Joo-Von Kim

Joo-Von Kim
Verified
Joo-Von verified their affiliation via an institutional email.
Verified
Joo-Von verified their affiliation via an institutional email.
  • BSc (Hons), PhD, HDR
  • Research Director at French National Centre for Scientific Research

About

209
Publications
45,516
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,791
Citations
Current institution
French National Centre for Scientific Research
Current position
  • Research Director
Additional affiliations
July 2017 - August 2017
Johannes Gutenberg University Mainz
Position
  • DAAD Visiting Scholar
August 2014 - August 2014
University of Leeds
Position
  • Visiting Scientist
April 2014 - April 2014
New York University
Position
  • Visiting Scientist
Education
June 2018 - June 2018
University of Paris-Sud
Field of study
  • Physics
April 1999 - September 2003
March 1995 - November 1998
The University of Western Australia
Field of study
  • Physics, Mathematics

Publications

Publications (209)
Chapter
Full-text available
Spin-transfer torques in magnetic heterostructures give rise to a number of dynamical processes that are not accessible with magnetic fields alone. A prominent example involves self-sustained magnetization oscillations, which are made possible through the compensation of magnetic damping by the transfer of spin angular momentum from a spin-polarize...
Article
Full-text available
Skyrmions and antiskyrmions in magnetic ultrathin films are characterised by a topological charge describing how the spins wind around their core. This topology governs their response to forces in the rigid core limit. However, when internal core excitations are relevant, the dynamics become far richer. We show that current-induced spin-orbit torqu...
Article
Full-text available
Harnessing chaos or intrinsic nonlinear behaviours of dynamical systems is a promising avenue toward unconventional information processing technologies. In this light, spintronic devices are promising because of the inherent nonlinearity of magnetization dynamics. Here, we demonstrate experimentally the potential for chaos-based schemes using nanoc...
Article
Full-text available
We perform a direct comparison between Kramers' method in many dimensions, i.e., Langer's theory, adapted to magnetic spin systems, and a path sampling method in the form of forward flux sampling, as a means to compute the collapse rates of metastable magnetic skyrmions. We show that a good agreement is obtained between the two methods. We report v...
Preprint
Full-text available
Magnons are elementary excitations in magnetic materials and undergo nonlinear multimode scattering processes at large input powers. In experiments and simulations, we show that the interaction between magnon modes of a confined magnetic vortex can be harnessed for pattern recognition. We study the magnetic response to signals comprising sine wave...
Article
Full-text available
Physical reservoir computing has emerged as a powerful framework for exploiting the inherent nonlinear dynamics of physical systems to perform computational tasks. Recently, we presented the magnon-scattering reservoir, whose internal nodes are given by the fundamental wavelike excitations of ferromagnets called magnons. These excitations can be ge...
Preprint
Full-text available
The extent to which non-reciprocal waves can be guided in arbitrary directions is an interesting question. We address one aspect of this problem by studying the propagation of acoustic spin waves in a narrow physical conduit made of a synthetic antiferromagnet. Through a combination of Brillouin Light Scattering microscopy and modeling, we demonstr...
Preprint
Full-text available
Interfacial Dzyaloshinkii-Moriya interaction (DMI) is a key ingredient in the stabilization of chiral magnetic states in thin films. Its sign and strength often determine crucial properties of magnetic objects, like their topology or how they can be manipulated with currents. A few experimental techniques are currently available to measure DMI quan...
Preprint
Full-text available
Physical reservoir computing has emerged as a powerful framework for exploiting the inherent nonlinear dynamics of physical systems to perform computational tasks. Recently, we presented the magnon-scattering reservoir, whose internal nodes are given by the fundamental wave-like excitations of ferromagnets called magnons. These excitations can be g...
Preprint
Vortex states in thin film disks host spin wave modes that are geometrically quantized according to their radial and azimuthal indices. Previous studies have shown that hybridization between these modes and the vortex core results in a sizeable frequency nonreciprocity between low-order clockwise and counterclockwise propagating azimuthal modes. He...
Preprint
Using Brillouin light scattering microscopy, we study the rich dynamics in magnetic disks and rings governed by non-linear interactions, focusing on the role of vortex core dynamics on the spin-wave eigenmode spectrum. By strongly exciting quantized magnon modes in magnetic vortices, self-induced magnon Floquet states are populated by the intrinsic...
Article
Full-text available
Parametric spin wave excitation allows studying a variety of nonlinear phenomena, such as magnon scattering. In patterned micro- and nanostructures, the magnon spectra is discrete and translational symmetry is broken, which means allowable scattering channels differ from those in continuous films. An example is non-degenerate scattering by which hi...
Preprint
Full-text available
Driving condensed matter systems with periodic electromagnetic fields can result in exotic states not found in equilibrium. Termed Floquet engineering, such periodic driving applied to electronic systems can tailor quantum effects to induce topological band structures and control spin interactions. However, Floquet engineering of magnon band struct...
Article
Full-text available
We present a computational study of the parametric excitation of spin waves in thin-film disks with a mode-resolved approach. The method involves projecting out the time-dependent magnetization, computed using micromagnetics simulations, onto the spatial profile of the eigenmodes that are obtained from the linearization of the equations of motion....
Preprint
Full-text available
Parametric spin wave excitation allows studying a variety of nonlinear phenomena, such as magnon scattering. In patterned micro- and nanostructures the magnon spectra is discrete and translational symmetry is broken, which means allowable scattering channels differ from those in continuous films. An example is non-degenerate scattering by which hig...
Preprint
Full-text available
We present a computational study of the parametric excitation of spin waves in thin film disks with a mode-resolved approach. The method involves projecting out the time-dependent magnetization, computed using micromagnetics simulations, onto the spatial profile of the eigenmodes that are obtained from the linearization of the equations of motion....
Article
Full-text available
Magnons are elementary excitations in magnetic materials and undergo nonlinear multimode scattering processes at large input powers. In experiments and simulations, we show that the interaction between magnon modes of a confined magnetic vortex can be harnessed for pattern recognition. We study the magnetic response to signals comprising sine wave...
Article
Full-text available
Skyrmions are topological magnetic solitons that exhibit a rich variety of dynamics, such as breathing and gyration, which can involve collective behavior in arrangements like skyrmion lattices. However, such localized excitations typically lie in the gap of the spin wave spectrum and do not couple to propagating modes. By combining magnetic force...
Article
Oxide materials possess a vast range of functional properties, ranging from superconductivity to multiferroicity, that stem from the interplay between the lattice, charge, spin and orbital degrees of freedom, and electron correlations often play an important role in defining such properties. Historically, spin–orbit coupling was rarely a dominant e...
Preprint
Full-text available
The spectral signatures of magnetic skyrmions under microwave field excitation are of fundamental interest and can be an asset for high frequency applications. These topological solitons can be tailored in multilayered thin films, but the experimental observation of their spin wave dynamics remains elusive, in particular due to large damping. Here,...
Article
Full-text available
Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-top...
Article
We use time-resolved measurement and modeling to study the spin-torque induced motion of a domain wall in perpendicular anisotropy magnets. We show that the most important factor governing domain wall dynamics is the energy difference between a wall at the center of the disk with either a Bloch-type configuration or the Néel-type configuration; thi...
Article
Full-text available
We present an experimental study of vortex dynamics in magnetic nanocontacts based on pseudo spin valves comprising the Co$_2$MnGe Heusler compound. The films were grown by molecular beam epitaxy, where precise stoichiometry control and tailored stacking order allowed us to define the bottom ferromagnetic layer as the reference layer, with minimal...
Preprint
Full-text available
The development of spintronic oscillators is driven by their potential applications in radio frequency telecommunication and neuromorphic computing. In this work, we propose a spintronic oscillator based on the chiral coupling in thin magnetic films with patterned anisotropy. With an in-plane magnetized disk imprinted on an out-of-plane magnetized...
Article
The development of spintronic oscillators is driven by their potential applications in radio frequency telecommunication and neuromorphic computing. In this work, we propose a spintronic oscillator based on the chiral coupling in thin magnetic films with patterned anisotropy. With an in-plane magnetized disk imprinted on an out-of-plane magnetized...
Preprint
A theoretical study of delayed feedback in a spin-torque nano-oscillator model is presented. The feedback acts as a modulation of the supercriticality, which results in changes in the oscillator frequency through a strong nonlinearity, amplitude modulations, and a rich modulation sideband structure in the power spectrum at long delays. Modulation s...
Preprint
Full-text available
We use time-resolved measurement and modeling to study the spin-torque induced motion of a domain wall in perpendicular anisotropy magnets. In disc of diameters between 70 and 100 nm, the wall drifts across the disc with pronounced back-and-forth oscillations that arise because the wall moves in the Walker regime. Several switching paths occur stoc...
Article
Full-text available
We propose a time-delay oscillator using Mackey–Glass nonlinearity based on a pinned magnetic domain wall in a thin film nanostrip. Through spin transfer torques, electric currents applied along the strip cause the domain wall to deform and displace away from a geometrical pinning site, which can be converted into a nonlinear transfer function thro...
Preprint
Full-text available
We propose a time-delay oscillator with Mackey-Glass nonlinearity based on a pinned magnetic domain wall in a thin film nanostrip. Through spin transfer torques, electric currents applied along the strip cause the domain wall to deform and displace away from a geometrical pinning site, which can be converted into a nonlinear transfer function throu...
Preprint
Full-text available
Quantum oxide materials possess a vast range of properties stemming from the interplay between the lattice, charge, spin and orbital degrees of freedom, in which electron correlations often play an important role. Historically, the spin-orbit coupling was rarely a dominant energy scale in oxides. It however recently came to the forefront, unleashin...
Article
We show experimentally through single-shot time-resolved conductance measurements that magnetization reversal through domain-wall motion in sub-100-nm-diameter magnetic tunnel junctions is dominated by two distinct stochastic effects. The first involves the incubation delay related to domain-wall nucleation, while the second results from stochastic...
Article
We present an analytical model to account for the deformation-induced inertial dynamics of a magnetic vortex. The model is based on a deformation of the vortex core profile based on the Döring kinetic field, whereby the deformation amplitudes are promoted to dynamical variables in a collective-coordinate approach that provides a natural extension t...
Article
Full-text available
Antiferromagnetic materials are promising platforms for next-generation spintronics owing to their fast dynamics and high robustness against parasitic magnetic fields. However, nanoscale imaging of the magnetic order in such materials with zero net magnetization remains a major experimental challenge. Here we show that non-collinear antiferromagnet...
Article
Full-text available
The thermal stability in nanostructured magnetic systems is an important issue for applications in information storage. From a theoretical and simulation perspective, an accurate prediction of thermally activated transitions is a challenging problem because desired retention times are of the order of 10 years, while the characteristic timescale for...
Preprint
Full-text available
We present an experimental study of vortex dynamics in magnetic nanocontacts based on pseudo spin valves comprising the Co$_2$MnGe Heusler compound. The films were grown by molecular beam epitaxy, where precise stoichiometry control and tailored stacking order allowed us to define the bottom ferromagnetic layer as the reference layer, with minimal...
Preprint
While ferromagnets are at the heart of daily life applications, their large magnetization and resulting energy cost for switching bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem and often possess remarkable extra functionalities: non-collinear s...
Article
Full-text available
Ultrathin ferromagnets with frustrated exchange and the Dzyaloshinskii-Moriya interaction can support topological solitons such as skyrmions and antiskyrmions, which are metastable and can be considered particle-antiparticle counterparts. When spin-orbit torques are applied, the motion of an isolated antiskyrmion driven beyond its Walker limit can...
Article
Full-text available
A theoretical study of delayed feedback in a spin-torque nano-oscillator model is presented. The feedback acts as a modulation of the supercriticality, which results in changes in the oscillator frequency through a strong non-linearity, amplitude modulations, and a rich modulation sideband structure in the power spectrum at long delays. Modulation...
Preprint
We show experimentally through time-resolved conductance measurements that magnetization reversal through domain wall motion in sub-100 nm diameter magnetic tunnel junctions is dominated by two distinct stochastic effects. The first involves the incubation time related to domain wall nucleation, while the second results from stochastic motion in th...
Article
Full-text available
We compute mean waiting times between thermally activated magnetization reversals in a nanodisk with parameters similar to a free CoFeB layer used in magnetic random access memories. By combining Langer’s theory and forward flux sampling simulations, we show that the Arrhenius prefactor can take values up to 10^21 Hz, orders of magnitude beyond the...
Article
Full-text available
An implementation of a lattice-based approach for computing the topological skyrmion charge is provided for the open source micromagnetics code mumax3. Its accuracy with respect to an existing method based on finite difference derivatives is compared for three different test cases. The lattice-based approach is found to be more robust for finite-te...
Preprint
Full-text available
The thermal stability in nanostructured magnetic systems is an important issue for applications in information storage. From a theoretical and simulation perspective, an accurate prediction of thermally-activated transitions is a challenging problem because desired retention times are on the order of 10 years, while the characteristic time scale fo...
Preprint
Full-text available
Ultrathin ferromagnets with frustrated exchange and the Dzyaloshinskii-Moriya interaction can support topological solitons such as skyrmions and antiskyrmions, which are metastable and can be considered as particle-antiparticle counterparts. When spin-orbit torques are applied, the motion of an isolated antiskyrmion driven beyond its Walker limit c...
Preprint
Full-text available
We compute mean waiting times between thermally-activated magnetization reversals in a nanodisk with parameters similar to a free CoFeB layer used in magnetic random access memories. By combining Langer's theory and forward flux sampling simulations, we show that the Arrhenius prefactor can take values up to 10$^{21}$ Hz, orders of magnitude beyond...
Preprint
Full-text available
Antiferromagnetic materials are promising platforms for next-generation spintronics owing to their fast dynamics and high robustness against parasitic magnetic fields. However, nanoscale imaging of the magnetic order in such materials with zero net magnetization remains a major experimental challenge. Here we show that non-collinear antiferromagnet...
Preprint
Full-text available
An implementation of a lattice-based approach for computing the topological skyrmion charge is provided for the open source micromagnetics code MuMax3. Its accuracy with respect to an existing method based on finite difference derivatives is compared for three different test cases. The lattice-based approach is found to be more robust for finite-te...
Preprint
Full-text available
We present an analytical model to account for the inertial dynamics of a magnetic vortex. The model is based on a deformation of the core profile based on the D\"oring kinetic field, whereby the deformation amplitudes are promoted to dynamical variables in a collective-coordinate approach that provides a natural extension to the Thiele model. This...
Article
Full-text available
We characterize spin-wave propagation and its modification by an electrical current in permalloy(Py)/Pt bilayers with Py thickness between 4 and 20 nm. First, we analyze the frequency nonreciprocity of surface spin waves and extract from it the interfacial Dzyaloshinskii-Moriya interaction constant Ds accounting for an additional contribution due t...
Article
Full-text available
We have conducted experiments to probe how the dynamics of nanocontact vortex oscillators can be modulated by an external signal. We explore the phase-locking properties in both the commensurate and chaotic regimes, where chaos appears to impede phase-locking while a more standard behavior is seen in the commensurate phase. These different regimes...
Article
Full-text available
We present an experimental study of spin-torque driven vortex self-oscillations in magnetic nanocontacts. We find that, above a certain threshold in applied currents, the vortex gyration around the nanocontact is modulated by relaxation oscillations, which involve periodic reversals of the vortex core. This modulation leads to the appearance of com...
Preprint
Full-text available
Harnessing chaos or intrinsic nonlinear behaviours from dynamical systems is a promising avenue for the development of unconventional information processing technologies. However, the exploitation of such features in spintronic devices has not been attempted despite the many theoretical and experimental evidence of nonlinear behaviour of the magnet...
Preprint
Full-text available
Harnessing chaos or intrinsic nonlinear behaviours from dynamical systems is a promising avenue for the development of unconventional information processing technologies. However, the exploitation of such features in spintronic devices has not been attempted despite the many theoretical and experimental evidence of nonlinear behaviour of the magnet...
Preprint
We characterize spin wave propagation and its modification by an electrical current in Permalloy(Py)/Pt bilayers with Py thickness between 4 and 20 nm. First, we analyze the frequency non-reciprocity of surface spin waves and extract from it the interfacial Dzyaloshinskii-Moriya interaction constant $D_s$ accounting for an additional contribution d...
Article
Full-text available
From the pioneering work of Winter [Phys. Rev. 124, 452 (1961)], a magnetic domain wall of Bloch type is known to host a special wall-bound spin-wave mode, which corresponds to spin waves being channeled along the magnetic texture. Using micromagnetic simulations, we investigate spin waves traveling inside Bloch walls formed in thin magnetic media...
Preprint
Full-text available
We have conducted experiments to probe how the dynamics of nanocontact vortex oscillators can be modulated by an external signal. We explore the phase-locking properties in both the commensurate and chaotic regimes, where chaos appears to impede phase-locking while a more standard behavior is seen in the commensurate phase. These different regimes...
Article
Full-text available
A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. The macrospin geometry is considered, where self-sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular to the film plane. By tuning the delay and amplification of the self-injected signal, we identify...
Article
Full-text available
We study annihilation mechanisms of small first- and second-order skyrmions and antiskyrmions on the frustrated J1−J2−J3 square lattice with broken inversion symmetry (Dzyaloshinskii-Moriya interaction). We find that annihilation happens via the injection of the opposite topological charge in the form of meron or antimeron nucleation. Overall, the...
Preprint
Full-text available
We perform a direct comparison between transition state theory and forward flux sampling as a means to compute collapse rates of metastable magnetic skyrmions. We show that a good agreement is obtained between the two methods. We report variations of the attempt frequency by several orders of magnitude when the applied magnetic field varies weakly,...
Article
The interfacial Dzyaloshinskii-Moriya interaction (DMI) is important for chiral domain walls (DWs) and for stabilizing magnetic skyrmions. We study the effects of introducing increasing thicknesses of Ir, from zero to 2 nm, into a Pt/Co/Ta multilayer between the Co and Ta layers. There is a marked increase in magnetic moment, due to the suppression...
Article
The interfacial Dzyaloshinskii-Moriya interaction (DMI) is important for chiral domain walls (DWs) and for stabilizing magnetic skyrmions. We study the effects of introducing increasing thicknesses of Ir, from zero to 2 nm, into a Pt/Co/Ta multilayer between the Co and Ta layers. There is a marked increase in magnetic moment, due to the suppression...
Preprint
Full-text available
We present an experimental study of spin-torque driven vortex self-oscillations in magnetic nanocontacts. We find that above a certain threshold in applied currents, the vortex gyration around the nanocontact is modulated by relaxation oscillations, which involve periodic reversals of the vortex core. This modulation leads to the appearance of comm...
Preprint
Full-text available
We study annihilation mechanisms of small first- and second-order skyrmions and antiskyrmions on the frustrated $J_1-J_2-J_3$ square lattice with broken inversion symmetry (DMI). We find that annihilation happens via the injection of the opposite topological charge in the form of meron or antimeron nucleation. Overall, the exchange frustration gene...
Preprint
Full-text available
From the pioneering work of Winter [Phys. Rev. 124, 452 (1961)], a magnetic domain wall of Bloch type is known to host a special wall-bound spin-wave mode, which corresponds to spin-waves being channeled along the magnetic texture. Using micromagnetic simulations, we investigate spin-waves travelling inside Bloch walls formed in thin magnetic media...
Preprint
Full-text available
The interfacial Dzyaloshinskii-Moriya interaction (DMI) is important for chiral domain walls (DWs) and for stabilizing magnetic skyrmions. We study the effects of introducing increasing thicknesses of Ir, from zero to 2 nm, into a Pt/Co/Ta multilayer between the Co and Ta. We observe a marked increase in magnetic moment, due to the suppression of t...
Preprint
Skyrmions and antiskyrmions in magnetic ultrathin films are characterised by a topological charge describing how the spins wind around their core. This topology governs their response to forces in the rigid core limit. However, when internal core excitations are relevant, the dynamics become far richer. We show that current-induced spin-orbit torqu...
Article
Full-text available
We compute annihilation rates of metastable magnetic skyrmions using a form of Langer's theory in the intermediate-to-high damping (IHD) regime. We look at three possible paths to annihilation: isotropic collapse of an isolated skyrmion, isotropic collapse induced by another skyrmion and annihilation at a boundary. We find that the skyrmion's inter...
Article
We revisit the description of ferromagnetic domain wall dynamics through an extended one-dimensional model by allowing flexural distortions of the wall during its motion. This is taken into account by allowing the domain wall center and internal angle to be functions of position in the direction parallel to the wall. In the limit of small applied f...
Preprint
We revisit the description of ferromagnetic domain wall dynamics through an extended one-dimensional model by allowing flexural distortions of the wall during its motion. This is taken into account by allowing the domain wall center and internal angle to be functions of position in the direction parallel to the wall. In the limit of small applied f...
Article
Full-text available
Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order1...
Preprint
A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. A macrospin geometry is considered, where self-sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular to the film plane. By tuning the delay and amplification of the self-injected signal, we identify d...
Article
Full-text available
We investigate the Gilbert damping and the magnetization switching of perpendicularly magnetized FeCoB-based free layers embedded in magnetic tunnel junctions adequate for spin-torque operated magnetic memories. We first study the influence of the boron content in MgO / FeCoB /Ta systems alloys on their Gilbert damping parameter after crystallizati...
Article
We study the current-driven skyrmion expulsion from magnetic nanostrips using micromagnetic simulations and analytic calculations. We explore the threshold current density for the skyrmion expulsion, and show that this threshold is determined by the critical boundary force as well as the spin-torque parameters. We also find the dependence of the cr...
Article
Full-text available
We study the duration of the switching events in perpendicular magnetized spin-transfer-torque magnetic random access memory cells. We focus on the sub-threshold thermally activated switching in optimal applied field conditions. From the electrical signatures of the switching, we infer that once the nucleation has occurred, the reversal proceeds by...
Article
Current-driven domain wall motion is investigated experimentally in in-plane magnetized (Ga,Mn)As tracks. The wall dynamics is found to differ in two important ways with respect to perpendicularly magnetized (Ga,Mn)As: the wall mobilities are up to ten times higher and the walls move in the same direction as the hole current. We demonstrate that th...
Article
A theoretical study of the current-driven dynamics of magnetic skyrmions in disordered perpendicularly-magnetized ultrathin films is presented. The disorder is simulated as a granular structure in which the local anisotropy varies randomly from grain to grain. The skyrmion velocity is computed for different disorder parameters and ensembles. Simila...
Preprint
A theoretical study of the current-driven dynamics of magnetic skyrmions in disordered perpendicularly-magnetized ultrathin films is presented. The disorder is simulated as a granular structure in which the local anisotropy varies randomly from grain to grain. The skyrmion velocity is computed for different disorder parameters and ensembles. Simila...
Article
Full-text available
The topologically protected magnetic spin configurations known as skyrmions offer promising applications due to their stability, mobility and localization. In this work, we emphasize how to leverage the thermally driven dynamics of an ensemble of such particles to perform computing tasks. We propose a device employing a skyrmion gas to reshuffle a...
Preprint
The topologically protected magnetic spin configurations known as skyrmions offer promising applications due to their stability, mobility and localization. In this work, we emphasize how to leverage the thermally driven dynamics of an ensemble of such particles to perform computing tasks. We propose a device employing a skyrmion gas to reshuffle a...
Article
Full-text available
We study a spin torque oscillator based on magnetic vortices hosted by a pseudo spin valve, and generated and confined by a nanocontact configuration. In addition to the standard functioning modes of such spin torque oscillators, we present evidence for field and current conditions leading to a novel extinction regime, where the oscillator response...
Preprint
We study the current-driven skyrmion expulsion from magnetic nanostrips using micromagnetic simulations and analytic calculations. We explore the threshold current density for the skyrmion expulsion, and show that this threshold is determined by the critical boundary force as well as the spin-torque parameters. We also find the dependence of the cr...
Article
We measure the frequencies of spin waves in nm-thick perpendicularly magnetized FeCoB systems, and model the frequencies to deduce the exchange stiffness of this material in the ultrathin limit. For this, we embody the layers in magnetic tunnel junctions patterned into circular nanopillars of diameters ranging from 100 to 300 nm, and we use magneto...
Article
We have characterized the strength of the interfacial Dyzaloshinskii-Moriya interaction (DMI) in ultrathin perpendicularly magnetized CoFeB/MgO films, grown on different underlayers of W, TaN, and Hf, using two experimental methods. First, we determined the effective DMI field from measurements of field-driven domain wall motion in the creep regime...
Article
Full-text available
The Dzyaloshinskii-Moriya Interaction (DMI) has recently attracted considerable interest owing to its fundamental role in the stabilization of chiral spin textures in ultrathin ferromagnets, which are interesting candidates for future spintronic technologies. Here we employ a scanning nano-magnetometer based on a single nitrogen-vacancy (NV) defect...
Article
Full-text available
A model for a spin-torque nano-oscillator based on the self-sustained oscillation of a magnetic skyrmion is presented. The system involves a circular nanopillar geometry comprising an ultrathin film free magnetic layer with a strong Dzyaloshinkii–Moriya interaction and a polariser layer with a vortex-like spin configuration. It is shown that spin-t...
Article
A theoretical study on how synchronization and resonance-like phenomena in superparamagnetic tunnel junctions can be driven by spin-transfer torques is presented. We examine the magnetization of a superparamagnetic free layer that reverses randomly between two well-defined orientations due to thermal fluctuations, acting as a stochastic oscillator....
Preprint
A theoretical study on how synchronization and resonance-like phenomena in superparamagnetic tunnel junctions can be driven by spin-transfer torques is presented. We examine the magnetization of a superparamagnetic free layer that reverses randomly between two well-defined orientations due to thermal fluctuations, acting as a stochastic oscillator....
Article
Full-text available
The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dipole and Dzyaloshinskii-Moriya interactions can result in unidirectional caustic beams in the Damon-E...
Preprint
The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dipole and Dzyaloshinskii-Moriya interactions can result in unidirectional caustic beams in the Damon-E...
Preprint
The Dzyaloshinskii-Moriya Interaction (DMI) has recently attracted considerable interest owing to its fundamental role in the stabilization of chiral spin textures in ultrathin ferromagnets, which are interesting candidates for future spintronic technologies. Here we employ a scanning nano-magnetometer based on a single nitrogen-vacancy (NV) defect...
Preprint
We have characterized the strength of the interfacial Dyzaloshinskii-Moriya interaction (DMI) in ultrathin perpendicularly magnetized CoFeB/MgO films, grown on different underlayers of W, TaN, and Hf, using two experimental methods. First, we determined the effective DMI field from measurements of field-driven domain wall motion in the creep regime...
Article
Full-text available
We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3×1011A/m2 in Pt. This change is attributed to...
Preprint
We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3$\times10^{11} $A/m$^2$ in Pt. This change is...
Preprint
We study ns scale spin-torque-induced switching in perpendicularly magnetized tunnel junctions (pMTJ). Although the switching voltages match with the macrospin instability threshold, the electrical signatures of the reversal indicate the presence of domain walls in junctions of various sizes. In the antiparallel (AP) to parallel (P) switching, a nu...
Preprint
A model for a spin-torque nano-oscillator based on the self-sustained oscillation of a magnetic skyrmion is presented. The system involves a circular nanopillar geometry comprising an ultrathin film free magnetic layer with a strong Dzyaloshinkii-Moriya interaction and a polariser layer with a vortex-like spin configuration. It is shown that spin-t...

Network

Cited By