Joonas Vanhanen

Joonas Vanhanen
Airmodus

PhD

About

41
Publications
11,078
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,401
Citations
Citations since 2017
13 Research Items
2233 Citations
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400

Publications

Publications (41)
Article
Full-text available
The stringency of vehicle exhaust emissions regulations resulted in a significant decrease in exhaust particulate matter (PM) emissions over the years. Non-exhaust particles (i.e., from brakes and tyres) account for almost half or more of road transport-induced ambient PM. Even with the internal combustion engine ban in 2035, electrified vehicles w...
Preprint
Full-text available
Differential mobility particle size spectrometers (DMPS) are widely used to measure the aerosol number size-distribution. Especially during new particle formation (NPF) the dynamics of the ultrafine size-distribution determine the significance of the newly formed particles within the atmospheric system. A precision quantification of the size-distri...
Article
Full-text available
Many countries worldwide have introduced a limit for solid particles larger than 23 nm for the type approval of vehicles before their circulation in the market. However, for some vehicles, in particular for port fuel injection engines (gasoline and gas engines) a high fraction of particles resides below 23 nm. For this reason, a methodology for cou...
Article
The accurate measurement of aerosol particles and clusters smaller than 3 nm in diameter is crucial for the understanding of new particle formation processes. The particle counters used for measuring these particles are typically calibrated with metal or salt particles under dry conditions, which does not always represent the field conditions where...
Article
Nanocluster aerosols (NCAs, particles <3 nm) are important players in driving climate feedbacks and processes that impact human health. This study reports, for the first time, NCA formation when gas-phase ozone reacts with human surfaces. In an occupied climate-controlled chamber, we detected NCA only when ozone was present. NCA emissions were depe...
Article
Measurements of aerosol particles and clusters smaller than 3 nm in diameter are performed by many groups in order to detect recently formed or emitted nanoparticles and for studying the formation and early growth processes of aerosol particles. The Airmodus nano-Condensation Nucleus Counter (nCNC), consisting of a Particle Size Magnifier (PSM) and...
Article
Full-text available
Accurate measurements of the size distribution of atmospheric aerosol nanoparticles are essential to build an understanding of new particle formation and growth. This is particularly crucial at the sub-3 nm range due to the growth of newly formed nanoparticles. The challenge in recovering the size distribution is due its complexity and the fact tha...
Article
Full-text available
Combustion sources have been shown to directly emit particles smaller than 10 nm. The emission of 1-3 nm particles from biofuel or fossil fuel cookstoves has not been studied previously, nor have the radiative impacts of these emissions been investigated. In this work, emissions (number of particles) were measured during a water boiling test perfor...
Article
Full-text available
It is important to improve our understanding of exposure to particulate matter (PM) in residences because of associated health risks. The HOMEChem campaign was conducted to investigate indoor chemistry in a manufactured test house during prescribed everyday activities, such as cooking, cleaning, and opening doors and windows. This paper focuses on...
Preprint
Full-text available
Abstract. Determining the particle size distribution of atmospheric aerosol particles is an important component to understand nucleation, formation and growth. This is particularly crucial at the sub 3 nm range because of the growth of newly-formed nanoparticles. The challenge in recovering the size distribution is due its complexity and the fact t...
Article
Full-text available
A solid particle number limit was applied to the European legislation for diesel vehicles in 2011. Extension to gasoline direct injection vehicles raised concerns because many studies found particles below the lower size limit of the method (23 nm). Here we investigated experimentally the feasibility of lowering this size. A nano Condensation Nucle...
Article
Full-text available
Operation of transport vehicle brakes makes a significant contribution to airborne particulate matter in urban areas, which is subject of numerous studies due to the environmental concerns. We investigated the presence and number fractions of 1.3–10 nm airborne particles emitted from a low-metallic car brake material (LM), a non-asbestos organic ca...
Article
Full-text available
Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subject to changing ambient conditions. In this study, we advance the current understanding of the operation of the Airmodus A11 nano Condensation Nucleus Counter (nCNC), which consists of a...
Article
Full-text available
Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subjected to changing ambient conditions. In this study, we advance the current understanding on the operation of Airmodus A11 nano Condensation Nucleus Counter (nCNC), which 5 consists of a...
Article
Full-text available
The most important parameters describing the atmospheric new particle formation process are the particle formation and growth rates. These together determine the amount of cloud condensation nuclei attributed to secondary particle formation. Due to difficulties in detecting small neutral particles, it has previously not been possible to derive thes...
Article
Full-text available
Atmospheric H2SO4 / H2O nucleation influencing effects have been studied in the flow tube IfT-LFT (Institute for Tropospheric Research – Laminar Flow Tube) at 293 ± 0.5 K and a pressure of 1 bar using synthetic air as the carrier gas. The presence of a possible background amine concentration in the order of 107–108 molecule cm−3 throughout the expe...
Article
Full-text available
When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm...
Article
Full-text available
Atmospheric H2SO4/H2O nucleation influencing effects have been studied in the flow tube IfT-LFT (Institute for Tropospheric Research - Laminar Flow Tube) at 293 ± 0.5 K and a pressure of 1 bar using synthetic air as the carrier gas. The presence of a~possible background amine concentration in the order of 107-108 molecule cm-3 throughout the experi...
Article
We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in p...
Article
The counting efficiencies of 2 different types of diethylene-glycol (DEG) based Condensation Particle Counters (CPCs) is described and discussed. The development of two laminar flow CPCs, sensitive in the size range below 3 nm is described. The two types used are a modified TSI 3776 laminar diffusion-type CPC operating with DEG instead of butanol...
Article
Full-text available
To calibrate a newly developed condensation particle counter, samples of known chemical composition are needed as the chemistry plays a role in the activation process. For that, we have built a calibration setup and produced ammonium sulfate, sodium chloride, tungsten oxide, silver, alkyl halide, and ionic liquid clusters down to 1 nm in mobility d...
Article
Full-text available
When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using Condensation Particle Counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently CPCs, able to reliably detect particles below 2 nm...
Article
Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub–2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations o...
Article
Full-text available
As a part of EUCAARI activities, the annual cycle of cloud condensation nuclei (CCN) concentrations and critical diameter for cloud droplet activation as a function of supersaturation were measured using a CCN counter and a HTDMA (hygroscopicity tandem differential mobility analyzer) at SMEAR II station, Hyytiälä, Finland. The critical diameters fo...
Article
Full-text available
Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensab...
Article
Full-text available
In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection ef...
Article
Full-text available
A new particle size magnifier (PSM) for detection of nano-CN as small as 1 nm in mobility diameter was developed, calibrated and tested in atmospheric measurements. The working principle of a PSM is to mix turbulently cooled sample flow with heated clean air flow saturated by the working fluid. This provides a high saturation ratio for the working...
Article
Full-text available
In this study the homogeneous nucleation rates of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of un...
Article
Full-text available
As a part of EUCAARI activities, the annual cycle of cloud condensation nuclei (CCN) concentrations and critical diameter for cloud droplet activation as a function of supersaturation were measured using a CCN counter and a HTDMA (hygroscopic tandem DMA) at SMEAR II station, Hyytiälä, Finland. The critical diameters for cloud droplet activation wer...
Article
Full-text available
Nucleation experiments starting from the reaction of OH radicals with SO<sub>2</sub> have been performed in the IfT -LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The presence of different additives (H<sub>2</sub>, CO, 1,3,5-trimethylbenzene) for adjusting the OH radical concentration and resulting OH le...
Article
Full-text available
Nucleation experiments starting from the reaction of OH radicals with SO2 have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13-61%. The presence of different additives (H2, CO, 1,3,5-trimethylbenzene) for adjusting the OH radical concentration and resulting OH levels in the range (4-30...
Article
Full-text available
Nucleation is a fundamental step in atmospheric new-particle formation. However, laboratory experiments on nucleation have systematically failed to demonstrate sulfuric acid particle formation rates as high as those necessary to account for ambient atmospheric concentrations, and the role of sulfuric acid in atmospheric nucleation has remained a my...
Article
Full-text available
The air ion spectrometer (AIS) measures mobility and size distributions of atmospheric ions. The neutral air ion spectrometer (NAIS) can additionally measure neutral particles. The number of the (N)AIS instruments in the world is only 11. Nevertheless, they are already widely used in atmospheric ion studies, particularly related to the initial step...
Article
Most simple inorganic acids and organic bases (for example amines) decrease surface tension in aqueous solutions, but common inorganic salts have the opposite effect. Therefore, the surface tension of an aqueous acid−base solution does not change linearly between acid and base binary limits. Surface tensions of two acids (hydrochloric and sulfuric...
Article
Full-text available
Surface tension of ternary solution of sodium chloride, succinic acid and water was measured as a function of both composition and temperature by using the capillary rise technique. Both sodium chloride and succinic acid are found in atmospheric aerosols, the former being main constituent of marine aerosol. Succinic acid was found to decrease the s...
Article
The surface tension of adipic aqueous solutions was measured as a function of temperature (T=278-313 K) and adipic acid mole fraction (X=0.000-0.003) using the Wilhelmy plate method. A parametrization fitted to these data is presented. The evaporation rates of binary water-malonic and water-adipic acid droplets were measured with a TDMA technique a...

Network

Cited By