(k−µ)+µ−k

k (ku)−
ν(k−µ)+µ(1+2m)

k

(
1− kω(ku)

−ρ
k

)− (γ+σ )m−γ (ν−1)
k

+
∞∑

m=0

λm(s+ 1)−
µ−k
k (ku)−

µ(1+2m)
k

(
1− kω(ku)

−ρ
k

)− γ+m(γ+σ )
k Lg{f (θ)}(u).

Applying the inverse Laplace transform, we obtain

8(θ) = C

∞∑

m=0

λm(s+ 1)−
ν(k−µ)+µ−k

k (θ s+1)
ν(k−µ)+µ(1+2m)

k
−1

E
(γ+σ )m−γ (ν−1)
k,ρ,ν(k−µ)+µ(1+2m)

(ω(θ s+1)
ρ
k )

+
∞∑

m=0

λm(s+ 1)2m
(
s
kJ

ω,(γ+σ )m+γ

k,ρ,µ(1+2m)
f
)
(θ),

hence the result.

REMARK 3.2. If s = 0, k = 1, γ = ν = 0, ρ = σ = 1,
µ → 1, f (θ) = 0, ω = ir, and λ = −i5p (with r, p ∈ R),
then above Cauchy problem reduces to the following free-electron
laser equation:

d

dθ
8(θ) = −ip5

∫ θ

0
(θ − t)eir(θ−t)8(t) dt, 8(0) = 1.

COROLLARY 3.3. If we take s = 0 and k = 1, then we get the
Cauchy problem given in [19]:

D
γ ,µ,ν
0+;ρ,ω8(θ) = λJ

σ ,ω
0+;ρ,µ8(θ)+ f (θ), (3.3)

J
ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

8(0+) = C, C ≥ 0, (3.4)

where θ ∈ (0,∞), f ∈ L1[0,∞), µ ∈ (0, 1), ν ∈ [0, 1], ω, λ ∈ R,
ρ > 0, and γ , σ ≥ 0, and its solution is given by

8(θ) = C

∞∑

m=0

λm(θ)ν(1−µ)+µ(1+2m)−1E
(γ+σ )m−γ (ν−1)
ρ,ν(1−µ)+µ(1+2m)

(ω(θ)ρ)

+
∞∑

m=0

λm
(
J

ω,(γ+σ )m+γ

0+ ,ρ,µ(1+2m)
f
)
(θ).

4. THE TIME-FRACTIONAL HEAT
EQUATION

Lately, numerous papers have been devoted to mathematical
analysis of variations of the time-fractional heat equation and
its applications in mathematical physics and probability theory
[see, for example, [37, 38] and the references therein]. This
section focuses on the generalized time-fractional heat equation
involving the (k, s)-Hilfer-Prabhakar derivative.

THEOREM 4.1. The solution of the Cauchy problem

s
kD

γ ,µ,ν
0+;ρ,ωV(θ , ζ ) = G

∂2

∂ζ 2
V(θ , ζ ), ζ > 0, θ ∈ R, (4.1)

[s
k
J
−γ (1−ν),ω
0+;ρ,(1−ν)(k−µ)

V(θ , ζ )
]
ζ=0+

= h(θ), (4.2)

lim
θ→∞

V(θ , ζ ) = 0, (4.3)

where s ∈ [0,∞), µ ∈ (0, 1), ν ∈ [0, 1], ω ∈ R, G, k, ρ > 0, and
γ ≥ 0, is given by

V(θ , ζ ) =
∫ +∞

−∞
dp e−ipθ ĥ(p)

1

25

∞∑

m=0

(−G)m(s+ 1)−
(1−ν)(k−µ)−(µ−k)m

k (ζ s+1)
µ(m+1)−ν(µ−k)

k
−1

× E
γ (m+1−ν)
k,ρ,µ(m+1)−ν(k−µ)

(ω(ζ s+1)
ρ
k )p2mĥ(p).
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PROOF. Let V̂(p, t) = F(V)(p, ζ ) denote the Fourier transform
with respect to the space variable θ . Taking the Fourier transform
of (4.1) and using (4.3), we obtain

s
kD

γ ,µ,ν
0+;ρ,ωV̂(p, ζ ) = −Gp2V̂(p, ζ ).

Now, applying the generalized Laplace transform to both sides of
above equation, we get

Lg{skD
γ ,µ,ν
0+;ρ,ωV̂(p, ζ )}

= −Gp2Lg{V̂(p, ζ )}(u)(s+ 1)
µ−k
k (ku)

µ
k
(
1− kω(ku)−

ρ
k
) γ

k

Lg{V̂(p, ζ )}(u)

− k(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k

[
s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

V̂(p, ζ )
]
ζ=0+

= −Gp2Lg{V̂(p, ζ )}(u),

which can be written as

Lg{V̂(p, ζ )}(u)

=
k(s+ 1)−

ν(k−µ)
k (ku)

−ν(k−µ)
k

(
1− kω(ku)−

ρ
k
) γ ν

k ĥ(p)

(s+ 1)
µ−k
k (ku)

µ
k
(
1− kω(ku)−

ρ
k
) γ

k + Gp2
Lg{V̂(p, ζ )}(u)

= k(s+ 1)
ν(µ−k)−(µ−k)

k (ku)
ν(µ−k)−µ

k
(
1− kω(ku)−

ρ
k
) γ (ν−1)

k ĥ(p)

×
(
1+

Gp2

(s+ 1)
µ−k
k (ku)−

µ
k
(
1− kω(ku)−

ρ
k
) γ

k

)−1

= k(s+ 1)
ν(µ−k)−(µ−k)

k (ku)
ν(µ−k)−µ

k
(
1− kω(ku)−

ρ
k
) γ (ν−1)

k ĥ(p)

×
∞∑

m=0

(−G)m(s+ 1)
(µ−k)m

k (ku)
µ
k
m
(
1− kω(ku)−

ρ
k
) γ

k
m

= k

∞∑

m=0

(−G)m(s+ 1)
(1−ν)(k−µ)+(k−µ)m

k (ku)
ν(µ−k)−µ(m+1)

k

×
(
1− kω(ku)−

ρ
k
)− γ (m+1−ν)

k ĥ(p).

Applying the inverse Laplace transform, we get

V̂(p, ζ ) =
∞∑

m=0

(−G)m(s+ 1)
(1−ν)(k−µ)+(k−µ)m

k (ζ s+1)
µ(m+1)−ν(µ−k)

k
−1

× E
γ (m+1−ν)
k,ρ,µ(m+1)−ν(k−µ)

(ω(ζ s+1)
ρ
k )p2mĥ(p).

Now, applying the inverse Fourier transform yields

V(θ , ζ ) =
∫ +∞

−∞
dp e−ipθ ĥ(p)

1

25

∞∑

m=0

(−G)m(s+ 1)−
(1−ν)(k−µ)−(µ−k)m

k (ζ s+1)
µ(m+1)−ν(µ−k)

k
−1

× E
γ (m+1−ν)
k,ρ,µ(m+1)−ν(k−µ)

(ω(ζ s+1)
ρ
k )p2mĥ(p).

REMARK 4.2. If s = 0, k = 1, γ = 0, and µ → 1, then the above
Cauchy problem reduces to

∂

∂θ
V(θ , ζ ) = G

∂2

∂θ2
V(θ , ζ )

[
V(θ , ζ )

]
ζ=0+ = h(θ), lim

θ→∞
V(θ , ζ ) = 0,

which is the heat equation.

COROLLARY 4.3. If we take s = 0 and k = 1, we get the following
Cauchy problem given in [19]:

D
γ ,µ,ν
0+;ρ,ωV(θ , ζ ) = G

∂2

∂θ2
V(θ , ζ ), ζ > 0, θ ∈ R,

[
J
−γ (1−ν),ω
0+;ρ,(1−ν)(1−µ)

V(θ , ζ )
]
ζ=0+ = h(θ),

lim
θ→∞

V(θ , ζ ) = 0,

where µ ∈ (0, 1), ν ∈ [0, 1], ω ∈ R, R, ρ > 0, and γ ≥ 0, with
solution given by

V(θ , ζ ) =
∫ +∞

−∞
dp e−ipθ ĥ(p)

1

25

∞∑

m=0

(−G)mζµ(m+1)−ν(µ−1)−1

× E
γ (m+1−ν)
ρ,µ(m+1)−ν(µ−1)

(ωζ ρ)p2mĥ(p).

5. GENERALIZATION OF THE FRACTIONAL
KINETIC DIFFERINTEGRAL EQUATION

Fractional differential equations are important tools for
developing mathematical models of numerous phenomena
in fields such as physics, dynamic systems, control systems,
and engineering. In mathematical modeling, kinetic equations
describe the continuity of the motion of a substance and are
basic equations of mathematical physics and the natural sciences.
In this section, we consider an equation that generalizes kinetic
equations. For related literature, we refer the reader to [39–42].

THEOREM 5.1. Consider the Cauchy problem

as
k
D

γ ,µ,ν
0+;ρ,ωN(t)− N0f (t) = bs

k
J

ω,σ
0+;ρ,qN(t), f ∈ L1[0,∞),(5.1)

s
k
J

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

N(0) = d, d ≥ 0, (5.2)

where s ∈ [0,∞), ν ∈ [0, 1], ω ∈ C, a, b ∈ R (a 6= 0),
µ, ρ, q, k > 0, and γ , σ ≥ 0. The solution to the problem is

N(t) = d

∞∑

n=0

(b
a

)n
(s+ 1)−

ν(k−µ)+(µ−k)(n+1)+qn
k (ts+1)

ν(k−µ)+µ+(q+µ)n
k

−1

E
(γ+σ )n+γ (1−ν)
k,ρ,ν(k−µ)+µ+(q+µ)n

(ω(ts+1)
ρ
k )

+
N0

a

∞∑

n=0

(b
a

)n
(s+ 1)n+1s

kJ
ω,(γ+σ )n+γ

0+;ρ,(q+µ)n+µ
f (t).

PROOF.Applying the generalized Laplace transform to both sides
of (5.1), we get

aLg{skD
γ ,µ,ν
0+;ρ,ωN(t)}(u)− N0Lg{f (t)}(u) = bLg{skJ

ω,σ
0+;ρ,qN(t)}(u).
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Using Theorems 2.5 and 1.12, we get

a
[
(s+ 1)

µ−k
k (ku)

µ
k
(
1− kω(ku)−

ρ
k
) γ

k Lg{N(t)}(u)

− k(s+ 1)−
ν(k−µ)

k (ku)
−ν(k−µ)

k

×
(
1− kω(ku)−

ρ
k
) γ ν

k s
kJ

ω,−γ (1−ν)
0+;ρ,(1−ν)(k−µ)

N(0+)
]

− N0Lg{f (t)}(u)

= b(s+ 1)−
µ
k (ku)−

µ
k
(
1− kω(ku)−

ρ
k
)− σ

k Lg{N(t)},

which can be written as

a− b(s+ 1)−

µ−k+q
k (ku)−

µ+q
k

(
1− kω(ku)−

ρ
k
)− γ+σ

k

(s+ 1)−
µ−k
k (ku)−

µ
k
(
1− kω(ku)−

ρ
k
)− γ

k




Lg{N(t)}(u)

= akd(s+ 1)−
ν(k−µ)

k (ku)−
ν(k−µ)

k
(
1− kω(ku)−

ρ
k
) γ ν

k

+ N0Lg{f (t)}(u),

Lg{N(t)}(u)

= akd


 (s+ 1)−

ν(k−µ)+(µ−k)
k (ku)−

ν(k−µ)+µ
k

(
1− kω(ku)−

ρ
k
) γ (ν−1)

k

a− b(s+ 1)−
µ−k+q

k (ku)−
µ+q
k

(
1− kω(ku)−

ρ
k
)− γ+σ

k




+


 (s+ 1)−

µ−k
k (ku)−

µ
k
(
1− kω(ku)−

ρ
k
)− γ

k

a− b(s+ 1)−
µ−k+q

k (ku)−
µ+q
k

(
1− kω(ku)−

ρ
k
)− γ+σ

k




N0Lg{f (t)}(u).

Taking
∣∣ b
a (s+1)−

µ−k+q
k (ku)−

µ+q
k

(
1−kω(ku)−

ρ
k
)− γ+σ

k
∣∣ < 1 gives

Lg{N(t)}(u)

=
[
kd(s+ 1)−

ν(k−µ)+(µ−k)
k (ku)−

ν(k−µ)+µ
k

(
1− kω(ku)−

ρ
k
) γ (ν−1)

k

+ (s+ 1)−
µ−k
k (ku)−

µ
k
(
1− kω(ku)−

ρ
k
)− γ

k a−1N0Lg{f (t)}(u)
]

×
∞∑

n=0

(b
a

)n
(s+ 1)−

(µ−k+q)n
k (ku)−

(µ+q)n
k

(
1− kω(ku)−

ρ
k
)− (γ+σ )n

k

= dk

∞∑

n=0

(b
a

)n
(s+ 1)−

ν(k−µ)+(µ−k)(n+1)+qn
k (ku)−

ν(k−µ)+µ+(µ+q)n
k

(
1− kω(ku)−

ρ
k
)− (γ+σ )n+γ (1−ν)

k

+
N0

a

∞∑

n=0

(b
a

)n
(s+ 1)−

(µ−k)(n+1)+qn
k (ku)−

µ+(µ+q)n
k

(
1− kω(ku)−

ρ
k
)− (γ+σ )n+γ

k .

Applying the inverse Laplace transform, we get

N(t) = d

∞∑

n=0

(b
a

)n
(s+ 1)−

ν(k−µ)+(µ−k)(n+1)+qn
k

(ts+1)
ν(k−µ)+µ+(q+µ)n

k
−1E

(γ+σ )n+γ (1−ν)
k,ρ,ν(k−µ)+µ+(q+µ)n

(ω(ts+1)
ρ
k )

+
N0

a

∞∑

n=0

(b
a

)n
(s+ 1)n+1s

kJ
ω,(γ+σ )n+γ

0+;ρ,(q+µ)n+µ
f (t),

which is the required result.

REMARK 5.2. If we take s = 0, k = 1, ν = γ = σ = 0, µ → 0,
a = 1, and b = −cp, then we get the following fractional kinetic
equation given in [39]:

N(t)− N0f (t) = −cpD
p

0+N(t), N(0) = d, d ≥ 0,

where D
p

0+ is the Riemann-Liouville fractional integral operator,
defined as

D
p

0+N(t) =
1

Ŵ(p)

∫ t

0
(t − τ )p−1N(τ ) dτ .

Here N(t) denotes the number density of a given species at time t,
with N0 = N(0) being the number density of that species at time
t = 0, c is a constant, and f ∈ L1[0;∞).

COROLLARY 5.3. If we take s = 0 and ν = 0, then we get the
following Cauchy problem given in [42]:

akD
γ ,µ
0+;ρ,ωN(t)− N0f (t) = bkJ

ω,σ
0+;ρ,qN(t), f ∈ L1[0,∞),

kJ
ω,−γ

0+;ρ,k−µ
N(0) = d, d ≥ 0,

where ω ∈ C, a, b ∈ R(a 6= 0), µ, ρ, q, k > 0, and γ , σ ≥ 0. The
solution to the problem is

N(t) = d

∞∑

n=0

(b
a

)n
t

µ+(q+µ)n
k

−1E
(γ+σ )n+γ

k,ρ,µ+(q+µ)n
(ω(t)

ρ
k )

+
N0

a

∞∑

n=0

(b
a

)n
kJ

ω,(γ+σ )n+γ

0+;ρ,(q+µ)n+µ
f (t).

6. CONCLUSION

A new generalized fractional derivative operator, referred to as
the (k, s)-Hilfer-Prabhakar fractional derivative, is developed in
this article. The generalized Laplace transform of the proposed
operator is also studied. Potential applications of the proposed
operator are discussed, which concern fractional models of the
free-electron laser equation, heat equation, and kinetic equation
that involve the new operator. The results in this article suggest
that this novel operator can be used to solve various types of
problems arising in mathematical physics and other fields.
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We consider the comparison theorems for the fractional forward h-difference equations

in the context of discrete fractional calculus. Moreover, we consider the existence and

uniqueness theorem for the uncertain fractional forward h-difference equations. After

that the relations between the solutions for the uncertain fractional forward h-difference

equations with symmetrical uncertain variables and their α-paths are established and

verified using the comparison theorems and existence and uniqueness theorem. Finally,

two examples are provided to illustrate the relationship between the solutions.
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1. INTRODUCTION

The study of fractional calculus and fractional differential equations has received recent attention
from both applied and theoretical disciplines. Indeed, it was observed that the use of them are very
useful for modeling many problems in mathematical analysis, medical labs, engineering sciences,
and integral inequalities (see for e.g., [1–14]). There is much interesting research on what is
usually called integer-order difference equations (see for e.g., [15, 16]). Discrete fractional calculus
and fractional difference equations represent a new branch of fractional calculus and fractional
differential equations, respectively. Also, for scientists, they represent new areas that have, in their
early stages, developed slowly. Some works are dedicated to boundary value problems, initial value
problems, chaos, and stability for the fractional difference equations (see for e.g., [17–23]).

Besides the discrete fractional calculus, the uncertain fractional differential and difference
equations have been introduced and investigated in order to model the continuous or discrete
systems with memory effects and human uncertainty (see for e.g., [24–28]). In Lu and Zhu
[27], the relations between uncertain fractional differential equations and the associated fractional
differential equations have been created via comparison theorems for fractional differential
equations of Caputo type in Lu and Zhu [26]. Lu et al. [28] presented analytic solutions to a type
of special linear uncertain fractional difference equation (UFDE) by the Picard iteration method.
Moreover, they provided an existence and uniqueness theorem for the solutions by applying the
Banach contraction mapping theorem. After that, Mohammed [29] generalized the above work.

Nowadays, discrete fractional calculus shows incredible performance in the fields of physical and
mathematical modeling. Themotivation behind solving the fractional difference equations relies on
fast investigation of the properties within models of fractional sum and difference operators (see for
e.g., [20, 30–36]).

Motivated by the aforementioned results, we will try to create a link between uncertain
fractional forward h-difference equations (UFFhDEs) and associated fractional forward
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h-difference equations (FFhDEs) in the sense of Riemann–
Liouville fractional operators via the comparison theorems and
existence and uniqueness theorem.

The rest of our article is designed as follows. In section
2, we presented the preliminary definitions and important
features that are useful in the accomplishment of this study. In
section 3, the comparison theorems of the fractional differences
are pointed out. Inverse uncertainty distribution, the existence
and uniqueness theorem, the relation between UFFhDEs and
associated FFhDEs, and some related examples are pointed out
in section 4. Finally, the future scope and concluding remarks are
summarized in section 5.

2. PRELIMINARIES

In what follows, we recall some results in discrete fractional
calculus that has been developed in the last few years; for more
details, we refer to references [24–28, 28, 29, 37, 38] and the
related references therein.

Definition 2.1 ([39]). The forward difference operator on hZ is
defined by

1h f (η) =
f (η + h)− f (η)

h
,

and the backward difference operator on hZ is defined by

∇h f (η) =
f (η)− f (η − h)

h
.

For h = 1, we get the classical forward and backward difference
operators 1ψ(η) = ψ(η + 1) − ψ(η) and ∇ψ(η) = ψ(η) −
ψ(η − h), respectively. The forward jumping operator on hZ is
σ (r) = r+h and the backward jumping operator is ρ(r) = r−h.

For a, b ∈ R with a < b, b−a
h

∈ N and 0 < h ≤ 1, we use the
notationsNa,h = {a, a+h, a+2h, ...}, b,hN = {b, b−h, b−2h, ...}.

Definition 2.2 ([39]). Let η, θ ∈ R and 0 < h ≤ 1, the delta
h-factorial of η is defined by

η
(θ)
h

=
Ŵ

(
η
h
+ 1

)

Ŵ
( η
h
+ 1− θ

) , (2.1)

where we use the convention that division at a pole yields zero
and θ is the falling delta h-factorial order of η. It is worth

mentioning that η
(θ)
h

is a function of η for given θ and h.

Definition 2.3 ([37, 38, 40]). Let f be defined on Na,h for the left
case and b,hN for the right case. Then, the left delta h-fractional
sum of order θ > 0 is defined by

(
a1

−θ
h
ψ

)
(η) =

∫ σ (η−θh)

a
(η − σ (τ ))(θ−1)

h
ψ(τ )1hτ

=
1

Ŵ(θ)

η
h
−θ∑

r= a
h

(η − σ (rh))(θ−1)
h

ψ(rh)h, η ∈ Na+θh,h,

and the right delta h-fractional sum is defined by

(
h1

−θ
b
ψ

)
(η) =

∫ b

ρ(η+θh)
(ρ(τ )− η)(θ−1)

h
ψ(τ )∇hτ

=
1

Ŵ(θ)

b
h∑

r= η
h
+θ

(rh− σ (η))(θ−1)
h

ψ(rh)h,

η ∈ b−θh,hN.

Lemma 2.1 ([40]). Let θ ,µ > 0, h > 0, and p be defined on
∈ Na,h. We then have

(
a+µ h1

−θ
h a1

−µ
h

p
)
(η) =

(
a1

−(µ+θ)
h

p
)
(η)

=
(
a+θ h1

−µ
h a1

−θ
h

p
)
(η), (2.2)

for all η ∈ Na+(θ+µ)h,h.

Lemma 2.2 ([40]). Let θ > 0 and ψ be defined on Na,h and b,hN,
respectively. Then the left and right delta h-fractional differences of
order θ are defined by

(
a1

µ

h
ψ

)
(η) =

(
1m

h a1
−(m−µ)
h

ψ
)
(η), (2.3)

(
h1

µ

b
ψ

)
(η) = (−1)m

(
∇m
h h1

−(m−µ)
b

ψ
)
(η), (2.4)

where m = [θ]+ 1.

Lemma 2.3 ([40]). Let ψ be defined on Na,h, then, for any θ > 0,
we have

(
a1

−θ
h
1hψ

)
(η) = 1h a1

−θ
h
ψ(η)−

(η − a)
(θ−1)
h

Ŵ(θ)
ψ(a). (2.5)

Lemma 2.4 ([40]). Let θ > 0,µ > 0, and h > 0, and we
then have

a+µh1
θ
h(η − a)

(µ)
h

=
Ŵ(µ+ 1)

Ŵ(µ+ θ + 1)
(η − a)

(θ+µ)
h

,

h1
θ
b−µh(b− η)

(θ)
h

=
Ŵ(µ+ 1)

Ŵ(µ+ θ + 1)
(b− η)(θ+µ)

h
.

Lemma 2.5 ([40]). Let θ ∈ R and q be any positive integer, then

(
a1

−θ
h
1

q

h
ψ

)
(η) =

(
1

q

h a1
−θ
h
ψ

)
(η)

−
q−1∑

k=0

(η − a)
(v−q+k)

h

Ŵ(v− q+ k+ 1)
1k

hψ(a), (2.6)

for η ∈ Na+θ h,h.

Lemma 2.6 ([38]). Suppose that µ
h
, µ
h
+θ ∈ R\{...,−2,−1}, then

we have

a1
−θ
h

(η − a+ µ)
( µ
h

)

h
=

Ŵ
(
µ
h
+ 1

)

Ŵ
(
µ
h
+ θ + 1

) (η − a+ µ)
( µ
h
+θ

)

h
,

for each η ∈ Na+θ h,h.
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Lemma 2.7. Let ψ be defined on Na,h and m be a positive integer
with 0 < m − 1 < µ ≤ m. The definition of the fractional
h-difference (2.3) is then equivalent to

(
a1

−µ
h
ψ

)
(η) =





1
Ŵ(−µ)

η
h
+µ∑

r= a
h

(η − σ (rh))(−µ−1)
h

ψ(rh)h, m− 1 < µ < m,

a1
m
h
p(η), µ = m,

for η ∈ Na,h.

Motivated by the definition of nth order forward sum for
uncertain sequence ξη, we define the θ th order forward sum for
uncertain sequence ξη as follows:

Definition 2.4. Let θ be a positive real number, a ∈ R, and ξη be
an uncertain sequence indexed by η ∈ Na,h. Then,

a1
−θ
h
ξη =

1

Ŵ(θ)

η
h
−θ∑

r= a
h

(η − σ (rh))(θ−1)
h

ξrh h

is called the θ th order forward fractional sum of uncertain
sequence ξη, where σ (r) = r + h.

Definition 2.5. The fractional Riemann–Liouville-like forward
difference for uncertain sequence ξη is defined by

a1
µ

h
ξη = 1n

h

(
a1

−(n−µ)
h

ξη

)
,

where θ > 0 and 0 ≤ n − 1 < µ ≤ n, n represents
a positive integer.

3. THE COMPARISON THEOREMS

Consider the following FFhDEs:

(θ−n)h1
θ
hψ(η) = g(η + (θ − n)h,ψ(η + (θ − n)h)), (3.1)

subject to the initial conditions

(θ−n)h1
θ−n+i
h

ψ(η)
∣∣∣
t=0

= ψi, i = 0, 1, ..., n− 1, (3.2)

where (θ−n)h1
θ
h
denotes a fractional Riemann–Liouville forward

h-difference with 0 ≤ n− 1 < θ ≤ n, g is a real-valued function
defined on [0,∞)×R, η ∈ N0,h, andψi ∈ R for i = 0, 1, ..., n−1.

Now, by applying the operator 01
−θ
h

to Equation (3.1), then
the initial value problem (3.1) and (3.2) is equivalent to the
following fractional sum equation:

ψ(η) =
n−1∑

i=0

(η)
(θ−n+i)
h

Ŵ(θ − n+ i+ 1)
ψi

+
1

Ŵ(θ)

η
h
−θ∑

r=0

(
η − σ (rh)

)(θ−1)

h
g(r + (θ − n)h,ψ(r + (θ − n)h))h,

(3.3)

where we have used Lemma 2.1, Lemma 2.5, and the fact that
1n

h
1−n

h
ψ(η) = ψ(η).

First, a comparison theorem for Riemann–Liouville fractional
h-difference equations with θ ∈ (0, 1] will be presented.

Theorem 3.1. Suppose g(η,ψ) and k(η,ψ) are two real-value
functions defined on [0,∞]×R. Function k is Lipschitz continuous
in y with Lipschitz constant Lk that has 0 < Lk ≤ h−θθ . If ψ1(η)
and ψ2(η) are, respectively, unique solutions of the following IVPs





(θ−1)h1
θ
h
ψ(η) = g(η + (θ − 1)h,ψ(η + (θ − 1)h)), η ∈ N0,

(θ−1)h1
θ−1
h

ψ(η)
∣∣∣
t=0

= X0,

(3.4)

and





(θ−1)h1
θ
h
ψ(η) = k(η + (θ − 1)h,ψ(η + (θ − 1)h)), η ∈ N0,

(θ−1)h1
θ−1
h

ψ(η)
∣∣∣
t=0

= ψ0.

(3.5)

1. if g(η,ψ) ≤ k(η,ψ), then ψ1(η) ≤ ψ2(η) for each
η ∈ N(θ−1)h,h,

2. if g(η,ψ) > k(η,ψ), then ψ1(η) > ψ2(η) for each η ∈ Nθ h,h.

Proof: (1) Assume that the condition ψ1(η) ≤ ψ2(η) is not valid;
there thus exists η0 ∈ N(θ−1)h,h such that ψ1(η0) > ψ2(η0). Let
η1 = min

{
η ∈ N(θ−1)h,h; ψ1(η) > ψ2(η)

}
and X(η) = ψ1(η)−

ψ2(η). Then, we have

X(η1) > 0, (3.6)

X(η) ≤ 0, η ∈ N(θ−1)h,h ∩ [0, η1 − h]. (3.7)

Considering the fractional sum equations equivalent to IVPs
(3.4) and (3.5), we have

ψ1(θ h) = θ hv−1ψ0 + hθ g((θ − 1)h,X0),

ψ2(θ h) = θ hv−1ψ0 + hθk((θ − 1)h,X0).

Subtracting these and then making use of hθ > 0 for h >

0, θ ∈ (0, 1], and g(η,ψ) ≤ k(η,ψ), we get

ψ1(θh)− ψ2(θh) = hv
(
g((θ − 1)h,X0)− k((θ − 1)h,X0)

)
≤ 0.
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This verifies that η1 > θ h. From this and since η1 ∈ N(θ−1)h,h,
we can write η1 = (θ+ℓ)h, l = 1, 2, .... By Lemma 2.6, we then get

(θ−1)h1
θ
hX(η1 − θ h)

=
1

Ŵ(−θ)

η1
h∑

r=θ−1

(
η1 − θ h− σ (rh)

)(−θ−1)

h
X(rh)h

=
1

Ŵ(−θ)

θ+ℓ∑

r=θ−1

(
ℓ h− σ (rh)

)(−θ−1)

h
X(rh)h

= h−θX((θ + ℓ)h)− θh−θX((θ + ℓ− 1)h)

+
1

Ŵ(−θ)

θ+ℓ−2∑

r=θ−1

(
ℓ h− σ (rh)

)(−θ−1)

h
X(rh)h.

That is,

h−θX((θ + ℓ)h) = (θ−1)h1
θ
hX(η1 − θ h)+ θh

−θX((θ + ℓ− 1)h)

−
1

Ŵ(−θ)

θ+ℓ−2∑

r=θ−1

(
ℓ h− σ (rh)

)(−θ−1)

h
X(rh)h.

(3.8)

Now, by using the Lipschitz continuity of k in y, g(η, x) ≤ k(η, x),
and (3.7), we get

(θ−1)h1
θ
hX(η1 − θ h) = (θ−1)h1

θ
hψ1(η1 − θ h)

− (θ−1)h1
θ
hψ2(η1 − θ h)

= g(η1 − h,ψ1(η1 − h))

− k(η1 − h,ψ2(η1 − h))

≤ k(η1 − h,ψ1(η1 − h))

− k(η1 − h,ψ2(η1 − h))

≤ −Lk
(
ψ1(η1 − h)− ψ2(η1 − h)

)

≤ −LkX(η1 − h).

Denoting ω(η1 − h) : = (θ−1)h1
θ
h
X(η1 − θ h)+ LkX(η1 − h),

it follows that

ω((θ + ℓ− 1)h) ≤ 0. (3.9)

This gives

(θ−1)h1
θ
hX(η1 − θ h) = −LkX((θ + ℓ− 1)h)+ ω((θ + ℓ− 1)h).

Thus, Equation (3.8) becomes

h−θX((θ + ℓ)h) =
(
θh−θ − Lk

)
X((θ + ℓ− 1)h)+ ω((θ + ℓ− 1)h)

−
1

Ŵ(−θ)

θ+ℓ−2∑

r=θ−1

(
ℓ h− σ (rh)

)(−θ−1)

h
X(rh)h. (3.10)

We write r = v− 1+ i, i = 0, 1, ..., ℓ− 1 to obtain

(
ℓ h− σ (rh)

)(−θ−1)

h

Ŵ(−θ)
=

(
ℓ h− (θ + i)h

)(−θ−1)

h

Ŵ(−θ)

= h−θ−1 Ŵ (ℓ− i+ 1− θ)
Ŵ(−θ)Ŵ (ℓ− i+ 2)

= h−θ−1 (ℓ− i− θ) (ℓ− i− 1− θ) · · · (−θ)Ŵ(−θ)
Ŵ(−θ)Ŵ (ℓ− i+ 2)

= h−θ−1 (−θ)(−θ + 1) · · · (ℓ− i− 1− θ) (ℓ− i− θ)
Ŵ (ℓ− i+ 2)

= h−θ−1 (−θ)(−θ + 1) · · · (−θ − 1+ c) (−θ + c)

Ŵ (c+ 1)
,

where c = ℓ− i.

Since θ ∈ (0, 1] and h−θ−1 > 0, so

(
ℓ h− σ (rh)

)(−θ−1)

h

Ŵ(−θ)
≤ 0. (3.11)

Considering Lk < θ h−θ , h−θ > 0 and Equations (3.9)–(3.11), it
follows that

h−θX((θ + ℓ)h) ≤ 0.

This implies that X(η1) ≤ 0, which contradicts with (3.6).

(2) By the same technique of (1), we assume that the
condition ψ1(η) > ψ2(η) is not valid. There thus exists
η2 ∈ Nθ h,h, such that ψ1(η2) ≤ ψ2(η2). Let η3 =
min

{
η ∈ Nθ h,h; ψ1(η) ≤ ψ2(η)

}
and z(η) = ψ2(η)−ψ1(η). We

then have

z(η3) ≥ 0, (3.12)

z(η) < 0, η ∈ Nθ h,h ∩ [0, η3 − h]. (3.13)

Considering the fractional sum equations equivalent to IVPs (3.4)
and (3.5), hθ > 0 and g(η,ψ) > k(η,ψ), we find ψ1(θ h) >
ψ2(θ h). That is; η3 > θ h. If we write η3 = (θ + ℓ)h, l = 1, 2, ...,
then, by Lemma 2.6, we get

(θ−1)h1
θ
hz(η3 − θ h)

=
1

Ŵ(−θ)

η3
h∑

r=θ−1

(
η3 − θ h− σ (rh)

)(−θ−1)

h
z(rh)h

= h−θ z((θ + ℓ)h)− θh−θ z((θ + ℓ− 1)h)

+
1

Ŵ(−θ)

θ+ℓ−2∑

r=θ−1

(
ℓ h− σ (rh)

)(−θ−1)

h
z(rh)h,

or equivalently,

h−θ z((θ + ℓ)h) = (θ−1)h1
θ
hz(η3 − θ h)+ θh

−θ z((θ + ℓ− 1)h)

−
1

Ŵ(−θ)

θ+ℓ−2∑

r=θ−1

(
ℓ h− σ (rh)

)(−θ−1)

h
z(rh)h.

(3.14)
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Now, by using the Lipschitz continuity of k in y, g(η, z) > k(η, z),
and (3.13), we get

(θ−1)h1
θ
hz(η3 − θ h) = (θ−1)h1

θ
hψ1(η3 − θ h)

− (θ−1)h1
θ
hψ2(η3 − θ h)

= w(η3 − h,ψ2(η3 − h))

− k(η3 − h,ψ1(η3 − h))

≤ k(η3 − h,ψ2(η3 − h))

− k(η3 − h,ψ1(η3 − h))

≤ −Lk
(
ψ2(η3 − h)− ψ1(η3 − h)

)

≤ −Lkz(η3 − h).

Denoting w(η3 − h) : = (θ−1)h1
θ
h
z(η3 − θ h) + Lkz(η3 − h), it

follows that

w((θ + ℓ− 1)h) ≤ 0. (3.15)

This gives

(θ−1)h1
θ
hz(η3 − θ h) = −Lkz((θ + ℓ− 1)h)+ w((θ + ℓ− 1)h).

Equation (3.14) thus becomes

h−θ z((θ + ℓ)h) =
(
θh−θ − Lk

)
z((θ + ℓ− 1)h)+ w((θ + ℓ− 1)h)

−
1

Ŵ(−θ)

θ+ℓ−2∑

r=θ−1

(
ℓ h− σ (rh)

)(−θ−1)

h
z(rh)h.

(3.16)

Similarly for θ ∈ (0, 1] and h−θ−1 > 0, we can show that

(
ℓ h− σ (rh)

)(−θ−1)

h

Ŵ(−θ)
≤ 0. (3.17)

Considering Lk < θ h−θ , h−θ > 0 and Equations (3.15)–(3.17),
it follows that

h−θ z((θ + ℓ)h) ≤ 0.

This implies that z(η3) ≤ 0, which contradicts with (3.12). The
proof of Theorem 3.1 is thus completed.

In the sequel, we will extend a comparison theorem for
Riemann-Liouville fractional h-difference equations of the order
θ with 0 ≤ n− 1 < θ ≤ n.

Theorem 3.2. Suppose g(η,ψ), and k(η,ψ) are two real-value
functions defined on [0,∞]×R. Function k is Lipschitz continuous
in y with a Lipschitz constant Lk that has 0 < Lk ≤ h−θθ . If ψ1(η)
and ψ2(η) are, respectively, unique solutions of the following IVPs





(θ−n)h1
θ
h
ψ(η) = g(η + (θ − n)h,ψ(η + (θ − n)h)), η ∈ N0,

(θ−n)h1
θ−n+i
h

ψ(η)
∣∣∣
t=0

= ψi, i = 0, 1, ..., n− 1

(3.18)

and





(θ−n)h1
θ
h
ψ(η) = k(η + (θ − n)h,ψ(η + (θ − n)h)), η ∈ N0,

(θ−n)h1
θ−n+i
h

ψ(η)
∣∣∣
t=0

= ψi, i = 0, 1, ..., n− 1.

(3.19)

1. if g(η,ψ) ≤ k(η,ψ), then ψ1(η) ≤ ψ2(η) for each
η ∈ N(θ−n)h,h,

2. if g(η,ψ) > k(η,ψ), then ψ1(η) > ψ2(η) for each
η ∈ N

h
(θ−n+1)h

.

Proof: (1) For µ = θ − n + 1 ∈ (0, 1] and η ∈ N0,h, we have

(θ−n)h1
θ
h
ψ(η) = 1n−1

h (µ−1)h1
µ

h
ψ(η). By using Lemma 2.5, the

IVPs (3.18) and (3.19) can be easily converted to the following
IVPs, respectively,





(µ−1)h1
µ

h
ψ(η) = 1

Ŵ(n−1)

η
h
−(n−1)∑
r=0

(
η − σ (rh)

)(µ−2)

h
g(r + (µ− 1)h,

ψ(r + (µ− 1)h))h+
n−2∑
i=0

(η)
(i)
h

Ŵ(i+1)
ψi+1,

(µ−1)h1
µ−1
h

ψ(η)
∣∣∣
t=0

= ψ0,

(3.20)

and





(µ−1)h1
µ

h
ψ(η) = 1

Ŵ(n−1)

η
h
−(n−1)∑
r=0

(
η − σ (rh)

)(µ−2)

h
k(r + (µ− 1)h,

ψ(r + (µ− 1)h))h+
n−2∑
i=0

(η)
(i)
h

Ŵ(i+1)
ψi+1,

(µ−1)h1
µ−1
h

ψ(η)
∣∣∣
t=0

= ψ0.

(3.21)

Denote

ḡ(η, x) =
1

Ŵ(n− 1)

η
h
−(n−1)∑

r=0

(
η − σ (rh)

)(n−2)

h
g(r + (µ− 1)h,

ψ(r + (µ− 1)h))h+
n−2∑

i=0

(η)
(i)
h

Ŵ(i+ 1)
ψi+1,

and

k̄(η, x) =
1

Ŵ(n− 1)

η
h
−(n−1)∑

r=0

(
η − σ (rh)

)(n−2)

h
k(r + (µ− 1)h,

ψ(r + (µ− 1)h))h+
n−2∑

i=0

(η)
(i)
h

Ŵ(i+ 1)
ψi+1,
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for η ∈ N(θ−1)h,h. These give

ḡ(η, x)− k̄(η, x) =
1

Ŵ(n− 1)

η
h
−(n−1)∑

r=0

(
η − σ (rh)

)(n−2)

h

×
[
g(r + (µ− 1)h,ψ(r + (µ− 1)h))− k(r + (µ− 1)h,

ψ(r + (µ− 1)h))
]
h. (3.22)

Since g(η,ψ) ≤ k(η,ψ) and

(
η − σ (rh)

)(n−2)

h

Ŵ(n− 1)
=

(
η − (r + 1)h

)(n−2)

h

Ŵ(n− 1)

= h−n−2
Ŵ

( η
h
− r

)

Ŵ(n− 1)Ŵ
( η
h
− r − n+ 2

)

= h−n−2 Ŵ (c)

Ŵ(n− 1)Ŵ (c− n+ 2)
,

where c =
η

h
− r, r = 0, 1, ...,

η

h
− n+ 1 > 0,

it follows from (3.22) that ḡ(η,ψ) ≤ k̄(η,ψ) for η ∈ N(θ−1)h,h.
Then, by applying Theorem 3.1 for the above findings, we get
ψ1(η) ≤ ψ2(η) for η ∈ N(θ−n)h,h. Hence, the proof of the first
item is completed.

(2)Analogously, we can obtain the proof of this item, and thus
our proof is completely done.

4. INVERSE UNCERTAINTY DISTRIBUTION

In this section, we make a link between the solution for an
UFFhDE and the solution for the associated FFhDE; we firstly
define a symmetrical uncertain variable and α-path for an
UFFhDE in view of Lu and Zhu [27]. After that, we state and
verify a theorem that demonstrates a link between solution for the
UFFhDE with symmetrical uncertain variables and its α-path via
the comparison theorems in section 3. To understand the theory
of inverse uncertainty distribution, we advise the readers to read
[41] carefully.

First, we recall the inverse uncertainty distribution theory:

Definition 4.1 ([41]). An uncertainty distribution 9 is called
regular if it is a continues and strictly increasing function
and satisfies

lim
x→−∞

9(x) = 0, lim
x→+∞

9(x) = 1. (4.1)

Definition 4.2 ([41]). Let ξ be an uncertain variable with a
regular uncertainty distribution 9 . Then, the inverse function
9−1 is called the inverse uncertainty distribution of ξ .

Example 4.1. From definition 4.2, we deduce that

(i) the inverse uncertainty distribution of a linear uncertain
variable L(a, b) is given by

9−1(θ) = (1− θ)a+ θ b; (4.2)

(ii) the inverse uncertainty distribution of a normal uncertain
variableN (e, σ ) is given by

9−1(θ) = e+
√
3 σ

π
ln

(
θ

1− θ

)
; (4.3)

(iii) and the inverse uncertainty distribution of a normal uncertain
variable LOGN (e, σ ) is given by

9−1(θ) = exp(e)+
(

θ

1− θ

)√
3 σ
π

. (4.4)

Definition 4.3 ([41]). We say that an uncertain variable ξ is
symmetrical if

9(x)+9(−x) = 1, (4.5)

where9(x) is a regular uncertainty distribution of ξ .

Remark 4.1. From definition 4.3, we can deduce that the
symmetrical uncertain variable has the inverse uncertainty
distribution 9−1(θ), which satiates

9−1(θ)+9−1(1− θ) = 0. (4.6)

Example 4.2. From definition 4.3, we deduce the following:

1. the linear uncertain variable L(−a, a) is symmetrical for any
positive real number a.

2. The normal uncertain variableN (0, 1) is symmetrical.

Consider the following UFFhDE with Riemann-Liouville-like
forward difference:

(θ−n)h1
θ
hX(η) = F(η + (θ − n)h,X(η + (θ − n)h))

+ G(η + (θ − n)h,X(η + (θ − n)h))ξη+(θ−n)h,
(4.7)

subject to the crisp initial conditions

(θ−n)h1
θ−n−k
h

X(η)
∣∣∣
t=0

= Xk, k = 0, 1, ..., n− 1, (4.8)

where (θ−n)h1
θ
h
denotes a fractional Riemann–Liouville forward

h-difference with 0 ≤ n − 1 < θ ≤ n, M,N are two real-
valued functions defined on [0,∞)×R, η ∈ N0,h ∩ [0,Th], Xk ∈
R for k = 0, 1, ..., n − 1, and ξ(θ−n)h, ξ(θ−n+1)h, · · · , ξη+(θ−n)h

are i.i.d. uncertain variables with symmetrical uncertainty
distribution L(a, b).

Definition 4.4 ([41]). An UFFhDE (4.7) with crisp initial
conditions (4.8) is said to have an α-path if it is the solution of
the corresponding FFhDE

(θ−n)h1
θ
hX(η) = F(η + (θ − n)h,X(η + (θ − n)h))

+ |G(η + (θ − n)h,X(η + (θ − n)h))|9−1(θ)
(4.9)

with the same initial conditions (4.8), where 9−1(θ) is the
inverse uncertainty distribution of uncertain variables ξη for η ∈
N(θ−n)h,h ∩ [0,Th].
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Theorem 4.1. Let η ∈ N0,h ∩ [0,Th], n ∈ N, λ ∈ (0, 1) and
θ ∈ (0, 1]. The linear UFFhDE:

(θ−n)h1
θ
hX(η) = λX(η + (θ − n)h)+ λ ξη+(θ−n)h,

with the initial conditions

(θ−n)h1
θ−n−i
h

X(η)
∣∣∣
t=0

= Xi, i = 0, 1, ..., n− 1,

has a solution

X(η) = XiFµ,λ;h(η)+ ξη, , i = 0, 1, ..., n− 1,

where ξη is an uncertain sequence with the uncertainty distribution
L

(
a · eθ ,λ;h(η), b · eθ ,λ;h(η)

)
, and

Fθ ,λ;h(η) =
∞∑

k=0

λk
n−1∑

i=0

(η + k(θ − n)h)
((k+1)θ h−nh+i)
h

Ŵ((k+ 1)θ − n+ i+ 1)
,

and

eθ ,λ;h(η) =
∞∑

k=1

λk
(η + (k− 1)(θ − n)h)

(kθ)
h

Ŵ(kθ + 1)
.

Proof: By making the use of Lemma 2.5, we can easily prove
this theorem by the similar technique of [29, Theorem 3.1], so
it is omitted.

Example 4.3. Consider the following UFFhDE:

(θ−1)h1
θ
hX(η) = λX(η + (θ − 1)h)+ λ ξη+(θ−1)h,

η ∈ N0,h ∩ [0,Th], λ ∈ (0, 1), θ ∈ (0, 1], (4.10)

where ξ(θ−1)h, ξθ h, . . . , ξη+(θ−1)h are i.i.d linear uncertain
variable L(−2, 2), which has the inverse uncertainty distribution
9−1(θ) = 4θ − 2 by (4.2).

By Theorem 4.1, the associated FFhDE of (4.10) with its
initial condition

(θ−1)h1
θ
hX(η) = λX(η + (θ − 1)h)+ λ9−1(θ),

(θ−1)h1
θ−1
h

X(η)
∣∣∣
t=0

= X0

has a solution

X(η) = X0

∞∑

k=0

λk
(η + k(θ − 1)h)

((k+1)θ−1)
h

Ŵ((k+ 1)θ)

+
∞∑

k=1

λk
(η + (k− 1)(θ − 1)h)

(kθ)
h

Ŵ(kθ + 1)
(4θ − 2).

The UFFhDE (4.10) has an α-path

Xθη = X0

∞∑

k=0

λk
(η + k(θ − 1)h)

((k+1)θ−1)
h

Ŵ((k+ 1)θ)

+
∞∑

k=1

λk
(η + (k− 1)(θ − 1)h)

(kθ)
h

Ŵ(kθ + 1)
(4θ − 2).

with the initial condition (θ−1)h1
θ−1
h

X(η)
∣∣∣
t=0

= X0.

Example 4.4. Consider the following UFFhDE:

(θ−2)h1
θ
hX(η) = qX(η + (θ − 2)h)+ q ξη+(θ−1)h,

η ∈ N0,h ∩ [0,Th], q ∈ (0, 1), θ ∈ (0, 1], (4.11)

where ξ(θ−2)h, ξ(θ−1) h, . . . , andξη+(θ−2)h are the i.i.d normal
uncertain variable N (0, 1), which has the inverse uncertainty

distribution9−1(θ) =
√
3
π

ln
(

θ
1−θ

)
by (4.2).

By Theorem 4.1, the associated FFhDE of (4.11) with its
initial condition

(θ−2)h1
θ
hX(η) = qX(η + (θ − 2)h)+ q9−1(θ),

(θ−2)h1
θ−2+i
h

Xi(η)
∣∣∣
t=0

= Xi, i = 0, 1

has a solution

X(η) =
∞∑

k=0

qk
1∑

i=0

Xi

(η + k(θ − 2)h)
((k+1)θ h−2h+i)
h

Ŵ((k+ 1)θ − 1+ i)

+
√
3

π
ln

(
θ

1− θ

) ∞∑

k=1

qk
(η + (k− 1)(θ − 2)h)

(kθ)
h

Ŵ(kθ + 1)
.

The UFFhDE (4.11) has an α-path

Xθη =
∞∑

k=0

qk
1∑

i=0

Xi

(η + k(θ − 2)h)
((k+1)θ h−2h+i)
h

Ŵ((k+ 1)θ − 1+ i)

+
√
3

π
ln

(
θ

1− θ

) ∞∑

k=1

qk
(η + (k− 1)(θ − 2)h)

(kθ)
h

Ŵ(kθ + 1)
.

with the initial condition (θ−2)h1
θ−2+i
h

Xi(η)
∣∣∣
t=0

= Xi, i=0,1.

In the following theorem, we make a relationship between
uncertain fractional forward h-difference equations (UFFhDEs)
and fractional h-difference equations (FFhDEs) based on the
comparison theorems in section 3.

Theorem 4.2. If Xη and Xθη are the unique solution and α-path
of UFFhDE (4.7) with the initial conditions (4.8), respectively.
Assume that F + |G|9−1(θ) is a Lipschitz continues function
in x with a Lipschitz constant Lk that has 0 < Lk < θ h−θ .
Assume that ξη is the i.i.d. symmetrical uncertain variable for

η ∈ N
h
(θ−(n−1))h,h

∩ [0,Th], then

(i) Xη ≤ Xθη if ξη(γ ) ≤ 9−1(θ) for η ∈ D+ and ξη(γ ) ≥
9−1(1− θ) for η ∈ D−, where

D
+ =

{
η ∈ N(θ−(n−1))h,h ∩ [0,Th]; G(η, x) ≥ 0

}
,

and

D
− =

{
η ∈ N(θ−(n−1))h,h ∩ [0,Th]; G(η, x) < 0

}
,
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(ii) Xη > Xθη if ξη(γ ) > 9−1(θ) for η ∈ D+ and ξη(γ ) <

9−1(1− θ) for η ∈ D−.

Proof: First, we let ξη(γ ) ≤ 9−1(θ) for η ∈ D+. Then η ∈
N(θ−(n−1))h,h ∩ [0,Th] and G(η, x) ≥ 0. Therefore,

G(η, x)ξη(γ ) ≤ |G(η, x)|9−1(θ). (4.12)

Moreover, if ξη(γ ) ≥ 9−1(1 − θ) for η ∈ D−, we have η ∈
N(θ−(n−1))h,h ∩ [0,Th] and G(η, x) < 0. Since ξη is symmetrical,
we have9−1(θ)+9−1(1− θ) = 0. Thus,

G(η, x)ξη(γ ) ≤ G(η, x)9−1(1− θ) = −G(η, x)9−1(θ)

= |G(η, x)|9−1(θ). (4.13)

Since Xη(γ ) and Xθη are the unique solution and α-path of
UFFhDE (4.7) with the initial conditions (4.8), respectively,
we have

(θ−n)h1
θ
hX(η) = F(η + (θ − n)h,X(η + (θ − n)h))

+ G(η + (θ − n)h,X(η + (θ − n)h))ξη+(θ−n)h(γ ),
(4.14)

(θ−n)h1
θ
hX(η) = F(η + (θ − n)h,X(η + (θ − n)h))

+ |G(η + (θ − n)h,X(η + (θ − n)h))|9−1(θ).
(4.15)

Hence, by use of Theorem 3.2 with (4.12)–(4.15), we get the
proof of item (i). The proof of the second item (ii) is similar to
(i). Thus, the proof of Theorem 4.2 is completed.

Theorem 4.3 (Existence and Uniqueness). Assume that F(η, x)
and G(η, x) satisfy the Lipschitz condition

|F(η, x)− F(η,ψ)| + |G(η, x)− G(η,ψ)| ≤ L|x− y|, (4.16)

and there is a positive number L that satisfies the
following inequality:

L < h−θ−1Ŵ (θ + 1) Ŵ (T + 1− θ)
Ŵ (T + 1) (Q+ 1)

, (4.17)

where Q = |a| ∨ |b|. Then UFFhDE (4.7) with the initial
conditions (4.8) has a unique solutionX(η) for η ∈ Nθ h,h∩[0,Th].

Proof: Proof of this theorem is similar to the existence
and uniqueness theorem [29, Theorem 3.2], and it is
therefore omitted.

Example 4.5. Consider the following UFFhDE:

−11
0.5
2 X(η) =

sinX(η − 1)

50+ (η − 1)2
+ ξη−1, η ∈ N

2
0 ∩ [0, 8],

(4.18)

where ξ−1, ξ1, ξ3, ξ5, ξ7 are 5 i.i.d. linear uncertain variables with
linear uncertainty distribution L(−2, 2).

In this example h = 2, θ = 0.5,T = 4,

|F(η, x)− F(η,ψ)| + |G(η, x)− G(η,ψ)| ≤
1

50
|x− y| = 0.02|x− y|,

and

h−θ−1 Ŵ (θ + 1) Ŵ (T + 1− θ)
Ŵ (T + 1) (Q+ 1)

= 2−1.5 Ŵ (0.5+ 1) Ŵ (4+ 1− 0.5)

3Ŵ (4+ 1)

≈ 0.05 > 0.02.

Thus, the existence and uniqueness Theorem 4.3 confirms that
UFFhDE (4.18) has a unique solution.

Now, since

F(η, x)+ |G(η, x)|9−1(θ) =
sin x

50+ (η − 1)2
+ 4θ − 2,

we deduce that F(η, x) + |G(η, x)|9−1(θ) is Lipschitz continues
in x with Lipschitz constant L = 0.02 < 0.35 = θ h−θ .

We see that G(η, x) = 1 > 0, and, from example 4.2,
we see L(−2, 2) is symmetrical. Hence, by Theorem 4.2, we
deduce the following link between unique solution and α-path
of UFFhDE (4.18):

(i) Xη ≤ Xθη if ξη ≤ 4θ − 2,

(ii) Xη > Xθη if ξη > 4θ − 2.

Example 4.6. Consider the following UFFhDE:

− 3
8
1

1
4
1
2

X(η) = 0.025X2

(
η −

3

8

)
+ ξη− 3

8
, η ∈ N

1
2
0 ∩

[
0,

3

2

]
,

(4.19)

where ξ− 3
8
, ξ 1

8
, ξ 5

8
, ξ 9

8
are 4 i.i.d. linear uncertain variables with

linear uncertainty distribution L(−3, 3).
In this example h = 0.5, θ = 0.25,T = 3,

|F(η, x)− F(η,ψ)| + |G(η, x)− G(η,ψ)| ≤ 0.025|x+ y||x− y|
= 0.1|x− y|, for x ∈ [−2, 2],

and

h−θ−1 Ŵ (θ + 1) Ŵ (T + 1− θ)
Ŵ (T + 1) (Q+ 1)

=
(
1

2

)− 5
4 Ŵ (0.25+ 1) Ŵ (3+ 1− 0.25)

4Ŵ (3+ 1)

≈ 0.4 > 0.1.

Thus, the existence and uniqueness Theorem 4.3 confirms that
UFFhDE (4.19) has a unique solution.

Now, since

F(η, x)+ |G(η, x)|9−1(θ) = 0.025x2 + 6θ − 3,
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we deduce that F(η, x)+ |G(η, x)|9−1(θ) is Lipschitz, continued
in x with Lipschitz constant L = 0.1 < 0.3 = θ h−θ .

We see that G(η, x) = 1 > 0, and, from example 4.2, we
see L(−3, 3) is symmetrical. Hence, by use of Theorem 4.2, we
deduce that Xη ≤ Xθη if ξη ≤ 6θ − 3 and Xη > Xθη if ξη >
6θ − 3. This is a link between unique solution and α-path of
UFFhDE (4.19).

5. CONCLUSIONS

Wehave considered the fractional forward h-difference equations
and uncertain fractional forward h-difference equations in the
context of discrete fractional calculus. The comparison theorems
and existence and uniqueness theorem for the FFhDEs and
UFFhDEs have been found. From a theoretical point of view,
we have created a strong relationship between the solutions
for UFFhDEs with the symmetrical uncertain variables and
the solutions for associated UFFhDEs (namely the α-path
of UFFhDEs).

Our presented results are in the sense of Riemann-Liouville
fractional operator. It is important to point out the future scope

of our results. There is an important task here that the researchers
will be able to consider in the future. What is the task? The
interested readers can extend the ideas that were presented in
this article to the two well-known models of fractional calculus
that were defined by operators similar to the Riemann-Liouville
fractional operator but with Mittag-Leffler functions in the
kernel, namely the Atangana–Baleanu (or briefly AB) [42, 43] and
Prabhakar [44] models.
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